RU2681224C1 - Оптимизированный термопарный сенсор - Google Patents

Оптимизированный термопарный сенсор Download PDF

Info

Publication number
RU2681224C1
RU2681224C1 RU2017146204A RU2017146204A RU2681224C1 RU 2681224 C1 RU2681224 C1 RU 2681224C1 RU 2017146204 A RU2017146204 A RU 2017146204A RU 2017146204 A RU2017146204 A RU 2017146204A RU 2681224 C1 RU2681224 C1 RU 2681224C1
Authority
RU
Russia
Prior art keywords
thermocouple
sensor
membrane
consoles
substrate
Prior art date
Application number
RU2017146204A
Other languages
English (en)
Inventor
Валерий Алексеевич Федирко
Ренат Закирович Хафизов
Original Assignee
Общество с ограниченной ответственностью "ГрафИмпресс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ГрафИмпресс" filed Critical Общество с ограниченной ответственностью "ГрафИмпресс"
Priority to RU2017146204A priority Critical patent/RU2681224C1/ru
Application granted granted Critical
Publication of RU2681224C1 publication Critical patent/RU2681224C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Изобретение относится к инфракрасным твердотельным сенсорам, а более конкретно к инфракрасным неохлаждаемым термопарным сенсорам. Термопарный сенсор содержит поглощающий ИК-излучение слой на диэлектрической мембране, вывешенной относительно подложки на теплоизолирующих микроконсолях, один конец которых закреплен на мембране, а другой - на подложке. На поверхности консолей сформирована по крайней мере одна термопара, «горячий спай» которой расположен на мембране, которая нагревается под действием ИК-излучения, повышая температуру «горячего спая», а «холодные» контакты расположены на подложке, имеющей стабильную температуру. Оптимальное соотношение между длиной консолей и площадью сенсора, определенное в предлагаемом изобретении, обеспечивает сенсору достижение минимального значения эквивалентной шуму разности температур и, соответственно, максимального отношения сигнал/шум при заданных площади сенсора и времени кадра. Технический результат - достижение максимально возможной чувствительности термопарного сенсора. 3 ил.

Description

Изобретение относится к инфракрасным твердотельным сенсорам, а, более конкретно, к инфракрасным неохлаждаемым термопарным сенсорам, то есть сенсорам с термопарами в качестве термочувствительного элемента.
Целью изобретения является обеспечение максимально возможной чувствительности термопарного сенсора.
Известны кремниевые неохлаждаемые термопарные сенсоры, используемые для создания неохлаждаемых приемников ИК изображения [1, 2]. При изготовлении этих сенсоров используются различные варианты микрообработки кремния для формирования МЭМС структур в виде тонких диэлектрических мембран, теплоизолированных от подложки.
Наиболее близким по конструктивным признакам к предлагаемому изобретению является термопарный сенсор, описанный в патенте [3]. Приведенный в этом источнике сенсор содержит поглощающий ИК излучение слой на диэлектрической мембране, вывешенной относительно подложки на теплоизолирующих консолях, один конец которых закреплен на мембране, а другой - на подложке. На поверхности консолей сформирована по крайней мере одна термопара, «горячий спай» которой расположен на мембране, которая нагревается под действием ИК излучения, повышая температуру «горячего спая», а «холодные» контакты расположены на подложке, имеющей стабильную температуру. Полезный сигнал в виде термо-ЭДС, образующейся в результате возникающей разности температур между «горячим спаем» и «холодными» контактами, считывается КМОП-схемами, интегрированными непосредственно в кристалл. Приведенные в указанном патенте варианты конструкций сенсора отличаются друг от друга различными соотношениями между размерами теплочувствительной мембраны и поддерживающих консолей. При одинаковых размерах общей площади сенсора, включающей площадь теплочувствительной мембраны и площадь, приходящуюся на консоли, приведенные конструкции сенсора будут иметь разную чувствительность. Однако, оптимальные соотношения между размерами теплочувствительной мембраны и поддерживающих консолей для обеспечения максимально возможной чувствительности сенсора в патенте не определены.
Чувствительность термопарного сенсора в составе приемника ИК изображения определяется целым рядом факторов, а именно:
- площадью сенсора S, включающей в себя площадь чувствительной мембраны А и площадь Sc, занимаемую консолями, S=А+Sc;
- теплоемкостью С мембраны (включая поглощающее покрытие), равную С=сА, где с -теплоемкость мембраны на единицу площади;
- теплопроводностью консолей, определяемой тепловой проводимостью термопары, которая для случая, когда сенсор содержит одну термопару, равна Gt=2gtwht/L,
где gt - удельная теплопроводность материала термопары, w и ht, соответственно, ее ширина и толщина, a L - длина одного плеча термопары, равная, как правило, длине консоли, на которой это плечо сформировано;
- электрическим сопротивлением термопары, Rt=2ρtL/wht, где ρt - удельное электрическое сопротивление материала термопары, a L, w и ht, соответственно, ее длина, ширина и толщина;
- временем тепловой релаксации сенсора τг;
- временем кадра τƒ приемника ИК изображения.
Перечисленные параметры находятся в тесной взаимосвязи друг с другом, оказывая влияние на чувствительность сенсора. В предлагаемом изобретении на основе проведенного теоретического рассмотрения, выявляющего указанные взаимосвязи, показано, что при известных тепло- и электрофизических параметрах материалов, используемых при создания термопарного сенсора для реализации на его основе приемника ИК изображения, а также ограничениях, определяемых заданными значениями площади сенсора и времени кадра приемника ИК изображения, существует оптимальное соотношение между площадью мембраны А и площадью Sc, занимаемой консолями, которое обеспечивает максимально возможную чувствительность сенсора.
Техническим результатом настоящего изобретения является реализация конструкции термопарного сенсора с максимально возможной чувствительностью за счет выбора оптимального соотношения между размерами теплочувствительной мембраны и поддерживающих консолей в пределах заданной площади сенсора.
Указанный результат достигается за счет того, что в известном термопарном сенсоре с заданной площадью S, длина консолей, на которых формируется термопара, выбирается такой, чтобы выполнялось следующее соотношение:
Figure 00000001
где μ - топологический фактор смежности, учитывающий площадь зазоров между термопарой и мембраной и определяемый соотношением S=А+2μwL, a Sopt=
Figure 00000002
, при этом предполагается, что Sopt≤S.
Формула (1) получена исходя из следующий положений.
1. Основной характеристикой чувствительности является эквивалентна шуму разность температур (NETD - Noise Equivalent Temperature Difference). Оптимальные геометрические параметры конструкции сенсора достигаются при минимизации NETD.
Собственные шумы термопары определяются тепловым шумом ее сопротивления, который равен
Figure 00000003
, что дает следующее значение NETD:
Figure 00000004
где Δp - поглощенная единицей площади теплоприемника избыточная мощность излучения абсолютно черного тела, нагретого до температуры Т+ΔТ, в рассматриваемом спектральном диапазоне при расположении сенсора в фокальной плоскости оптической системы, α - коэффициент Зеебека, достигающий для сенсора с термопарами из поликристаллического кремния величины 300 мкВ/К.
Выражение (2) выведено для случая, когда сенсор содержит одну термопару. С целью увеличения сигнала в ряде случаев в сенсор вводят несколько последовательно соединенных термопар. Однако, простое последовательное соединение нескольких термопар приводит лишь к увеличению NETD. Обобщенное выражение (2) для n последовательно соединенных термопар можно записать в виде:
Figure 00000005
которое иллюстрирует увеличение NETD в
Figure 00000006
раз, что связано с увеличением сопротивления термопар в
Figure 00000007
раз и теплопроводности n раз.
2. Минимизация NETD при заданной площади сенсора достигается за счет реализации условий, при которых время тепловой релаксации сенсора, характеризующее скорость реакции мембраны сенсора на изменение мощности теплового излучения, сравнимо с временем кадра приемника ИК изображения, а именно, когда выполняется следующее соотношение:
Figure 00000008
3. Исходя из уравнения теплового баланса, имеющего вид
Figure 00000009
время тепловой релаксации сенсора равно
Figure 00000010
4. Соотношение между задаваемой площадью сенсора и длиной консолей имеет вид:
Figure 00000011
Тогда соотношение (1) является результатом решения уравнения (6) относительно L, с учетом условий (3) и (5). При этом наименьшее значение NETD реализуется, в случае выполнения условий (1), (6) с такой шириной термопары w, при которой Sopt=S, а использование n последовательных термопар с эффективной топологической шириной (μ*⋅w*), такой, что n(μ*⋅w*)=μ⋅w, позволяет, в отличие от случая, иллюстрируемого формулой (2а), увеличить выходной сигнал в n раз при сохранении оптимального значения NETD.
Перечень графических материалов, иллюстрирующих заявляемое изобретение.
Рисунок 1 иллюстрирует известную конструкцию термопарного сенсора, приведенного в прототипе. Здесь 1 - диэлектрическая мембрана с поглощающим тепло покрытием, 2 -поддерживающая консоль, 3 - консоли с термопарой, 4 - «горячий» спай термопары, размещенный на мембране, 5- «холодные» концы термопары, 6 - полупроводниковая подложка.
На рисунке 2 представлены графики зависимостей L=ƒ(S) и NETD=ƒ(S), соответствующие формуле (1), для варианта технологии изготовления сенсора с топологическими нормами проектирования 0,35 мкм.
На рисунке 3 показаны две конструкции термопарного сенсора с одной термопарой, в котором соотношение между площадью сенсора 5 и длиной L консолей, на которых сформирована термопара, отвечает формуле (1). Рисунок За иллюстрирует сенсор с площадью S=60×60 мкм2, у которого длина консоли L=10 мкм в соответствие с формулой (1), а на фиг. 3б представлен сенсор с площадью S=30×30 мкм2, у которого длина консоли, соответствующая формуле (1), уже существенно больше и равна L=54 мкм. Обозначения элементов идентичны обозначениям элементов на рисунке 1.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Патент США №6,335,478 В1.
2. Патент США №US 8,592,765 В2.
3. Патент США №US 6,163,061.

Claims (3)

  1. Термопарный сенсор приемника ИК-изображения, содержащий поглощающий ИК-излучение слой на диэлектрической мембране, вывешенной относительно подложки на теплоизолирующих консолях, один конец которых закреплен на мембране, а другой - на подложке, по крайней мере одну термопару, сформированную на поверхности консолей, «горячий спай» которой расположен на мембране, нагреваемой ИК-излучением, а «холодные» контакты расположены на подложке, имеющей стабильную температуру, отличающийся тем, что для заданной площади S сенсора длина одного плеча консолей L, на которых формируется одна термопара, определена соотношением:
  2. Figure 00000012
  3. где μ - топологический фактор смежности, учитывающий площадь зазоров между термопарой и мембраной и определяемый соотношением S=А+2μwL,
    Figure 00000013
    gt, w и ht - удельная теплопроводность материала термопары, ее ширина и толщина, соответственно, А - площадь теплопоглощающей мембраны, с - теплоемкость мембраны на единицу ее площади, τƒ - время кадра приемника ИК изображения.
RU2017146204A 2017-12-27 2017-12-27 Оптимизированный термопарный сенсор RU2681224C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146204A RU2681224C1 (ru) 2017-12-27 2017-12-27 Оптимизированный термопарный сенсор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146204A RU2681224C1 (ru) 2017-12-27 2017-12-27 Оптимизированный термопарный сенсор

Publications (1)

Publication Number Publication Date
RU2681224C1 true RU2681224C1 (ru) 2019-03-05

Family

ID=65632707

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146204A RU2681224C1 (ru) 2017-12-27 2017-12-27 Оптимизированный термопарный сенсор

Country Status (1)

Country Link
RU (1) RU2681224C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163061A (en) * 1997-08-06 2000-12-19 Kabushiki Kaisha Toshiba Infrared solid-state image sensor and manufacturing method thereof
US6335478B1 (en) * 1999-11-04 2002-01-01 Bruce C. S. Chou Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same
RU2325729C1 (ru) * 2006-10-17 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Неохлаждаемый металлический болометр
WO2013089824A1 (en) * 2011-12-13 2013-06-20 The Board Of Regents For Oaklahoma State University Nanowire thermoelectric infrared detector
RU2511275C2 (ru) * 2012-07-16 2014-04-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" Наноструктурный ик-приемник (болометр) с большой поверхностью поглощения
US20150177070A1 (en) * 2013-12-22 2015-06-25 Melexis Technologies N.V. Infrared thermal sensor with beams having different widths
US9929333B1 (en) * 2015-07-10 2018-03-27 Maxim Integrated Products, Inc. IR thermopile sensor with temperature reference formed in front-end process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163061A (en) * 1997-08-06 2000-12-19 Kabushiki Kaisha Toshiba Infrared solid-state image sensor and manufacturing method thereof
US6335478B1 (en) * 1999-11-04 2002-01-01 Bruce C. S. Chou Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same
RU2325729C1 (ru) * 2006-10-17 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Российский университет дружбы народов" (РУДН) Неохлаждаемый металлический болометр
WO2013089824A1 (en) * 2011-12-13 2013-06-20 The Board Of Regents For Oaklahoma State University Nanowire thermoelectric infrared detector
RU2511275C2 (ru) * 2012-07-16 2014-04-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт физических проблем им. Ф.В. Лукина" Наноструктурный ик-приемник (болометр) с большой поверхностью поглощения
US20150177070A1 (en) * 2013-12-22 2015-06-25 Melexis Technologies N.V. Infrared thermal sensor with beams having different widths
US9929333B1 (en) * 2015-07-10 2018-03-27 Maxim Integrated Products, Inc. IR thermopile sensor with temperature reference formed in front-end process

Similar Documents

Publication Publication Date Title
US6203194B1 (en) Thermopile sensor for radiation thermometer or motion detector
Wood Monolithic silicon microbolometer arrays
KR101910575B1 (ko) 적외선 검출기 및 적외선 이미지 센서
KR100205384B1 (ko) 적외선 센서 및 그의 온도 보상방법
CN102494781A (zh) 一种读出电路偏置结构
US8441093B2 (en) Shared membrane thermopile sensor array
KR20140032342A (ko) 초격자 양자우물 적외선 감지기
Shen et al. An uncooled infrared microbolometer array for low-cost applications
Dong et al. Fabrication and characterization of integrated uncooled infrared sensor arrays using a-Si thin-film transistors as active elements
CN102346074B (zh) 一种读出电路偏置结构
RU2681224C1 (ru) Оптимизированный термопарный сенсор
Fujisawa et al. Development of shutter-less SOI diode uncooled IRFPA for compact size and low power consumption
US9658110B1 (en) Thermal sensor combination
Lei et al. A CMOS-MEMS IR device based on double-layer thermocouples
KR101072290B1 (ko) 게르마늄계 열전재료를 이용한 서모파일형 열전센서
US10811585B2 (en) Thermoelectric device
US20050034749A1 (en) Structure of thermopile sensor
RU2511275C2 (ru) Наноструктурный ик-приемник (болометр) с большой поверхностью поглощения
Foote Temperature stabilization requirements for unchopped thermal detectors
US8212214B2 (en) Solid-state imaging element
JPH0345778B2 (ru)
KR20170024456A (ko) 적외선 검출기 및 이를 포함한 온도 센서
US7485860B2 (en) Thermoelectric bridge IR detector
Gupta et al. Design optimization of Pixel Structure for [alpha]-Si based uncooled Infrared detector
Lee et al. Short-circuit measurement by Seebeck current detection of a single thermocouple and its application

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191228