RU2681672C1 - Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах - Google Patents
Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах Download PDFInfo
- Publication number
- RU2681672C1 RU2681672C1 RU2018113962A RU2018113962A RU2681672C1 RU 2681672 C1 RU2681672 C1 RU 2681672C1 RU 2018113962 A RU2018113962 A RU 2018113962A RU 2018113962 A RU2018113962 A RU 2018113962A RU 2681672 C1 RU2681672 C1 RU 2681672C1
- Authority
- RU
- Russia
- Prior art keywords
- field
- spectrum
- phase
- light field
- hilbert
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 40
- 238000007794 visualization technique Methods 0.000 title description 2
- 238000001228 spectrum Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000000523 sample Substances 0.000 claims abstract description 17
- 238000001914 filtration Methods 0.000 claims abstract description 14
- 239000003086 colorant Substances 0.000 claims abstract description 4
- 230000035945 sensitivity Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 4
- 238000012800 visualization Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract 2
- 230000007717 exclusion Effects 0.000 abstract 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000001427 coherent effect Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 239000000725 suspension Substances 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005493 condensed matter Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/26—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Изобретение относится к измерительной технике и может найти применение в экспериментальной гидро- и аэродинамике, теплофизике, в технологиях, связанных с необходимостью исследования скоростей, конвективных структур и фазовых переходов в газовых и конденсированных средах. Заявленный способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах состоит в том, что в исследуемую среду направляют зондирующее световое поле, формируют фурье-спектр возмущений светового поля, индуцируемых исследуемой средой, выполняют гильберт-фильтрацию фурье-спектра возмущений зондирующего оптического поля, выполняют обратное фурье-преобразование фильтрованного оптического поля, проектируют его на фотоматрицу видеокамеры и анализируют покадровую последовательность изображений. При этом зондирующее поле формируют двумя пространственно-совмещенными световыми пучками, волновые числа которых находятся в соотношении 3/4 и соответствуют разным цветам в rgb-спектре чувствительности фотоматрицы, один из которых в спектре зондирующего поля согласован с длиной волны светового поля, подвергаемого гильберт-фильтрации. Технический результат - исключение влияния амплитудных возмущений зондирующего светового поля на визуализацию полей фазовой оптической плотности исследуемой среды. 2 ил.
Description
Изобретение относится к измерительной технике и может найти применение в экспериментальной гидро- и аэродинамике, теплофизике, в технологиях, связанных с необходимостью исследования скоростей, конвективных структур и фазовых переходов в газовых и конденсированных средах.
Известны способы визуализации полей фазовой оптической плотности в газовых и конденсированных средах. [А.Ф. Белозеров. Оптические методы визуализации газовых потоков. Казань: изд-во Казанского гос. университета. 2007. 704 с.]. В теневом (шлирен) методе визуализации зондирующее световое поле, сформированное от точечного или щелевого источника света коллимирующим объективом, проходит через исследуемую среду и преобразуется приемным объективом. Изображение источника в свете, возмущенном исследуемой средой, формируется в пространственно-частотной плоскости исследуемой среды. В этой же плоскости формируется фурье-спектр фазовых возмущений зондирующего светового поля, индуцированных исследуемой средой. Фильтрация фурье-спектра фазовых возмущений выполняется пространственно-частотным фильтром, выполненным в виде непрозрачной полуплоскости, блокирующих область положительных либо отрицательных частот. Результат такой фильтрации является однополосный фурье-спектр оптического сигнала, существующий в области только положительных, либо только отрицательных пространственных частот. Обратное фурье-преобразование фильтрованного сигнала выполняется объективом фото- или видеокамеры, результатом чего является формирование на фотоматрице суперпозиции изображения зондирующего светового поля и его визуализированных фазовых возмущений. Визуализированные фазовые неоднородности представляют собой поле интенсивности фазовых возмущений, подвергнутых одномерному гильберт-преобразованию по направлению, ортогональному кромке пространственно-частотного фильтра, выполненного в виде непрозрачной полуплоскости (фильтр Фуко). Результатом такой фильтрации является визуализация полей фазовой оптической плотности путем одномерного преобразования Фуко-Гильберта фазовой структуры зондирующего светового поля, возмущенного исследуемой средой. Основным недостатком этого способа является невозможность исключения влияния амплитудных рассеивающих структур (частиц, взвесей, трассеров), присутствующих в исследуемой среде, на визуализированные поля фазовой оптической плотности.
В другом известном способе [Сороко Л.М. Гильберт-оптика. М.: Наука. 1981.] визуализация полей фазовой оптической плотности выполняется с применением гильберт-фильтра, согласованного со спектральной полосой излучения светового источника, формирующего зондирующее поле. Недостатком этого способа также является некомпенсированное влияние частиц, взвесей и трассеров, присутствующих в исследуемой среде, на структуру визуализированных полей фазовой оптической плотности.
Кроме того, известен способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах [В.А. Арбузов, Э.В. Арбузов, B.C. Бердников, Н.С. Буфетов, Ю.Н. Дубнищев, Е.О. Шлапакова. Оптическая диагностика структуры и эволюции плавучих струй в сильно-вязкой жидкости // Автометрия. 2014. Т. 50, №5. С. 47-55.], являющийся прототипом предлагаемого изобретения. В этом способе визуализация полей фазовой оптической плотности исследуемой среды выполняется путем гильберт-фильтрации зондирующего светового поля с применением квадратурного гильберт-фильтра. Осуществляется гильберт-фильтрация на согласованной с фильтром длине волны λ0 и фильтрация Фуко-Гильберта с применением источника белого света. Результатом является суперпозиция гильберт-визуализированных полей фазовой оптической плотности и гильберт-визуализированных частиц, взвесей и трассеров, присутствующих в исследуемой среде, и их изображений в спектральной полосе излучения источника. Недостатком этого способа является влияние амплитудных рассеивающих структур (частиц, взвесей, трассеров), присутствующих в исследуемой среде, на гильберт-визуализацию полей оптической фазовой плотности.
Задачей (техническим результатом) предлагаемого изобретения является исключение влияния амплитудных возмущений зондирующего светового поля на визуализацию полей фазовой оптической плотности исследуемой среды.
Поставленная задача достигается тем, что в известном способе визуализации полей фазовой оптической плотности в газовых и конденсированных средах, заключающемся в том, что в исследуемую среду направляют зондирующее световое поле, формируют фурье-спектр возмущений светового поля, индуцируемых исследуемой средой, выполняют гильберт-фильтрацию фурье-спектра возмущений зондирующего оптического поля, выполняют обратное фурье-преобразование фильтрованного оптического поля, проектируют его на фотоматрицу видеокамеры и анализируют покадровую последовательность изображений, при этом зондирующее поле формируют двумя пространственно-совмещенными световыми пучками, волновые числа которых находятся в соотношении λ1/λ2=3/4 и соответствуют разным цветам в rgb-спектре чувствительности фотоматрицы, один из которых в спектре зондирующего поля согласован с длиной волны светового поля, подвергаемого гильберт-фильтрации. Длина волны второго пучка не попадает в спектральную полосу фазово-частотной характеристики гильберт-фильтра. Гильберт-образ на одной длине волны и изображения амплитудных неоднородностей на другой длине волны регистрируются на согласованных по rgb-спектру чувствительности пиксельных структурах фотоматрицы. Этим обеспечивается получение информации о поле фазовой оптической плотности и изображений амплитудных рассеивающих структур, присутствующих в исследуемой среде.
На Фиг. 1 показана структурная схема устройства, реализующего предложенный способ.
На Фиг. 2 показана структура квадрантного гильберт-фильтра с относительными фазовыми сдвигами в квадрантах.
Устройство (Фиг. 1) содержит источник светового излучения 1 на длинах волн λ1 и λ2, коллиматор 2, крестообразную диафрагму 3, объектив 4, исследуемую среду 5, объектив 6, гильберт-фильтр 7, объектив 8, видеокамеру 9 (камкордер), к которой подключен компьютер 10.
Способ осуществляется следующим образом. Оптическая система, состоящая из источника 1, коллиматора 2, крестообразной диафрагмы 3 и объектива 4, формирует в исследуемой среде 5 световой пучок. Объектив 6 формирует в плоскости расположения гильберт-фильтра 7 фурье-спектр фазовых возмущений зондирующего поля, индуцированного оптическими неоднородностями исследуемой среды. Объектив 8 выполняет обратное фурье-преобразование фильтрованного оптического поля и проектирует его на фотоматрицу видеокамеры (камкордера) 9. Регистрируемый камкордером сигнал обрабатывается компьютером 10.
Обратимся к Фиг. 2, на которой представлен гильберт-фильтр 7. Он имеет квадрантную фазовую структуру. Когерентная передаточная функция фильтра описывается выражением
где ϕ - относительный фазовый сдвиг в квадрантах фильтра, зависящий от длины волны излучения источника,
σ(±Kх) и σ(±Kу) - функции Хевисайда (функции включения):
Kх, Kу - пространственные частоты [Ю.Н. Дубнищев. Теория и преобразование сигналов в оптических системах. С-П.: «Лань», 2011, с. 36-37].
Подставляя выражения для функций Хевисайда в (1), получаем для когерентной передаточной функции:
Как видно из (2), фильтр выполняет преобразование Фуко-Гильберта. Соотношение действительной и мнимой компонент когерентно-передаточной функции (2) зависит от парциальных коэффициентов cos ϕ и sin ϕ, величины которых определяются фазовым сдвигом ϕ(λ), зависящим от длины волны λ светового поля, излучаемого источником. При
ξ=0, 1, 2, … когерентно-передаточная функция (2) принимает вид:
и фильтр выполняет двумерное гильберт-преобразование оптического сигнала.
В случае ϕ=ξπ когерентно-передаточная функция фильтра принимает вид:
и структура фурье-спектра фильтруемого сигнала не изменяется.
Запишем когерентно-передаточную функцию (КПФ) фильтра в виде:
Как видно из (4), амплитудно-частотная характеристика (АЧХ) фильтра равна 1.
Для фазо-частотной характеристики (ФЧХ) фильтра имеем:
Пусть s(Kx, Kу) - фурье-спектр светового поля в фурье-плоскости объектива 6. Тогда s(Kx, Ky)H(Kx, Ky) - фурье-спектр поля на выходе фильтра с когерентной передаточной функцией (4). Фазовый сдвиг ϕ в формулах для когерентной частотной функции (4) и ФЧХ (5) фильтра зависит от длины волны источника светового излучения, ϕ=ϕ(λ). При длине волны λ1, удовлетворяющей условию
и КПФ принимает вид:
Фильтр с КПФ (7) выполняет гильберт-преобразование светового поля, возмущенного исследуемой средой:
Пусть sλ1(Kx, Ky)=еiψ(Kх, Kу) где ψ(Kx, Kу) - фазовые возмущения зондирующего поля, индуцированные неоднородностями оптической фазовой плотности в исследуемой среде. Представим фазовые возмущения ψ(Kх, Kу) светового поля с длиной волны λ1 в виде:
Здесь выполнено разложение экспоненты с точностью до первого порядка малости показателя . Фурье-спектр светового поля (10), преобразованного гильберт-фильтром с когерентной передаточной функцией (7) имеет вид:
поскольку
Объектив 8 выполняет обратное фурье-преобразование фурье-спектра фильтрованного сигнала (12) и проектирует его на фотоматрицу камкордера 9. Изображение фильтрованного сигнала формируется на пикселах, чувствительных к выбранной компоненте rgb-спектра (например, красная линия), включающей длину волны λ1:
Структура гильберт-спектра (13) отображает распределение поля градиентов оптической фазовой плотности, зафиксированной на фотоматрице и, соответственно, в кадре видеофильма. Методом эмуляции пространственно-частотной фильтрации изображения в последовательности кадров видеофильма с учетом межкадрового временного интервала, реконструируется эволюция гильберт-спектра, отображающая динамическое распределение полей фазовой оптической плотности в исследуемой среде [Арбузов В.А., Дубнищев Ю.Н., Сотников В.В., Шибаев А.А. Способ измерения скоростей в газовых и конденсированных средах. Патент №2621466]. Динамика гильберт-визуализированных полей фазовой оптической плотности может отображать тепловые потоки, диффузионные процессы, конвективные течения и фазовые перепады в исследуемых газовых или конденсированных средах.
Помимо неоднородностей полей фазовой оптической плотности, в исследуемой среде могут присутствовать частицы и взвеси, вызывающие амплитудную модуляцию зондирующего поля (амплитудные неоднородности). Изображения этих частиц формируются на пиксельных структурах, чувствительность которых соответствует длине волны λ2. Для этого световое поле, зондирующее среду, формируется из двух компонент, имеющих разные длины волн. Длина волны второй компоненты зондирующего поля λ2 выбирается из условия равенства нулю фазочастотной характеристики (ФЧХ) когерентной передаточной функции (2) фильтра, выполняющего преобразование Фуко-Гильберта (2):
В этом случае ϕ(λ2)=ξπ, ξ=0, 1, 2, …,
и на длине волны λ2 гильберт-преобразование не выполняется. Фурье-спектр в частотной плоскости формируется в свете, рассеянном на частицах, естественно присутствующих в исследуемой среде или специально добавленных в нее частиц, массовая плотность которых близка к плотности среды (амплитудные неоднородности). Такие примесные частицы («трассеры») не возмущают поле скоростей течений исследуемой среды. В фурье-плоскости объектива 6 формируется фурье-спектр рассеянного на «трассерах» светового поля с длиной волны λ2. Для выполнения условий (6), (14) и (15) отношение длин волн λ2 и λ1 должно составлять 3/4. Эти волны должны быть согласованы с полосами rgb-спектра чувствительности пиксельной структуры фотоматрицы. Так, если, например, λ1 находится в красной области этого спектра (λ1=0,68 мкм), λ2 попадает в зеленую область (λ2=0,51 мкм). В этом случае гильберт-фильтр нечувствителен к рассеянному трассерами световому полю с длиной волны λ2, согласно (14) и (15), и на фотоматрице формируются изображения трассеров. В формировании этих изображений участвуют пикселы, чувствительность которых соответствует полосе rgb-спектра, к которой относится длина волны λ2.
В зондирующем световом поле с длиной волны λ1, возмущенном исследуемой средой, аддитивно присутствует компонента, рассеянная трассерами. Она подвергается гильберт-фильтрации наряду с компонентой, индуцированной возмущениями оптической фазовой плотности. На пиксельной структуре фотоматрицы, соответствующей длине волны λ1, в результате обратного фурье-преобразования фильтрованного сигнала формируются изображения гильберт-образов трассеров. При гильберт преобразовании происходит перераспределение энергии светового поля из области низких пространственных частот в область высоких пространственных частот [Ю.Н. Дубнищев. Теория и преобразование сигналов в оптических системах. С-П.: «Лань», 2011, с. 195-196]. В результате на фотоматрице формируются оконтуренные изображения трассеров в световом поле с длиной волны λ1. Оконтуренные изображения трассеров на длине волны λ1 позиционно совпадают с изображениями трассеров, сформированными на длине волны λ2. Это позволяет идентифицировать и исключить оконтуренные изображения трассеров на длине волны λ1 при анализе и обработке гильберт-визуализированного поля оптической фазовой плотности исследуемой среды.
Техническим результатом является исключение влияния амплитудных возмущений зондирующего светового поля на визуализацию полей фазовой оптической плотности исследуемой среды, за счет того, что зондирующее поле формируют двумя пространственно-совмещенными световыми пучками, волновые числа которых находятся в соотношении 3/4 и соответствуют разным цветам в rgb-спектре чувствительности фотоматрицы, один из которых в спектре зондирующего поля согласован с длиной волны светового поля, подвергаемого гильберт-фильтрации. Путем совместной обработки изображений в двух согласованных областях спектра исключают амплитудные возмущения из поля оптической фазовой плотности одним из известных способов.
Claims (1)
- Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах, состоящий в том, что в исследуемую среду направляют зондирующее световое поле, формируют фурье-спектр возмущений светового поля, индуцируемых исследуемой средой, выполняют гильберт-фильтрацию фурье-спектра возмущений зондирующего оптического поля, выполняют обратное фурье-преобразование фильтрованного оптического поля, проектируют его на фотоматрицу видеокамеры и анализируют покадровую последовательность изображений, отличающийся тем, что зондирующее поле формируют двумя пространственно-совмещенными световыми пучками, волновые числа которых находятся в соотношении 3/4 и соответствуют разным цветам в rgb-спектре чувствительности фотоматрицы, один из которых в спектре зондирующего поля согласован с длиной волны светового поля, подвергаемого гильберт-фильтрации.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018113962A RU2681672C1 (ru) | 2018-04-16 | 2018-04-16 | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018113962A RU2681672C1 (ru) | 2018-04-16 | 2018-04-16 | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2681672C1 true RU2681672C1 (ru) | 2019-03-12 |
Family
ID=65805657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018113962A RU2681672C1 (ru) | 2018-04-16 | 2018-04-16 | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2681672C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2752283C1 (ru) * | 2020-10-28 | 2021-07-26 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах и устройство для его осуществления |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2101744C1 (ru) * | 1995-05-30 | 1998-01-10 | Институт теплофизики Сибирского отделения РАН | Цветной визуализатор полей оптической плотности |
EP2388614A2 (en) * | 2010-05-21 | 2011-11-23 | Teledyne ISCO, Inc. | Velocity measuring system |
US20130057675A1 (en) * | 2011-09-06 | 2013-03-07 | Janesko Oy | Method and arrangement for measuring flow rate of optically non-homogeneous material |
RU2621466C2 (ru) * | 2015-11-23 | 2017-06-06 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Способ измерения поля скоростей в газовых и конденсированных средах |
-
2018
- 2018-04-16 RU RU2018113962A patent/RU2681672C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2101744C1 (ru) * | 1995-05-30 | 1998-01-10 | Институт теплофизики Сибирского отделения РАН | Цветной визуализатор полей оптической плотности |
EP2388614A2 (en) * | 2010-05-21 | 2011-11-23 | Teledyne ISCO, Inc. | Velocity measuring system |
US20130057675A1 (en) * | 2011-09-06 | 2013-03-07 | Janesko Oy | Method and arrangement for measuring flow rate of optically non-homogeneous material |
RU2621466C2 (ru) * | 2015-11-23 | 2017-06-06 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" | Способ измерения поля скоростей в газовых и конденсированных средах |
Non-Patent Citations (1)
Title |
---|
В.А. Арбузов, Э.В. Арбузов, B.C. Бердников, Н.С. Буфетов, Ю.Н. Дубнищев, Е.О. Шлапакова. Оптическая диагностика структуры и эволюции плавучих струй в сильно-вязкой жидкости // Автометрия. 2014. Т. 50, 5. С. 47-55. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2752283C1 (ru) * | 2020-10-28 | 2021-07-26 | Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Новосибирский Государственный Технический Университет» | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах и устройство для его осуществления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wildeman | Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop | |
Aizu et al. | Spatial filtering velocimetry: Fundamentals and applications | |
Hargather et al. | A comparison of three quantitative schlieren techniques | |
Biswas et al. | A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet | |
CN107367329B (zh) | 一种图像、光谱、偏振态一体化获取装置及探测方法 | |
US3809478A (en) | Analysis and representation of the size, shape and orientation characteristics of the components of a system | |
US20020176606A1 (en) | Planar particle/droplet size measurement technique using digital particle image velocimetry image data | |
Pingel et al. | GASKAP-HI pilot survey science I: ASKAP zoom observations of Hi emission in the Small Magellanic Cloud | |
Jaunet et al. | Pod-galerkin advection model for convective flow: application to a flapping rectangular supersonic jet | |
RU2681672C1 (ru) | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах | |
TWI662262B (zh) | 具等向性轉換函數之量化差分相位對比顯微系統 | |
US20190320100A1 (en) | Electromagnetic wave phase/amplitude generation device, electromagnetic wave phase/amplitude generation method, and electromagnetic wave phase/amplitude generation program | |
RU2621466C2 (ru) | Способ измерения поля скоростей в газовых и конденсированных средах | |
Mallick et al. | Speckle-pattern interferometry applied to the study of phase objects | |
Fellgett | On the interpretation of solar granulation | |
Dubnishchev et al. | Measurement of the velocity of Hilbert-visualized phase structures by the method of emulation of two-dimensional spatial filtering of their images | |
Mazumder | A symmetrical laser Doppler velocity meter and its application to turbulence characterization | |
RU2752283C1 (ru) | Способ визуализации полей фазовой оптической плотности в газовых и конденсированных средах и устройство для его осуществления | |
Havener et al. | Aero-optics testing capabilities at AEDC | |
Mangasaryan et al. | Matched filtering on the basis of thick holograms for fingerprint identification | |
Zinchik et al. | Application of fractal masks to determination phase discontinuities in transparent objects | |
Zotov et al. | Features of the phase fluctuation structure of a laser beam in a turbulent medium | |
Stefano et al. | Interferometry with few photons | |
Manzoor et al. | Low cost indigenous particle imaging velocimetry | |
Merzkirch | Optical Deflectometry by Speckle Photography |