RU2682722C1 - Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс - Google Patents

Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс Download PDF

Info

Publication number
RU2682722C1
RU2682722C1 RU2017144972A RU2017144972A RU2682722C1 RU 2682722 C1 RU2682722 C1 RU 2682722C1 RU 2017144972 A RU2017144972 A RU 2017144972A RU 2017144972 A RU2017144972 A RU 2017144972A RU 2682722 C1 RU2682722 C1 RU 2682722C1
Authority
RU
Russia
Prior art keywords
reactor
heat exchanger
core
pump
reactor core
Prior art date
Application number
RU2017144972A
Other languages
English (en)
Inventor
Сергей Евгеньевич Щеклеин
Александр Ильич Попов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2017144972A priority Critical patent/RU2682722C1/ru
Application granted granted Critical
Publication of RU2682722C1 publication Critical patent/RU2682722C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • G21D7/04Arrangements for direct production of electric energy from fusion or fission reactions using thermoelectric elements or thermoionic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

Изобретение относится к атомной энергетике, а именно к системам аварийного отвода энерговыделений активной зоны ядерного реактора с жидкометаллическим теплоносителем. Система регулируемого аварийного отвода энерговыделений активной зоны реактора АЭС содержит автономный контур воздушного охлаждения с собственным электропроводным жидкометаллическим теплоносителем, в который включены соединенные трубопроводами нижний теплообменник, установленный в теплоноситель активной зоны реактора, и внешний теплообменник, размещенный в воздушном вытяжном канале. В трубопровод внешнего теплообменника включен МГД-насос, а в активную зону реактора введен термопреобразователь. При этом дополнительно введены и установлены на внешней стороне страховочного корпуса реактора батарея термоэлектрических модулей и регулятор мощности МГД-насоса, причем термопреобразователь активной зоны соединен с входом регулятора мощности, а выход последнего включен между насосом и батареей термоэлектрических модулей. Технический результат – повышение надежности аварийного отвода тепла. 1 ил.

Description

Известна «Система ограничения последствий аварии на атомной электростанции» [1] автора Муравьева В.П.
Система содержит внутри реакторного помещения спринклерную установку, соединенную напорным трубопроводом с размещенными вне реакторного помещения насосом спринклерной воды, соединенным всасывающим трубопроводом с приямком сбора воды реактора через теплообменник, включенный во внереакторный замкнутый контур охлаждения, содержащий насос. Кроме того, система снабжена замкнутым контуром низкокипящей жидкости, содержащим турбину, конденсатор-насос, обратный клапан и теплообменник испаритель в приямке реактора.
Данная система весьма сложна в реализации из-за наличия дополнительного контура низкокипящей жидкости. Кроме того, она неработоспособна при одновременном отключении основного и резервного источников энергии в чрезвычайных обстоятельствах, так как будет обесточен насос контура охлаждения.
Известно также «Устройство для отвода избыточной тепловой энергии из внутреннего объема защитной оболочки атомной электростанции» авторов Мустафина М.Р., Бумагина В.Д. и др.[2].
Данное изобретение может быть использовано при аварийной ситуации при полном отключении активных источников электроэнергии и позволяет пассивно отводить избыточную тепловую энергию в атмосферу из внутреннего объема защитной оболочки (гермооболочки).
Устройство содержит соединенные трубопроводами теплообменники с легкокипящим теплоносителем, причем нижний теплообменник расположен в емкости для воды внутри защитной оболочки, а верхний - на наружной поверхности стенки купола защитной оболочки.
Включение в работу пассивной системы легкокипящего теплоносителя обеспечивается сильфонным сервоприводом.
Недостаток данной системы в том, что она не может быть использована на АЭС в реакторах на быстрых нейтронах, использующих в качестве рабочего тела жидкие металлы, например, натрий, вступающий во взрывную реакцию с водой и хладоном типа С, использующихся в данном патенте.
Недостатком является также ждущий режим работы данной пассивной части системы и начало ее работы только в случае прекращения работы активной части из-за отключения основного и резервного электропитания насосов. Надежность включения ждущего режима системы должна обеспечиваться сильфонами, имеющими высокую интенсивность отказов. Известна «Схема аварийного теплоотвода быстрых реакторов (БР)», рис. 36, с. 88 из книги Н.Н. Ошканова [3].
Данное устройство содержит воздушный теплообменник (ВТО) с натриевым теплоносителем, состоящий из автономного нижнего контура ВТО, расположенного в теплоносителе активной зоны реактора и внешнего теплообменника, установленного в воздушном вытяжном канале (вытяжной трубе). Перемещение расплава жидкого натрия между внутренним и внешним теплообменниками осуществляется конвекцией по трубопроводам за счет естественной циркуляции.
Нагретый натрий во внутреннем нижнем теплообменнике контура ВТО за счет естественной циркуляции поднимается вверх и отдает теплоту в наружном теплообменнике воздуху в вытяжной трубе, а охлажденный натрий возвращается в нижний теплообменник.
Однако недостатком данного устройства является относительно невысокое количество тепловой энергии, которое передается конвекцией из активной зоны реактора во внешний теплообменник и далее в вытяжную трубу за счет естественной циркуляции теплоносителя.
Наиболее близким аналогом (прототипом) предполагаемого изобретения является «Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах» [4].
Данная система содержит автономный контур воздушного охлаждения с собственным жидкометаллическим теплоносителем, состоящий из нижнего теплообменника, установленного в активной зоне реактора и внешнего теплообменника, размещенного в воздушном вытяжном канале, причем теплообменники соединены трубопроводами, а в трубопровод внешнего теплообменника включен насос магнитогидродинамического типа, подключенный к термопреобразователю, размещенному в активной зоне реактора.
Достоинством данного технического решения является быстрое отслеживание резкого повышения температуры в случае запредельной реакции, возникшей в основном (внутреннем) корпусе реактора, и выработка термопреобразователем электрической энергии, поступающей на насос магнитогидродинамического типа (МГД-насос).
Однако недостатком данной системы, ее «узким» местом, является сложность получения большой мощности для работы насоса. Отечественная промышленность не выпускает подобные термопреобразователи.
Кроме того, возникают технические проблемы, связанные с герметизацией корпусов термопреобразователей, размещенных в кипящем натрии активной зоны с высокой радиоактивностью, а также проблемы с электрической коммутацией большого числа подобных преобразователей.
Задачей настоящего изобретения является создание высоконадежной автономной системы регулируемого аварийного отвода энерговыделений активной зоны реактор АЭС с электропроводным рабочим телом в теплообменниках.
Технический результат предлагаемого изобретения заключается в повышении надежности аварийного отвода тепла за счет установки на внешней стороне страховочного корпуса реактора батареи термоэлектрических модулей и регулятора мощности МГД-насоса, причем термопреобразователь, расположенный в активной зоне, соединен со входом регулятора мощности, а выход последнего включен между насосом и батареей термоэлектрических модулей. Это позволяет разместить батарею модулей на внешней стороне страховочного корпуса при его постоянной температуре около несколько сот градусов Цельсия и существующим обдувом воздухом от вытяжного канала охлаждающих поверхностей термоэлектрических модулей. На поверхности страховочного корпуса возможно разместить, практически, неограниченное число термоэлектрических модулей, объединенных в батарею необходимой мощности, а сигнал от маломощного термопреобразователя использовать только в качестве сигнального для управления регулятором мощности. Это позволяет увеличить безопасность АЭС, так как аварийный отвод энерговыделений реактора будет производиться с регулированием независимо от состояния и работы существующей активной системы отвода избыточной тепловой энергии за пределы гермооболочки.
Таким образом, предлагаемое техническое решение позволяет максимально повысить безопасность эксплуатации АЭС.
В результате информационного поиска по источникам патентной и научно-технической информации, совокупность признаков, характеризующая описываемую «Систему регулируемого аварийного отвода энерговыделений активной зоны реактора АЭС», нами не обнаружена.
Предложенное техническое решение может найти применение в качестве дополнительной системы автономной пассивной безопасности на существующих и вновь проектируемых АЭС с электропроводным, например, жидкометаллическим рабочим телом в теплообменниках реактора.
Существующие активные системы безопасности АЭС в данном описании не рассматривается.
На чертеже условно изображены элементы предлагаемой системы безопасности АЭС: основной (внутренний) корпус 1 реактора, в котором находится теплоноситель 2 - расплав электропроводного рабочего тела в теплообменниках и в активной зоны реактора, например, натрия и комплект тепловыделяющих сборок (не показаны на чертеже), нижний теплообменник 3 контура воздушного охлаждения реактора, связанный трубопроводами 4 с внешним теплообменником 5 этого же контура, размещенного в воздушном вытяжном канале 6 вытяжной трубы. Радиаторы теплообменника и трубопроводы их соединяющие заполнены, например, расплавом натрия.
В активной зоне реактора размещен термопреобразователь 7 (например, термопары), а в разрыв трубопровода внешнего теплообменника включен магнитогидродинамический насос 8 (МГД-насос), провода 9 от термопреобразователя подключены к входу регулятора 10 мощности МГД-насоса, а выход регулятора включен с помощью проводов 11 между насосом и батареей 12 термоэлектрических модулей, размещенных на внешней стороне страховочного корпуса 13, который отделен от основного (внутреннего) корпуса 1 газовым промежутком. Батареи термоэлектрических модулей могут так же размещаться на трубопроводе 4 внешнего теплообменника 5, однако они имеют меньшую располагаемую поверхность для размещения модулей по сравнению с внешней стороной страховочного корпуса 13 реактора.
«Система регулированного аварийного отвода энерговыделений активной зоны реактора АЭС» работает следующим образом.
Для охлаждения реактора на подобных станциях невозможно использовать водяные теплообменники термосифонного и других типов, поскольку при наличии дефекта в теплообменнике и протечек воды может произойти взрывная реакция расплава рабочего тела с водой.
В АЭС с реакторами на быстрых нейтронах в качестве жидкометаллического рабочего тела в реакторах и в теплообменниках используется расплав натрия, а на других АЭС могут быть использованы в теплообменниках электропроводные теплоносители других типов.
Пассивное охлаждение в таких реакторах осуществляется воздушными теплообменниками, внутренние нижние теплообменники 3 которых расположены непосредственно в активной зоне ректора 1, а их соединенные трубопроводами 4 наружные внешние теплообменники 5 размещены в воздушном вытяжном канале 6 вытяжной трубы [3].
В рабочем режиме станции за счет наличия высокой вытяжной трубы, в ней присутствует значительная тяга воздуха, создающая его интенсивное движение и активно охлаждающая внешний теплообменник 5. За счет естественной конвекции горячее рабочее тело, например, жидкий натрий из нижнего теплообменника 3 перемещается по трубопроводам 4 вверх, а охлажденный натрий из внешнего теплообменника 5 вниз, циркулируя по замкнутому контуру.
В таком рабочем режиме пассивное охлаждение реактора за счет конвекции натрия работает дополнительно к активной системе безопасности АЭС, функционирующей от различных внешних источников энергоснабжения.
Однако, в случае чрезвычайных обстоятельств (землетрясение, военные действия, террористический акт и др.) может произойти отключение всех внешних источников электрической энергии, обеспечивающих работу активной системы безопасности, и мощности для охлаждения реактора только за счет пассивного охлаждения воздушным теплообменником с естественной конвекцией оказывается недостаточно.
Для усиления конвекции и активной циркуляции расплава натрия в воздушном теплообменнике по патенту №2622408 ближайшего аналога (прототипа) предлагалось [4] в разрыв одного из трубопроводов 4 включить МГД-насос 8, запитанный по проводам от вновь введенного термопреобразователя 7, размещенного в активной зоне основного корпуса 1 реактора.
Электрическая энергия, вырабатываемая термопреобразователем 7, должна поступать в МГД-насос 8, для усиления циркуляции жидкого натрия между нижним и верхним радиаторами воздушного теплообменника.
Однако, подобные термопреобразователи, работающие в среде кипящего натрия и в зоне высокой радиации, отечественная промышленность не выпускает. В этой связи предложено разместить на наружной стороне внешнего страховочного корпуса 13 реактора, имеющего развитую поверхность, необходимое число термоэлектрических модулей, например, типа, Марс-65, с рабочими условиями: температура горячей стороны до 580 градусов Цельсия, температура холодной стороны 70 градусов Цельсия [14]. На поверхности корпуса 13 размещается также регулятор 10 мощности, который может быть выполнен в полупроводниковом варианте усилителя с линейной характеристикой, либо на электромагнитных реле (герконах), последовательное переключение которых от сигналов по проводам 9 с термопреобразователя 7, увеличивает электрическую мощность, подаваемую по проводам 11 на МГД-насос 8. Таким образом, насос, не имеющий ограничений по мощности, будет отводить избыточную тепловую энергию из корпуса 1 реактора, в том числе и в запроектном режиме, по заранее рассчитанному регулируемому режиму и, при этом, не использовать внешние источники энергии.
Учитывая, что в данном варианте при наличии резерва электрической мощности от батареи 12 термоэлектрических модулей может быть установлен более мощный МГД-насос 8, поэтому на вновь проектируемых подобных объектах внешний теплообменник 5 системы аварийного охлаждения реактора целесообразно размещать не только в вытяжном канале трубы, но и в виде дополнительных теплообменников за гермооболочкой вне трубы АЭС. Это позволит исключить аварию вытяжного канала, связанную с обрушением трубы, вызванными чрезвычайными обстоятельствами.
Предлагаемая автономная система, улучшающая и дополняющая пассивную безопасность атомной станции, позволяет обеспечить непрерывный регулируемый отвод энерговыделений от активной зоны реактора независимо от условий работы существующей системы активной безопасности АЭС, что значительно повышает безопасность эксплуатации подобных станции.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Муравьев В.П. Система ограничения последствий аварии на атомной электростанции. Патент РФ №2030801. МПК G21С 13/10 (аналог).
2. Мустафин М.Р., Бумагин В.Д. и др. Устройство для отвода избыточной тепловой энергии из внутреннего объема защитной оболочки атомной электростанции. Патент РФ №2504031. МПК G21C 15/00 (аналог).
3. Ошканов Н.Н. Физические и технологические особенности ядерных реакторов на быстрых нейтронах. Екатеринбург, УрФУ, 2011 г., рис. 36, с. 88(аналог).
4. Ошканов Н.Н., Щеклеин С.Е., Попов А.И. Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах. Патент №2622408, МПК G21D 7/00 (прототип).
5. Патент США 6069930 А1,30.05.2000 (аналог).
6. Европейский патент 2096644 В1. 12.09.2012 (аналог).
7. Колыхан Л.И., Наганов А.В. Система пассивной безопасности атомной станции. Авторское свидетельство СССР №1829697. МПК G21C 9/00 (аналог).
8. Беркович В.М., Молчанов И.В. и др. Энергетическая установка. Авторское свидетельство СССР №1681032. МПК F01K 13/12 (аналог).
9. Патент ФРГ №3129289, МПК G21C 15/18,1982 (аналог).
10. Патент Франции №2550371 А2,08.02.1985 (аналог).
11. Андреев В.И., Зверев С.А., Упырев В.Н. Система аварийного расхолаживания исследовательского ядерного реактора. Авторское свидетельство СССР №1503047. МПК G21С 15/18 (аналог).
12. 3аявка Японии №2001188094 А. 10.07.2001 (аналог).
13. Бумагин В.Д., Широков-Брюхов Е.Ф. и др. Устройство для воздушного охлаждения системы пассивного отвода тепла из защитной оболочки атомной электростанции. Патент РФ №2450375. МПК G21C 9/00 (аналог).
14. Термоэлектрические генераторы и системы охлаждения [электронный ресурс]. http://ecogentech.ru; info@ecogentech.ru.

Claims (1)

  1. Система регулируемого аварийного отвода энерговыделений активной зоны реактора АЭС, состоящая из автономного контура воздушного охлаждения с собственным электропроводным, например жидкометаллическим, теплоносителем, в который включены соединенные трубопроводами нижний теплообменник, установленный в теплоноситель активной зоны реактора, и внешний теплообменник, размещенный в воздушном вытяжном канале, в трубопровод внешнего теплообменника включен МГД-насос, а в активную зону реактора введен термопреобразователь, отличающаяся тем, что дополнительно введены и установлены на внешней стороне страховочного корпуса реактора батарея термоэлектрических модулей и регулятор мощности МГД-насоса, причем термопреобразователь активной зоны соединен с входом регулятора мощности, а выход последнего включен между насосом и батареей термоэлектрических модулей.
RU2017144972A 2017-12-20 2017-12-20 Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс RU2682722C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017144972A RU2682722C1 (ru) 2017-12-20 2017-12-20 Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017144972A RU2682722C1 (ru) 2017-12-20 2017-12-20 Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс

Publications (1)

Publication Number Publication Date
RU2682722C1 true RU2682722C1 (ru) 2019-03-21

Family

ID=65858525

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017144972A RU2682722C1 (ru) 2017-12-20 2017-12-20 Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс

Country Status (1)

Country Link
RU (1) RU2682722C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223391A (ja) * 1989-02-21 1990-09-05 Japan Atom Power Co Ltd:The 熱電発電装置
RU2165656C1 (ru) * 1999-08-26 2001-04-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Термоэмиссионный реактор-преобразователь
RU2622408C1 (ru) * 2016-05-23 2017-06-15 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах
KR101777179B1 (ko) * 2016-09-30 2017-09-11 한국원자력연구원 원자로 하향유동 노심완전피동 냉각장치
WO2017152393A1 (en) * 2016-03-09 2017-09-14 Chengdu Science And Technology Development Center Of Caep Thermoelectric generator based residual heat removal system and method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223391A (ja) * 1989-02-21 1990-09-05 Japan Atom Power Co Ltd:The 熱電発電装置
RU2165656C1 (ru) * 1999-08-26 2001-04-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им. С.П. Королева" Термоэмиссионный реактор-преобразователь
WO2017152393A1 (en) * 2016-03-09 2017-09-14 Chengdu Science And Technology Development Center Of Caep Thermoelectric generator based residual heat removal system and method of the same
RU2622408C1 (ru) * 2016-05-23 2017-06-15 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах
KR101777179B1 (ko) * 2016-09-30 2017-09-11 한국원자력연구원 원자로 하향유동 노심완전피동 냉각장치

Similar Documents

Publication Publication Date Title
CN102623072A (zh) 一种复合型的加速器驱动次临界堆事故余热排出系统
CN108615566B (zh) 一种采用回路并行式热管冷却的小型核反应堆热传输系统
EP2877997B1 (en) Passive power production during a nuclear station blackout
US20110283701A1 (en) Self Powered Cooling
CN104269194A (zh) 一种温度触发的池式反应堆非能动事故余热排出系统
US4257846A (en) Bi-brayton power generation with a gas-cooled nuclear reactor
KR101698343B1 (ko) 노외 노심 용융물의 잔열을 이용한 모니터링 구동설비
RU2682722C1 (ru) Система регулируемого аварийного отвода энерговыделений активной зоны реактора аэс
JP2009250929A (ja) 高速増殖炉型原子力発電システム
RU2622408C1 (ru) Система аварийного отвода энерговыделений активной зоны реактора на быстрых нейтронах
JP2005049135A (ja) 液体金属冷却型原子力プラント
JP2013064710A (ja) Ri電池による原子炉由来の放射性廃棄物の利用方法
Borgohain et al. Natural circulation experiments in a non-uniform diameter lead bismuth loop and validation of LeBENC code
KR102238185B1 (ko) 원자력 발전소의 피동 붕괴열 제거계통
Xiao et al. Licensing considerations of a fluoride salt cooled high temperature test reactor
Hender et al. Spherical tokamak volume neutron source
KR20210079952A (ko) 인덕션 가열 기반의 원자로 액체금속 가열 및 냉각 시스템
Nakata et al. Performance evaluation of DRACS system for FHTR and time assessment of operation procedure
Kim et al. Critical design issues of the tokamak cooling water system of ITER’s fusion reactor
RU2737793C1 (ru) Термоэлектрический генератор в кожухотрубном исполнении
US10607740B2 (en) System, a device and a method for passive decay heat transport
Grah et al. Computational Fluid Dynamic Analysis of the ESFR Reactor Pit Cooling System in Case of Sodium Leakage
Kovalenko et al. Heat-pipes-based first wall
KR102295184B1 (ko) 원자로 냉각재 순환펌프(rcp)의 피동형 냉각 계통 장치
Tang et al. Thermal-Hydraulic Analysis of TOPAZ-II With Modified RELAP5

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191221