RU2681076C1 - Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой - Google Patents

Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой Download PDF

Info

Publication number
RU2681076C1
RU2681076C1 RU2018103841A RU2018103841A RU2681076C1 RU 2681076 C1 RU2681076 C1 RU 2681076C1 RU 2018103841 A RU2018103841 A RU 2018103841A RU 2018103841 A RU2018103841 A RU 2018103841A RU 2681076 C1 RU2681076 C1 RU 2681076C1
Authority
RU
Russia
Prior art keywords
temperature
cast iron
heat treatment
bainite
metal base
Prior art date
Application number
RU2018103841A
Other languages
English (en)
Inventor
Людмила Венедиктовна Костылева
Дмитрий Сергеевич Гапич
Вадим Андреевич Моторин
Алексей Викторович Грибенченко
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ)
Priority to RU2018103841A priority Critical patent/RU2681076C1/ru
Application granted granted Critical
Publication of RU2681076C1 publication Critical patent/RU2681076C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к металлургии, в частности к способам термической обработки чугунов с шаровидным графитом, и может быть использовано для получения износостойких изделий. Способ термообработки чугуна, содержащего в качестве легирующих элементов кремний и марганец, с получением структуры с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой включает термическую обработку в два этапа, при этом на первом этапе заготовку нагревают до температуры 940-960°C, выдерживают в течение 1,0-1,5 ч и подвергают закалке путем охлаждения в воде до 450-500°C, а затем на воздухе, на втором этапе заготовки нагревают в соляной ванне до температуры 1150-1160°C, выдерживают в ней 1,0-1,5 мин, переносят их в соляную ванну с температурой 360-380°C, в которой выдерживают в течение 1,0-1,5 ч, с последующим охлаждением в воде и отпуском при температуре 200-220°C в течение 1,5-2 ч. Техническим результатом изобретения является получение чугуна с высоким уровнем прочности, ударной вязкости и износостойкости за счет создания в нем матричной структуры дисперсионно-упрочненного макроструктурированного композита, которая состоит из равномерно расположенных в бейнитно-аустенитной матрице шаровидных частиц графита, заключенных в твердую оболочку ледебурита. 1 ил., 3 табл., 1 пр.

Description

Изобретение относится к металлургии, в частности к способам термической обработки чугунов с шаровидным графитом, и может быть использовано для получения износостойких изделий, высокими прочностными и пластическими свойствами, ударной вязкостью.
Изделия, полученные этим способом, отличаются стабильностью свойств в широком диапазоне сечений, хорошей обрабатываемостью резанием в литом состоянии и могут широко использоваться для получения деталей в различных отраслях машиностроения.
Высокие износостойкость, антифрикционные, прочностные свойства и ударная вязкость, а также стойкость в условиях теплосмен и многие другие эксплуатационные характеристики металлических сплавов в наилучшей степени обеспечиваются микроструктурами, соответствующими принципу Шарли, в которых твердые включения равномерно располагаются в вязкой сплошной матрице и при этом должны быть полностью инверсированы, т.е. изолированы друг от друга [Жуков А.А. Микроструктура стали и чугуна и принцип Шарпи / А.А. Жуков, Л.З. Эпштейн, Г.И. Сильман // Изв. АН СССР. Металлы, 1971, №2. - С. 163-168], аналогичный принцип формирования структуры используется при создании дисперсионно-упрочненных композитных материалов.
Известен способ изготовления отливок из чугуна с шаровидным графитом, в котором формирование бейнитной структуры матрицы осуществляется за счет легирования. Легирующие компоненты содержатся в этом чугуне в следующем соотношении (в мас.%):
Figure 00000001
[Чугун. Крестьянов В.И., Вестфальский Е.А., Бакума С.С., Степанцов Э.В. Патент №2138578 РФ. Опубликован: 27.09.1999. МПК С22С 37/10].
Недостатки способа состоят в относительно низкой износостойкости чугуна, особенно, в абразивной среде, использовании дорогостоящих легирующих элементов и неоднородности структуры и свойств в разных сечениях изделий сложной конфигурации.
Известен способ получения в половинчатом чугуне, содержащем легирующие компоненты в следующем соотношении, мас.%:
С 3,5-4,0
Si 3,0-4,2
Mn До 0,5
Cr До 0,05
V 1,5-4,5
Cu 0,5-1,2
[Жуков А.А. Ванадиевые и некоторые другие легированные чугуны, удовлетворяющие принципу Шарли / А.А. Жуков, Г.И. Сильман // В кн. Справочник по чугунному литью. / Подред. д-ра техн. наук Н.Г. Гиршовича - 3-е изд., перераб. и доп. - Л.: Машиностроение. Ленингр. отд-ние, 1078. - 758 с.]
В структуре этого чугуна, модифицированного лигатурой ЖКМК, наряду с шаровидным графитом содержатся эвтектические карбиды, инверсированные в металлической основе. После закалки на мартенсит и отпуска отливки приобретают твердость HRC 56-60 и прочность σв=1500МПа
К недостаткам способа следует отнести необходимость использования дорогостоящих легирующих элементов и пониженное сопротивление ударным нагрузкам, плохую обрабатываемость резанием.
1. Известен способ получения чугуна CADI с шаровидным графитом, бейнитной матрицей и эвтектическими карбидами в количестве до 37 об. %, соотношение компонентов в котором, мас.%:
С 1,6-3.55
Si 1,9-2,07
Mn 0,53-0,68
Cr 2,26-3,00
Cu 0,60-0,68
Ni 0,44-0,49
Ti 0,008-0,012
Mg 0,041-0,050
S 0,006-0,009
P 0,025-0,027
[Hayrynen K.L. Carbidic austempered ductile iron (CADI)-the new wear material" / K.L. Hayrynen, K.R. Brandenberg // Am. Foundry Soc. 111 (2003), - p. 845-850.]
Заданные микроструктура и высокая износостойкость в чугуне данного химического состава достигаются после изотермической закалки от температуры 950-975°С с выдержкой в соляной ванне при температуре 320°С в течение 1-3 часов.
Недостатком данного способа является, плохая обрабатываемость отливок резанием из-за присутствия в структуре эвтектических карбидов, склонность к хрупкому разрушению, обусловленная неблагоприятной морфологией карбидной фазы в виде сетки или крупных включений с острыми кромками, которые действуют как концентраторы напряжений, а также повышенная себестоимость отливок из-за использования легирующих элементов.
Наиболее близок к предлагаемому выбранный в качестве прототипа способ получения заготовки из половинчатого чугуна с шаровидным графитом и бейнитно-аустенитной структурой в литом состоянии, включающий выплавку, легирование, модифицирование чугуна, получение отливки в песчаной форме, извлечение ее из формы при заданной температуре и последующее регулируемое охлаждение, отличающийся тем, что расплав при заливке в песчано-глинистую форму дополнительно подвергают инокулирующему модифицированию, отливки после кристаллизации выбивают из формы при температуре 900-1000°С, перемещают в печь с температурой 950-1000°С и выдерживают в течение 10-30 мин, затем закаливают в изотермической ванне при температуре 300-320°С в течение 1-1,5 ч, при этом используют чугун, содержащий, мас.%:
углерод 3,2-3,4
кремний 3,0-3,3
марганец 0,3-0,4
магний 0,04-0,07
молибден 1,5-1,7
никель 2,2-2,6
сера 0,01-0,012
фосфор 0,06-0,08
железо остальное.
[Макаренко К.В. Способ получения отливок из половинчатого чугуна с аустенитно-бейнитной структурой / К.В. Макаренко // Пат. 2250268 РФ, МКИ С21С 1/10, С22С 37/04, C21D 5/00].
Однако этот способ имеет следующие недостатки. Применение в составе чугуна повышенного содержания молибдена, никеля и меди значительно увеличивает себестоимость изделий. Половинчатый характер литой структуры чугуна, содержащей большое количество эвтектических карбидов, затрудняет обработку отливок резанием. Неблагоприятная морфология ледебуритной составляющей, включения которой распределены по границам аустенитно-графитовых эвтектических ячеек, образуя сетку большей или меньшей степени сплошности, не соответствует принципам формирования композитов, армированных дисперсными частицами и, как следствие, повышает хрупкость и снижает износостойкость чугуна.
Задачей изобретения является разработка способа получения износостойких отливок повышенной прочности, пластичности и ударной вязкости из нелегированного чугуна с шаровидным графитом путем термической обработки.
Техническим результатом, реализуемым при осуществлении изобретения, является обеспечение в отливках из нелегированного чугуна структуры, высокого уровня прочностных и пластических свойств, ударной вязкости и износостойкости за счет создания в нем матричной структуры дисперсионно-упрочненного макроструктурированного композита, которая состоит из равномерно расположенных в бейнитно-аустенитной матрице шаровидных частиц графита, заключенных в твердую оболочку ледебурита.
Технический результат достигается тем, что для изготовления отливок используют нелегированный чугун, содержание основных компонентов в котором соответствует стандартным рекомендациям [ГОСТ 7293-85 Чугун с шаровидным графитом для отливок. Марки / Чугун. Марки. Технические условия. Методы анализа: Сб. ГОСТОв. - М.: ИПК Издательство стандартов, 2004], а для получения эвтектического цементита в форме ледебуритной оболочки вокруг шаровидных включений графита и бейнитно-аустенитной матрицы применяют термическую обработку, осуществляемую в два этапа, при этом на первом этапе отливки нагревают до температур 940-960°С, выдерживают в течение 1,0-1,5 ч и подвергают закалке путем охлаждения в воде до 450-500°С, а затем на воздухе, на втором этапе охлажденные заготовки нагревают в соляной ванне до температур 1150-1160°С, выдерживают 1,0-1,5 мин, осуществляют перенос в соляную ванну с температурой 360-380°С, где выдерживают в течении 1,0-1,5 ч с последующим охлаждением в воде и отпуском при температуре 200-220°С в течение 1,5-2 ч.
Первая закалка от температуры 940-960°С с охлаждением в воде и на воздухе необходима для предотвращения образования феррита и снижения твердости в зонах сегрегации кремния в металлической основе чугуна.
В процессе второй закалки под действием высокоскоростного краткосрочного нагрева в соляной ванне до эвтектической температуры 1150-1160°С происходит частичное оплавление эвтектики на границе раздела графит-аустенит, образовавшаяся жидкая фаза затвердевает с образованием ледебурита в результате сильного переохлаждения при последующем переносе отливки в соляную ванну с температурой 360-380°С. Высокая скорость и температура нагрева 1150-1160°С (температура эвтектического превращения чугуна) создают условия для развития эффекта контактного плавления на границе раздела эвтектических фаз графит-аустенит, а краткость выдержки при этой температуре (1-1,5 мин) не позволяет эвтектике расплавится во всем ее объеме.
В основной не расплавлявшейся части металлической основы аустенит в процессе изотермической выдержки при 3860-380°С претерпевает промежуточное превращение с образованием бейнита, при этом часть аустенита остается непревращенной - фиксируется последующим охлаждением в воде. В результате металлическая матрица приобретает бейнитно-аустенитную структуру.
Остаточный аустенит, присутствующий в металлической основе чугуна наряду с бейнитом, является метастабильной структурной составляющей, которая под действием эксплуатационных напряжений претерпевает мартенситное превращение, с соответствующим повышением твердости и износостойкости и таким образом обеспечивает самоупрочнение материала в процессе эксплуатации.
Отпуск при 200-220°С проводится для снятия внутренних напряжений и заметных структурных изменений не производит.
В результате термической обработки по предлагаемому способу в чугуне с шаровидным графитом даже в отсутствии специального легирования формируется структура дисперсионно-упрочненного композита: бейнитно-аустенитная матрица, обладающая высокой прочностью, пластичностью и повышенной вязкостью, которая упрочнена равномерно расположенными в ней твердыми включениями графита, заключенными в оболочку ледебурита. Полученная структура обеспечивает высокую износостойкость и другие эксплуатационные качества изделий.
Способ может быть осуществлен с использованием следующих технологических приемов и средств.
Жидкий чугун получают путем расплавления шихты заданного расчетного состава в плавильных электропечах, его модифицирование проводят магнийсодержащими лигатурами при сливе расплава в ковш. Отливки получают заливкой жидкого чугуна в одноразовые песчаные формы.
После охлаждения и выбивки из форм отливки для придания им конфигурации и размеров готовых изделий могут подвергаться механической обработке, так как в состоянии после литья они имеют перлитно-ферритную структуру металлической основы с шаровидными графитовыми включениями и хорошую обрабатываемость резанием.
Термическую обработку проводят путем закалки и отпуска.
Изделия нагревают в камерных электрических или газовых печах для аустенитизации под первую закалку и для отпуска.
При первой закалке после извлечения из печи изделия охлаждают в воде до 450-500°С, затем на воздухе до температуры окружающей среды.
Нагрев для второй закалки производят в соляной ванне с температурой 1150-1160°С и выдерживают в ней 1-1,5 мин. Затем осуществляют путем переноса изделия в соляную ванну с температурой 380-360°С и выдерживают в ней в течение 1,0-1,5 часов, далее охлаждают в воде до температуры окружающей среды.
После второй закалки изделия подвергают отпуску при 200-220°С в течение 1,5-2,0 часов с последующим охлаждением на воздухе.
Пример. Сравнительные испытания известного (прототипа) и предлагаемого способов термической обработки чугуна с шаровидным графитом проводили на экспериментальных отливках из легированного чугуна, соответствующего прототипу, и из нелегированного чугуна ВЧ50. Содержание компонентов в химическом составе чугунов приведено в таблице 1.
Figure 00000002
• Железо - остальное
Экспериментальные отливки подвергали термической обработке по известному и предлагаемому способам.
Основные параметры режимов термической обработки экспериментальных отливок приведены в таблице 2.
Figure 00000003
Термическую обработку отливок по известному способу проводили непосредственно после литья, путем выбивки их из формы при температуре 1000°С и перемещения в электропечь с температурой 990°С, где выдерживали в течение 15 мин для выравнивания температуры по сечению, затем осуществляли изотермическую закалку в соляной ванне.
По предлагаемому способу термическую обработку проводили по режимам с тремя вариантами основных параметров, охватывающими весь заявленный диапазон их изменений. При этом нагрев под первую закалку производили в электропечи, а охлаждение осуществляли по ступенчатому режиму в двух средах сначала в воде, а затем на воздухе.
Нагрев под вторую закалку проводили в соляной ванне (расплаве BaCl2), после выдержки в которой в течение 1-1,5 мин осуществляли перенос отливок в селитровую ванну с температурой 360-380°С, где выдерживали от 90 до 120 мин, а затем охлаждали в воде. Закаленные отливки подвергали отпуску в электропечи при температуре 200-220°С в течение 90-120 мин, охлаждали на воздухе.
После термической обработки из отливок изготавливали образцы для механических испытаний и металлографических исследований.
Металлографическим исследованием установлено, что образцы чугуна химического состава №1, после термической обработки по режиму «а», соответствующие известному способу (прототипу) имели микроструктуру половинчатого чугуна с шаровидным графитом и включениями ледебурита в виде разорванной сетки, металлическая основа - бейнит.
Микроструктура образцов нелегированного чугуна, имеющего состав 2 (см табл. 1), после термической обработки по предлагаемому способу (режимы «б, в, г» см. табл. 2), представляет собой бейнитно-аустенитную металлическую матрицу, в которой равномерно распределены шаровидные включения графита, покрытые оболочкой ледебурита. На рисунке 1 представлена микроструктура чугуна химического состава №2 (см. табл. 1), на врезке графитовое включение в оболочке ледебурита при большем увеличении. Микротвердость ледебуритной оболочки составила 7800-8300 МПа.
Результаты механических испытаний представлены в таблице 3.
Figure 00000004
*1-4 химический состав чугунов по таблице 1;
а-г режимы термической обработки по таблице 2
Как видно из результатов испытаний, приведенных в таблице 3, реализация предлагаемого способа термической обработки позволяет получить в чугунном литье лучший, чем у прототипа комплекс стандартных механических свойств (σв, δ, KC, НВ), а именно, при близких значениях предела прочности и твердости, заметно более высокий уровень пластичности и ударной вязкости.
Сравнительные испытания на износ, которые проводили путем перемещения образцов по закрепленному абразиву зернистостью 200-250 мкм с линейной скоростью 1,31 м/с при давлении 250 МПа, показали, что износостойкость чугуна, полученного по предлагаемому способу, на 55% выше, чем у прототипа.
Себестоимость полученных отливок на 30% ниже себестоимости отливок прототипа.

Claims (1)

  1. Способ термообработки чугуна, содержащего в качестве легирующих элементов кремний и марганец, с получением структуры с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой, включающий нагрев, выдержку и закалку, отличающийся тем, что термическую обработку осуществляют в два этапа, при этом на первом этапе заготовку нагревают до температуры 940-960°C, выдерживают в течение 1,0-1,5 ч и подвергают закалке путем охлаждения в воде до 450-500°C, а затем на воздухе, на втором этапе заготовки нагревают в соляной ванне до температуры 1150-1160°C, выдерживают в ней 1,0-1,5 мин, переносят их в соляную ванну с температурой 360-380°C, в которой выдерживают в течение 1,0-1,5 ч, с последующим охлаждением в воде и отпуском при температуре 200-220°C в течение 1,5-2 ч.
RU2018103841A 2018-01-31 2018-01-31 Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой RU2681076C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018103841A RU2681076C1 (ru) 2018-01-31 2018-01-31 Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018103841A RU2681076C1 (ru) 2018-01-31 2018-01-31 Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой

Publications (1)

Publication Number Publication Date
RU2681076C1 true RU2681076C1 (ru) 2019-03-01

Family

ID=65632595

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018103841A RU2681076C1 (ru) 2018-01-31 2018-01-31 Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой

Country Status (1)

Country Link
RU (1) RU2681076C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806231C1 (ru) * 2023-07-21 2023-10-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" Способ производства анкерных сошников стерневых сеялок с зональным распределением металлографических структур

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2250268C1 (ru) * 2003-07-24 2005-04-20 Брянский государственный технический университет Способ получения отливок из половинчатого чугуна с аустенитно-бейнитной структурой
RU2267542C1 (ru) * 2004-07-19 2006-01-10 Брянская государственная инженерно-технологическая академия (БГИТА) Чугун, способ его получения и способ термической обработки отливок из него
RU2449043C2 (ru) * 2010-04-12 2012-04-27 ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Способ термической обработки чугуна с шаровидным графитом
RU2504597C1 (ru) * 2012-06-14 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Способ термической обработки чугуна с шаровидным графитом
EP2686456B1 (en) * 2011-03-14 2017-08-02 Tdi Value Web B.v. A method of heat treating a cast iron, in particular a nodular cast iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2250268C1 (ru) * 2003-07-24 2005-04-20 Брянский государственный технический университет Способ получения отливок из половинчатого чугуна с аустенитно-бейнитной структурой
RU2267542C1 (ru) * 2004-07-19 2006-01-10 Брянская государственная инженерно-технологическая академия (БГИТА) Чугун, способ его получения и способ термической обработки отливок из него
RU2449043C2 (ru) * 2010-04-12 2012-04-27 ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Способ термической обработки чугуна с шаровидным графитом
EP2686456B1 (en) * 2011-03-14 2017-08-02 Tdi Value Web B.v. A method of heat treating a cast iron, in particular a nodular cast iron
RU2504597C1 (ru) * 2012-06-14 2014-01-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Способ термической обработки чугуна с шаровидным графитом

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806228C1 (ru) * 2023-07-20 2023-10-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" Способ производства анкерных сошников стерневых сеялок со структурированием режущей части
RU2806231C1 (ru) * 2023-07-21 2023-10-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" Способ производства анкерных сошников стерневых сеялок с зональным распределением металлографических структур
RU2806275C1 (ru) * 2023-07-21 2023-10-30 федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" Способ производства анкерных сошников стерневых сеялок с термической обработкой

Similar Documents

Publication Publication Date Title
CN108950432A (zh) 一种高强度、高韧性低合金耐磨钢及其制造方法
US5478523A (en) Graphitic steel compositions
CN110295265B (zh) 一种奥贝球铁及其制备方法和应用
KR101845410B1 (ko) 고강도 회주철 제품의 열처리 방법 및 이에 사용되는 고강도 회주철 조성물
RU2681076C1 (ru) Способ термообработки чугуна с шаровидным графитом, включениями эвтектического цементита и бейнитно-аустенитной металлической основой
US3702269A (en) Ultra high strength ductile iron
EP0272788B1 (en) A method of making wear resistant gray cast iron
KR20190114489A (ko) 오스템퍼드 구상흑연주철 후크 및 이의 제조방법
RU2449043C2 (ru) Способ термической обработки чугуна с шаровидным графитом
CN110607478A (zh) 一种灰铸铁气缸套材料及其制备方法
JP2015183198A (ja) 球状黒鉛鋳鉄、及び球状黒鉛鋳鉄の製造方法
RU2504597C1 (ru) Способ термической обработки чугуна с шаровидным графитом
RU2250268C1 (ru) Способ получения отливок из половинчатого чугуна с аустенитно-бейнитной структурой
Alabi et al. Production of Austempered Ductile Iron with Optimum Sulphur level for effective Mechanical Properties
JP6793541B2 (ja) 球状黒鉛鋳鉄管、および、球状黒鉛鋳鉄管の製造方法
RU2605016C2 (ru) Способ получения высокопрочного чугуна
Upadhyaya et al. Study on the effect of austempering temperature on the structure-properties of thin wall austempered ductile iron
Mukhametzyanova et al. Development of high-strength cast iron for back-up layer of bimetallic products
CN113462955B (zh) 一种高强度高韧性等温淬火球铁材料及其制备方法和应用
RU2307171C2 (ru) Способ получения отливок из износостойкого белого чугуна
RU2615409C2 (ru) Высокопрочный антифрикционный чугун
JP2015183191A (ja) 球状黒鉛鋳鉄管、及び球状黒鉛鋳鉄管の製造方法
Mittal et al. Property enhancement of spheroidal graphite cast iron by heat treatment
RU2432412C2 (ru) Чугун и способ его получения
RU2733940C1 (ru) Чугун

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200201