RU2681237C1 - Способ получения кобальто-хромовых порошков электроэрозионным диспергированием - Google Patents

Способ получения кобальто-хромовых порошков электроэрозионным диспергированием Download PDF

Info

Publication number
RU2681237C1
RU2681237C1 RU2018105138A RU2018105138A RU2681237C1 RU 2681237 C1 RU2681237 C1 RU 2681237C1 RU 2018105138 A RU2018105138 A RU 2018105138A RU 2018105138 A RU2018105138 A RU 2018105138A RU 2681237 C1 RU2681237 C1 RU 2681237C1
Authority
RU
Russia
Prior art keywords
powder
alloy
cobalt
powders
electrodes
Prior art date
Application number
RU2018105138A
Other languages
English (en)
Inventor
Евгений Викторович Агеев
Екатерина Владимировна Агеева
Александр Юрьевич Алтухов
Евгений Петрович Новиков
Сергей Владимирович Хардиков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2018105138A priority Critical patent/RU2681237C1/ru
Application granted granted Critical
Publication of RU2681237C1 publication Critical patent/RU2681237C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к получению порошка кобальтохромового сплава КХМС. Проводят электроэрозионное диспергирование сплава КХМС в бутаноле посредством воздействия на него кратковременных электрических разрядов между электродами при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 110-130 Гц с получением порошка кобальтохромового сплава. Обеспечивается стабильность диспергирования сплава КХМС. 3 ил., 3 пр.

Description

Изобретение относится к порошковой металлургии, в частности к производству металлических наноразмерных порошков. В промышленности для получения металлических порошков применяют физические и физико-химические методы.
Известен способ получения дисперсного металлического порошка кобальта [патент РФ №2030972, B22F 9/22, опубл. 20.03.1995 г.], заключающийся в том, что сначала готовят раствор щелочи, затем в него порциями вводят раствор соли кобальта при комнатной температуре при перемешивании. Полученный гидроксид металла подвергают фильтрации и промыванию, в процессе которых осуществляют его измельчение. Затем полученный продукт после сушки на воздухе восстанавливают до металла, с помощью пропускаемого через него водорода, при нагревании до температуры выше порога восстановления гидроксида металла.
К недостаткам способа можно отнести расход большого количества воды. Кроме того, рекомендуемые температурно-временные параметры восстановления гидроксида металла при температуре выше порога восстановления не позволяют получать ультрадисперсный порошок, так как незначительное повышение температуры выше порога температуры восстановления приводит к одновременному интенсивному протеканию процесса спекания образовавшихся энергонасыщенных ультрадисперсных частиц металла.
Известен способ получения порошка металла подгруппы хрома, преимущественно молибдена и вольфрама (см. Гостищев В.В. Получение порошков молибдена и вольфрама восстановлением их соединений магнием в расплаве хлорида натрия / Гостищев В.В., Бойко В.Ф. // Химическая технология. - 2006. - №8. - С. 15-17), включающий загрузку в реактор хлорида натрия, нагрев реактора до температуры 827°С с образованием хлоридного расплава, растворение в нем вольфрамата или молибдата натрия, предварительно полученных сплавлением с содой оксидов WO3 или MoO3. Затем в качестве восстановителя в реактор добавляют порошок магния с избытком 40% по отношению к его стехиометрическому значению и осуществляют взаимодействие оксидного соединения вольфрама или молибдена с магнием в расплаве хлорида натрия с восстановлением вольфрамата натрия или молибдата натрия до металла. Расплав выдерживают 15-20 минут до полного осаждения образовавшегося порошка. Затем расплав сливают, осажденный порошок отмывают водой от остатка солей до нейтрального состояния и сушат. В результате получают порошки вольфрама или молибдена с удельной поверхностью соответственно 0,06 и 0,11 м2/г.
Данный способ характеризуется недостаточной технологичностью по причине получения порошков с пониженной величиной удельной поверхности. Кроме того, недостатком способа является повышенный расход магния вследствие проведения реакции восстановления при избытке магния по отношению к стехиометрии. Избыточный магний безвозвратно теряется вместе со сливаемым расплавом и при отмывке порошка от остатка солей.
Наиболее близким к заявленному техническому решению является способ получения металлического порошка, описанный в патенте РФ 2332280 С2, B22F 9/14, 30.06.2006, в котором порошок получают путем зажигания разряда между двумя электродами, один из которых катод, который выполняют из распыляемого материала в виде стержня, диаметром 10≤d≤40 мм. В качестве другого электрода-анода используют электролит (техническая вода). Процесс получения порошка ведут при следующих параметрах: напряжение между электродами 500≤U≤650 В, ток разряда 1,5≤I≤3 А, расстояние между катодом и электролитом 2≤l≤10 мм. Весь процесс ведут при атмосферном давлении.
Недостатком прототипа является невозможность получения порошков-сплавов с равномерным распределением легирующих элементов, наноразмерных порошков а также высокие энергетические затраты.
Заявляемое изобретение направлено на решение задачи получения порошков из кобальтохромового сплава с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.
Поставленная задача достигается способом электроэрозионного диспергирования(ЭЭД). кобальто-хромового сплава ( КХМС)  состоящего из Co (63 %); Сr ( 27 %); Mo (5%). Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [3]. В зоне разряда под действием высоких температур происходит нагрев, расплавление и частичное испарение металла.
На фигуре 1 –результаты микроскопии и микроанализа порошков; на фигуре 2 – рентгеноспектральный микроанализ образца, на фигуре 3 – гранулометрический состав образцов.
Пример 1.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в бутаноле при массе загрузки 450 г диспергировали сплав КХМС (Co - 63 %; Сr - 27 %; Mo - 5%). При этом использовали следующие электрические параметры установки:
− частота следования импульсов 70...80 Гц;
− напряжение на электродах от 50…60 В;
− ёмкость конденсаторов 28 мкФ.
Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно.
Пример 2.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в бутаноле при массе загрузки 450 г диспергировали сплав КХМС. При этом использовали следующие электрические параметры установки:
− частота следования импульсов 110...130 Гц;
− напряжение на электродах от 90…110 В;
− ёмкость конденсаторов 48 мкФ.
Полученный кобальто-хромовый порошок исследовали различными методами. Изучение фазового состава электроэрозионного кобальто-хромового порошка проводили помощью энерго-дисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп Nova NanoSEM 450. В результате изучения концентраций элементного и минералогического состава образца, были получены результаты, представленные на фигуре 2.
Основным материалом в образцах является кобальт – 44,78 %, хром – 30,65%, углерод – 25,37% и кислород – 16,75%.
Затем полученный порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (фигура 3).
Установлено, что средний размер частиц составляет 27,09 мкм, арифметическое значение - 27,088 мкм. Коэффициент элонгации (удлинения) частиц размером составляет 2,16, что говорит о сферической форме частиц порошка.
Для изучения формы и морфологии полученных кобальто-хромовых порошков были выполнены снимки на растровом электронном микроскопе «Nova NanoSEM 450». На основании фигуры 1, порошок, полученный методом ЭЭД из сплава КХМС, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.
Пример 3.
На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в бутаноле при массе загрузки 450 г диспергировали сплав КХМС. При этом использовали следующие электрические параметры установки:
- частота следования импульсов 180…190 Гц;
- напряжение на электродах от 150…160 В;
- емкость конденсаторов 68 мкФ.
Данные режимы получения порошка не рекомендуются, т.к. процесс диспергирования идет не стабильно.
Источники информации
1. Борд, Н.Ю. Новая технология переработки отходов твердых и тяжелых сплавов // Инструмент. - 1996. №6 - С. 47-49.
2. Заликман, А.Н. Получение твердых сплавов из регенерированных смесей WC-Co, полученных из кусковых отходов цинковым методом // Цветные металлы. - 1993. №1 - С. 10.
3. Немилов, Е.Ф. Электроэрозионная обработка материалов. Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.

Claims (1)

  1. Способ получения порошка кобальтохромового сплава КХМС, характеризующийся тем, что проводят электроэрозионное диспергирование сплава КХМС в бутаноле посредством воздействия на него кратковременных электрических разрядов между электродами при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 48 мкФ и частоте следования импульсов 110-130 Гц с получением порошка кобальтохромового сплава.
RU2018105138A 2018-02-12 2018-02-12 Способ получения кобальто-хромовых порошков электроэрозионным диспергированием RU2681237C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018105138A RU2681237C1 (ru) 2018-02-12 2018-02-12 Способ получения кобальто-хромовых порошков электроэрозионным диспергированием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018105138A RU2681237C1 (ru) 2018-02-12 2018-02-12 Способ получения кобальто-хромовых порошков электроэрозионным диспергированием

Publications (1)

Publication Number Publication Date
RU2681237C1 true RU2681237C1 (ru) 2019-03-05

Family

ID=65632689

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018105138A RU2681237C1 (ru) 2018-02-12 2018-02-12 Способ получения кобальто-хромовых порошков электроэрозионным диспергированием

Country Status (1)

Country Link
RU (1) RU2681237C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699479C1 (ru) * 2019-04-10 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной
RU2747205C1 (ru) * 2020-05-28 2021-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения порошка тяжелых вольфрамовых псевдосплавов электроэрозионным диспергированием отходов сплава ВНЖ в керосине
RU2772879C1 (ru) * 2021-12-10 2022-05-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в воде дистиллированной

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1060379A1 (ru) * 1981-11-26 1983-12-15 Научно-производственное объединение "Тулачермет" Способ электроэрозионного диспергировани металлов и сплавов
SU1722692A1 (ru) * 1990-06-11 1992-03-30 Научно-Производственное Объединение "Стеклопластик" (Su) Способ электроэрозионного диспергировани металлов
SU1681466A1 (ru) * 1989-10-20 1995-03-10 Новомосковский Филиал Государственного Научно-Исследовательского И Проектного Института Азотной Промышленности И Продуктов Органического Синтеза Установка электроэрозионного диспергирования токопроводящих материалов для получения одно- и многокомпонентных каталитических систем
RU2332280C2 (ru) * 2006-06-30 2008-08-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н.Туполева Способ получения металлического порошка (варианты)
US8460485B2 (en) * 2008-09-05 2013-06-11 Tohoku University Method of forming fine grains of Co-Cr-Mo alloy with nitrogen addition and Co-Cr-Mo alloy with nitrogen addition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1060379A1 (ru) * 1981-11-26 1983-12-15 Научно-производственное объединение "Тулачермет" Способ электроэрозионного диспергировани металлов и сплавов
SU1681466A1 (ru) * 1989-10-20 1995-03-10 Новомосковский Филиал Государственного Научно-Исследовательского И Проектного Института Азотной Промышленности И Продуктов Органического Синтеза Установка электроэрозионного диспергирования токопроводящих материалов для получения одно- и многокомпонентных каталитических систем
SU1722692A1 (ru) * 1990-06-11 1992-03-30 Научно-Производственное Объединение "Стеклопластик" (Su) Способ электроэрозионного диспергировани металлов
RU2332280C2 (ru) * 2006-06-30 2008-08-27 Государственное образовательное учреждение высшего профессионального образования Казанский государственный технический университет им. А.Н.Туполева Способ получения металлического порошка (варианты)
US8460485B2 (en) * 2008-09-05 2013-06-11 Tohoku University Method of forming fine grains of Co-Cr-Mo alloy with nitrogen addition and Co-Cr-Mo alloy with nitrogen addition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2699479C1 (ru) * 2019-04-10 2019-09-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной
RU2747205C1 (ru) * 2020-05-28 2021-04-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Способ получения порошка тяжелых вольфрамовых псевдосплавов электроэрозионным диспергированием отходов сплава ВНЖ в керосине
RU2772879C1 (ru) * 2021-12-10 2022-05-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в воде дистиллированной
RU2773963C1 (ru) * 2021-12-10 2022-06-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) (RU) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном

Similar Documents

Publication Publication Date Title
JP5062721B2 (ja) ナノサイズワイヤーの製造方法
US20040052672A1 (en) Metal and alloy powders and powder fabrication
RU2709561C1 (ru) Способ получения вольфрамотитанокобальтовых порошков из отходов сплава Т30К4 в спирте
RU2681237C1 (ru) Способ получения кобальто-хромовых порошков электроэрозионным диспергированием
Van Vuuren et al. Titanium production via metallothermic reduction of TiCl4in molten salt: Problems and products
RU2699479C1 (ru) Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной
Zhang et al. Electrochemical dissolution of cemented carbide scrap and electrochemical preparation of tungsten and cobalt metals
Xiao et al. Direct electrochemical preparation of cobalt, tungsten, and tungsten carbide from cemented carbide scrap
WO2005111272A1 (ja) プラズマ誘起電解による微粒子の製造方法
Dobkowska et al. A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods: Laser powder bed fusion vs pulse plasma sintering
EP3138932B1 (de) Verfahren und vorrichtung zur gewinnung eines pulvers aus partikeln von wolfram oder wolframverbindungen mit einer partikelgrösse im nano-, mikron- oder submikronbereich
Abdel-Karim Electrochemical synthesis of nanocomposites
RU2758613C1 (ru) Способ получения хромсодержащих порошков из стали Х13 в бутиловом спирте
Jayaganthan et al. Influence of machining parameters of electrochemical micromachining process over magnesium based hybrid metal matrix composite
JP7296232B2 (ja) 中実球状粉末の製造方法及び造形製品の製造方法
RU2804892C1 (ru) Способ получения порошка молибдена электроэрозией молибденовых отходов
RU2683162C2 (ru) Способ получения порошка псевдосплава W-Ni-Fe методом электроэрозионного диспергирования в дистиллированной воде
RU2772879C1 (ru) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в воде дистиллированной
Shut et al. Properties of ultrafine copper-containing powders prepared by a sonoelectrochemical method
RU2735844C1 (ru) Способ получения коррозионностойких порошков из стали Х17 в керосине
Li et al. A new green approach for recovery of metallic tungsten through electrolysis of tungsten carbide scrap anode in molten salts
RU2779730C1 (ru) Способ получения жаропрочного никелевого порошка из отходов сплава ЖС6У в воде дистиллированной
RU2784147C1 (ru) Способ получения твердосплавного порошка из отходов сплава Т5К10 в воде дистиллированной.
RU2599476C2 (ru) Способ получения медного порошка из отходов
RU2773963C1 (ru) Способ получения никельхромовых порошков из отходов сплава Х20Н80 в керосине осветительном

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200213