RU2682569C1 - Способ сорбционной очистки водных растворов от мышьяка - Google Patents

Способ сорбционной очистки водных растворов от мышьяка Download PDF

Info

Publication number
RU2682569C1
RU2682569C1 RU2018124707A RU2018124707A RU2682569C1 RU 2682569 C1 RU2682569 C1 RU 2682569C1 RU 2018124707 A RU2018124707 A RU 2018124707A RU 2018124707 A RU2018124707 A RU 2018124707A RU 2682569 C1 RU2682569 C1 RU 2682569C1
Authority
RU
Russia
Prior art keywords
arsenic
sorbent
sorption
solution
titanium dioxide
Prior art date
Application number
RU2018124707A
Other languages
English (en)
Inventor
Надежда Викторовна Печищева
Анастасия Анатольевна Белозерова
Константин Юрьевич Шуняев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН)
Priority to RU2018124707A priority Critical patent/RU2682569C1/ru
Application granted granted Critical
Publication of RU2682569C1 publication Critical patent/RU2682569C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Abstract

Изобретение относится к способам очистки сточных вод от мышьяка. Способ включает контактирование раствора в статических условиях с сорбентом, в качестве которого используют рутил, подвергнутый механоактивации до размеров кристаллитов менее 20 нм. Контактирование раствора с сорбентом ведут при ультразвуковой обработке в диапазоне частот 30-35 кГц, рН 1-1.5 и массовом отношении мышьяка к диоксиду титана не более 1:100. Изобретение обеспечивает снижение времени очистки при высокой степени поглощения мышьяка. 1 з.п. ф-лы, 2 ил., 1 табл.

Description

Изобретение относится к способам очистки сточных вод от мышьяка и может найти применение на предприятиях цветной металлургии и химической промышленности.
Выбросы металлургических предприятий - один из источников поступления в окружающую среду, в частности, питьевую воду, такого высокотоксичного элемента, как мышьяк. Мышьяк вызывает серьезные проблемы со здоровьем, в том числе поражение кожи и рак. Сорбция является одним из популярных методов очистки сточных и природных вод от мышьяка. Оксид титана и материалы на его основе - многообещающие сорбенты для удаления мышьяка благодаря высокой сорбционной активности, физической и химической стабильности, нетоксичности и коммерческой доступности.
Известен способ очистки кислых растворов от мышьяка и сурьмы с использованием титансодержащего сорбента, в качестве которого применяют гидратированную окись титана (IV), при весовом соотношении титана к мышьяку 4-7:1, температуре раствора 40-90°С и рН от -0,3 до -0,9 (а.с. 305742, МПК С01в 27/02, оп. 05.01.1975).
Этот способ требует большого расхода титана и длительного времени для обеспечения степени очистки растворов от мышьяка порядка 90%.
Известен способ удаления мышьяка из водных растворов с использованием в качестве сорбента гидратированного диоксида титана, при этом сорбция 1 мг/л мышьяка (III) и мышьяка (V) проводится в статическом режиме из водного раствора при рН=4, соотношении 0.1 г сорбента на 1000 мл раствора (Т : Ж=1:10000) (М. Pirila et al. Removal of aqueous As(III) and As(V) by hydrous titanium dioxide // Journal of Colloid and Interface Science. 2011. V. 353. P. 257-262).
Недостатком является низкая скорость достижения степени сорбции более 95% - 4 ч. и низкая сорбционная емкость - 31.8 мг мышьяка (III) и 33.4 мг мышьяка (V) на 1 г сорбента
Известен способ сорбционной очистки водных растворов от мышьяка (III) и мышьяка (V) в статических условиях с использованием в качестве сорбента нанотрубок титаната натрия, приготовленных из диоксида титана гидротермальным методом, при соотношении сорбент : раствор 25 мг на 25 мл (Т : Ж=1000) (Niu H.Y. et al. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method // Microporous and Mesoporous Materials. 2009. V. 122. P. 28-35). Максимум степени сорбции мышьяка (III) из раствора с содержанием 25 мг/л (около 90%) наблюдается при рН от 7 до 10, тогда как такая же степень сорбции мышьяка (V) из раствора с содержанием 5 мг/л наблюдается при рН=2.5-3. Сорбционная емкость - 59.5 мг мышьяка (III) и 204.1 мг мышьяка (V) на 1 г сорбента.
Недостатком способа является неполнота сорбции мышьяка (около 90%) при указанных его концентрациях в растворе, низкая емкость сорбента по отношению к мышьяку (III) и длительность процесса - установление сорбционного равновесия в течение 8 часов.
Известен способ извлечения мышьяка (III) и мышьяка (V) из водных растворов с рН=7 при концентрации мышьяка 50 мг/л, включающий перемешивание раствора в статических условиях с сорбентом, в качестве которого используют диоксид титана модификации анатаз с размером кристаллитов около 7 нм, и соотношении сорбент : раствор 1 г на 1 л (Т : Ж=1000), принятый за прототип (Z. Xu, X. Meng, Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation, J. Hazard. Mater. 2009. V. 168. P. 747-752). При проведении сорбции мышьяка (V) растворы перемешивают с сорбентом 24 ч, при этом сорбционная емкость составляет 30.5 мг мышьяка на 1 г сорбента, а при сорбции мышьяка (III) (4 часа) - 30 мг мышьяка на 1 г сорбента.
Недостаток способа - длительное время сорбции и низкая сорбционная емкость сорбента.
Техническим результатом заявляемого изобретения является повышение сорбционной емкости сорбента и снижение времени проведения сорбции при обеспечении высокой степени очистки растворов от мышьяка.
Указанный технический результат достигается тем, что в способе сорбционной очистки водных растворов от мышьяка, включающем контактирование раствора в статических условиях с сорбентом на основе диоксида титана при поддержании определенного соотношения сорбент : раствор и показателя рН с последующим отделением сорбента, согласно изобретению в качестве сорбента на основе диоксида титана используют рутил, подвергнутый механоактивации до размеров кристаллитов менее 20 нм, а контактирование раствора с сорбентом ведут при ультразвуковой обработке в диапазоне частот 30-35 кГц при рН 1-1.5 и обеспечении массового соотношения мышьяка и диоксида титана не более 1:100. При этом контактирование раствора с сорбентом проводят в течение не менее 30 минут.
Использование в качестве сорбента механоактивированного рутила с размером кристаллитов менее 20 нм позволяет повысить сорбционную емкость сорбента за счет, в том числе, увеличения удельной поверхности и извлекать мышьяк из водных растворов со степенью сорбции выше 94% при невысоком расходе сорбента. При этом рН раствора влияет как на заряд поверхности частиц диоксида титана, так и на форму существования и заряд частиц мышьяка в водном растворе, что обуславливает возможность взаимодействия и сорбции.
Как правило, более токсичный мышьяк (III) хуже адсорбируется, чем мышьяк (V) (X. Guan et al. Application of titanium dioxide in arsenic removal from water: A review //Journal of Hazardous Materials. 2012. V. 215-216. P. 1-16), однако предлагаемый в данном способе сорбент обладает высокой емкостью по отношению к мышьяку в обеих степенях окисления (максимальная статическая сорбционная емкость: As(III) - 164 мг/г, As(V) -101 мг/г).
Проведение процесса при поддержании заявляемого массового соотношения мышьяка и диоксида титана не более 1:100 позволяет достичь степени сорбции мышьяка из растворов более 96% за короткое время. Проведение сорбции при соотношении мышьяка и диоксида титана более 1:100 не гарантирует достаточно полного удаления мышьяка из раствора.
Зависимости степени сорбции мышьяка (III) и мышьяка (V) от рН с использованием механоактивированного рутила (размер кристаллитов 15 нм) и коммерчески доступного рутила (размер кристаллитов 220 нм) продемонстрированы на рисунке 1.
Проведение сорбции при ультразвуковой обработке в диапазоне частот 30-35 кГц в течение не менее 30 минут позволяет дезагрегировать частицы механоактивированного рутила, что приводит к увеличению удельной поверхности сорбента и повышению степени сорбции. Зависимость сорбционной емкости механоактивированного рутила от времени сорбции под действием и без воздействия ультразвука при рН=1 приведена на рисунке 2.
Способ осуществляют следующим образом.
Сорбцию мышьяка (III) и мышьяка (V) из водных растворов проводят в статическом режиме. В раствор помещают навеску механоактивированного рутила (0.05 г на 50 см3 раствора) с размером кристаллитов 14-16 нм (установленного на основании размера областей когерентного рассеяния по данным рентгеновской дифракции). Требуемое значение рН=1-1.5 растворов устанавливают раствором 0,1 М НСl. Сорбцию проводят в течение в течение 30 мин, с использованием обработки ультразвуковым излучением частотой 30-35 кГц. После проведения сорбции отделяют сорбент центрифугированием.
Пример 1. Механоактивацию ТiO2 (квалификация - ос.ч., 100% модификация рутил) проводили в высокоэнергетической планетарной шаровой мельнице Pulverisette 7 PremiumLine с гарнитурой из карбида вольфрама (диаметр шаров - 10 мм, скорость вращения основного диска - 800 об/мин). Продолжительность механоактивации - 150 мин. Режим помола - сухой, через каждые 15 минут стаканы остужались на воздухе. Рентгенодифракционный анализ механоактивированных порошков ТiO2 выполнен с помощью рентгеновского дифрактометра XRD-7000, размер кристаллитов сорбента установлен с использованием формулы Шеррера. Навеску сорбента - 0.05 г механоактивированного рутила с размером кристаллитов 16 нм, с момента механоактивации которого прошло не более 2 месяцев, поместили в полипропиленовую пробирку с 50 мл водного раствора с рН=1, содержащего 10 мг/л мышьяка. Массовое соотношение мышьяка и диоксида титана - 1:100. Значение рН установили с помощью 0,1 М раствора НСl. Пробирку опустили в ультразвуковую ванну ПСБ-2835-05 и провели обработку ультразвуковым излучением частотой 35 кГц в течение 30 минут. После проведения обработки раствор отделили от сорбента центрифугированием в течение 15 мин на скорости 8000 об/мин. Содержание мышьяка в растворе определили с помощью атомно-эмиссионного спектрометра «Optima 2100 DV» (Perkin Elmer). Степень извлечения составила 97%.
Результаты опытов по прототипу и согласно изобретению приведены в таблице.
Figure 00000001
Основными преимуществами предлагаемого способа перед другими являются высокая емкость используемого сорбента по отношению к мышьяку в обеих степенях окисления ((III) и (V)) и высокая степень сорбции, достигаемая за короткий промежуток времени.

Claims (2)

1. Способ сорбционной очистки водных растворов от мышьяка, включающий контактирование раствора в статических условиях с сорбентом на основе диоксида титана при поддержании определенного соотношения сорбент : раствор и показателя рН с последующим отделением сорбента, отличающийся тем, что в качестве сорбента на основе диоксида титана используют рутил, подвергнутый механоактивации до размеров кристаллитов менее 20 нм, а контактирование раствора с сорбентом ведут при ультразвуковой обработке в диапазоне частот 30-35 кГц, рН 1-1.5 и обеспечении массового соотношения мышьяка и диоксида титана не более 1:100.
2. Способ по п. 1, отличающийся тем, что контактирование раствора с сорбентом проводят в течение не менее 30 мин.
RU2018124707A 2018-07-05 2018-07-05 Способ сорбционной очистки водных растворов от мышьяка RU2682569C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124707A RU2682569C1 (ru) 2018-07-05 2018-07-05 Способ сорбционной очистки водных растворов от мышьяка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124707A RU2682569C1 (ru) 2018-07-05 2018-07-05 Способ сорбционной очистки водных растворов от мышьяка

Publications (1)

Publication Number Publication Date
RU2682569C1 true RU2682569C1 (ru) 2019-03-19

Family

ID=65805897

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124707A RU2682569C1 (ru) 2018-07-05 2018-07-05 Способ сорбционной очистки водных растворов от мышьяка

Country Status (1)

Country Link
RU (1) RU2682569C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2032460C1 (ru) * 1992-03-25 1995-04-10 Шарыгин Леонид Михайлович Гранулированный неорганический сорбент и способ его получения
RU2039011C1 (ru) * 1991-12-29 1995-07-09 Станислав Александрович Онорин Способ извлечения мышьяка из растворов
US5821186A (en) * 1996-11-01 1998-10-13 Lockheed Martin Energy Research Corporation Method for preparing hydrous titanium oxide spherules and other gel forms thereof
RU2136607C1 (ru) * 1997-10-03 1999-09-10 Уральский научно-исследовательский институт региональных экологических проблем ("УралНИИ "Экология") Способ очистки сточных вод от мышьяка
US7521133B2 (en) * 2002-03-25 2009-04-21 Osaka Titanium Technologies Co., Ltd. Titanium oxide photocatalyst, process for producing the same and application
RU2496570C1 (ru) * 2012-05-30 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения сорбента для очистки воды от ионов железа и марганца

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2039011C1 (ru) * 1991-12-29 1995-07-09 Станислав Александрович Онорин Способ извлечения мышьяка из растворов
RU2032460C1 (ru) * 1992-03-25 1995-04-10 Шарыгин Леонид Михайлович Гранулированный неорганический сорбент и способ его получения
US5821186A (en) * 1996-11-01 1998-10-13 Lockheed Martin Energy Research Corporation Method for preparing hydrous titanium oxide spherules and other gel forms thereof
RU2136607C1 (ru) * 1997-10-03 1999-09-10 Уральский научно-исследовательский институт региональных экологических проблем ("УралНИИ "Экология") Способ очистки сточных вод от мышьяка
US7521133B2 (en) * 2002-03-25 2009-04-21 Osaka Titanium Technologies Co., Ltd. Titanium oxide photocatalyst, process for producing the same and application
RU2496570C1 (ru) * 2012-05-30 2013-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ получения сорбента для очистки воды от ионов железа и марганца

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Xiaohong Guan et al. Application of titanium dioxide in arsenic removal from water: A review, J. of Hazardous Materials, 215-216, 2012, p. 1-16. *

Similar Documents

Publication Publication Date Title
Arenas et al. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process
Bibi et al. Evaluation of industrial based adsorbents for simultaneous removal of arsenic and fluoride from drinking water
US8648008B2 (en) Arsenic adsorbing composition and methods of use
US20150129502A1 (en) Graphene oxide-modified materials for water treatment
Jacob et al. Removal of Cr (III) and Ni (II) from tannery effluent using calcium carbonate coated bacterial magnetosomes
Thakkar et al. Water defluoridation using a nanostructured diatom–ZrO2 composite synthesized from algal Biomass
US20080099403A1 (en) Method of water purification
CN106423045B (zh) 一种处理含锌废水的改性蒙脱土吸附剂制备方法
WO2014094130A1 (en) Graphene oxide for use in removing heavy metal from water
Hefne et al. Removal of silver (I) from aqueous solutions by natural bentonite
RU2682569C1 (ru) Способ сорбционной очистки водных растворов от мышьяка
JP5046853B2 (ja) 重金属類を含有する汚染水の処理剤および処理方法
Ghrab et al. Copper adsorption from wasterwater using bone charcoal
Al-Saeedi et al. Removal of Pb (II) and Ni (II) ions from aqueous solution by sea snail shells
JP6840354B2 (ja) ホウ素含有水の処理方法
Ali et al. Limestone residues of sculpting factories utilization as sorbent for removing Pb (II) ion from aqueous solution
Deng et al. Synthesis of titanate nanoparticles in low temperature hydrolysis and adsorption of arsenate (V) and fluoride
RU2496570C1 (ru) Способ получения сорбента для очистки воды от ионов железа и марганца
JP6950893B2 (ja) ホウ素含有水の処理方法
Ostovan et al. Evaluation of the sawdust modified with diethylenetriamine as an effective adsorbent for Fe (III) removal from water
JP3830878B2 (ja) 水溶性セレン除去剤およびそれを用いた水溶性セレンの除去方法
Pechishcheva et al. Adsorption of chromium (VI) on mechanically activated graphite
JP2009255050A (ja) 除去剤およびその除去方法
Tarmizi et al. Sorption isotherm model of zinc (II) onto thermally treated rice husk
Kalak Effective use of slag as a product of the CFBC technology to purify water environment of copper ions