RU2680507C1 - Способ очистки вод, загрязненных тритием - Google Patents

Способ очистки вод, загрязненных тритием Download PDF

Info

Publication number
RU2680507C1
RU2680507C1 RU2018108984A RU2018108984A RU2680507C1 RU 2680507 C1 RU2680507 C1 RU 2680507C1 RU 2018108984 A RU2018108984 A RU 2018108984A RU 2018108984 A RU2018108984 A RU 2018108984A RU 2680507 C1 RU2680507 C1 RU 2680507C1
Authority
RU
Russia
Prior art keywords
tritium
water
humic acid
contaminated
natural
Prior art date
Application number
RU2018108984A
Other languages
English (en)
Inventor
Евгений Валентинович Поляков
Маргарита Яковлевна Чеботина
Илья Владимирович Волков
Валентина Петровна Гусева
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2018108984A priority Critical patent/RU2680507C1/ru
Application granted granted Critical
Publication of RU2680507C1 publication Critical patent/RU2680507C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном состоянии, вводимой в соотношении гуминовая кислота:вода, загрязнённая тритием, равном 1:4÷5. Доводят путем добавления серной кислоты при перемешивании рН ≤ 4 и отделяют осадок фильтрацией через бумажный фильтр или коллоидно-химической экстракцией. Изобретение позволяет обеспечить высокий коэффициент распределения гуминовой кислоты, а также хранение конечного продукта, обогащенного тритием, без нарушения экологических норм и без создания специальных условий. 1 з.п. ф-лы, 1 табл.

Description

Изобретения относится к области сорбционных технологий дезактивации воды и водных растворов, преимущественно природной воды.
Тритий является одним из самых распространённых искусственных радионуклидов, попадающих в природную среду в результате работы атомных реакторов, особая опасность для окружающей среды которого связана с переходом в состав органических веществ и далее в биоту (N. Baglan, S.B. Kim, C. Cossonnete, I.W. Croudace, M. Founier, D. Galleriu, P.E. Warwick, N. Momoshima. Organically bound tritium (OBT) behaviour and analysis: outcomes of the seminar held in Balaruc-les-Bains in May 2012. Radioprotection. 2013 г., Т. 48, 1, стр. 127 – 144). В сравнении с природным фоном поступление в водную среду техногенного трития связано прежде всего с работой водо-водяных реакторов типа ВВЭР, где тритий генерируется в результате: - реакции захвата нейтронов в изотопе 10B, используемом для управления реактивностью и поступающим в теплоноситель первого контура с борной кислотой; - ядерных реакций на литии 6Li, 7Li; - образования трития из дейтерия, присутствующего в природной воде; - реакции тройного деления изотопов урана и плутония в топливе. Эти потоки могут создавать в питьевой воде вблизи АЭС концентрацию трития до 200 Бк/л (N. Baglan, S.B. Kim, C. Cossonnete, I.W. Croudace, M. Founier, D. Galleriu, P.E. Warwick, N. Momoshima. Organically bound tritium (OBT) behaviour and analysis: outcomes of the seminar held in Balaruc-les-Bains in May 2012. Radioprotection. 2013 г., Т. 48, 1, стр. 127 – 144) , в грунтовых и поверхностных водах концентрацию трития, характерную для жидких радиоактивных отходов (Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99/2010). (ред. от 16.09.2013). Москва : б.н., 2013. стр. 1- 77), а в случае аварийных ситуаций концентрация трития может достигать значений более 106 Бк/л (Hsin-Fa Fang, Chu-Fang Wang, Chien-Kung Lin. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency. Journal of Environmental Radioactivity. 2015, Pages 62-67 г., Т. 150, стр. 62-67). Таким образом, расширение арсенала технологий, обеспечивающих концентрирование трития из водных ресурсов, является одной из актуальных задач в настоящее время.
Известен способ концентрирования трития из воды и её очистки путем электрохимического фракционирования/концентрирования (Ф.Ф. Файзрах-манов, Ф.Я. Аникин, Г.И. АНтоненко, Ю.В. Кулишов, Ф.Д. Третьяков. Измерение малых удельных активностей тримтия. Снежинск : РФЯЦ-ВНИИТФ, 2014. ISBN 978-5-902278-60-3). Способ основан на преимущественном восстановлении и отгонке в газовую фазу молекулярного лёгкого изотопа водорода и на обогащении раствора электролита дейтерием и тритием в виде DHO (дейтерий-протиевая вода), THO (тритий-протиевая вода).
К недостаткам способа относятся высокая энергоёмкость, длительность (до 6 -12 суток), необходимость применения специального оборудования, невысокая степень за один цикл электрохимического концентрирования степени обогащения (коэффициента распределения Kd, мл/г ) около 10.
Известен способ очистки воды от трития каталитическим изотопным обменом между водой и водородом. В известном способе детритизацию водных отходов проводят методом химического изотопного обмена водорода с водой (система «газ – жидкость») на гетерогенных катализаторах. Способ включает изотопный обмен между водой и водородом в многоступенчатой противоточной разделительной колонне, в состав которой входит нижний узел обращения потоков или электролизер. Разделительная колонна состоит из последовательно соединенных контактных устройств мембранного типа, расположенных в горизонтальной плоскости. В качестве мембраны в устройстве используют фторполимерную сульфокатионитную мембрану. В качестве катализатора используют гетерогенный гидрофобный или гидрофильный платиновый катализатор (патент RU 2380144; МПК B01D 59/28; 2010 год).
Недостатками способа являются необходимость предварительной подготовки воды с очисткой её от взвесей, коллоидов, биологической составляющей, а также использование специальной аппаратуры в виде многоступенчатой противоточной разделительной колонны с особым режимом безопасности из-за использования газообразных водорода и обогащённого тритием водорода.
Известен способ очистки радиоактивных растворов от трития путем обогащения фракции тяжелой воды тритием и озонированием в сочетании с сорбционно-осадительным выделением радионуклидов. В известном способе в загрязнённую тритием воду впрыскивают мелкие частицы сорбентов (бентонит, активированный уголь и цеолит) совместно с коагулянтом на основе солей железа. После этого проводят длительное перемешивание суспензии в статическом или полу-статическом режиме в реакторе. Тритий остаётся во фракции тяжёлой воды в водной фазе, а мешающие радионуклиды удаляют фильтрацией суспензии сорбентов с коагулянтом. После этого воду обогащают по тритию путём её обработки нанопузырьками озона в устройстве разложения «газ-жидкость»(патент JP 2015081840; МПК G21F 9/00, G21F 9/06; 2015 год).
Недостатками известного способа являются затраты большой энергии, использование стационарных установок дополнительной очистки воды от солей дистилляцией, необходимость дополнительного окисления органических соединений.
Известен способ сорбции трития из водного раствора природными слоистыми алюмосиликатами в статических условиях, при соотношении объёма водного раствора (мл) и массы алюмосиликата (г) в диапазоне 0,5 – 0,6 при 20о С и периодическом перемешивании в течение 3 месяцев, который обеспечивает коэффициент распределения Kd в интервале (0,1-0,2) мл/г, а интеркаляция в объём слоистых алюмосиликатов органических молекул (например, монтмориллонита - молекулами диметилсульфоксида, или гидразан сульфата) увеличивает Kd до уровня 0,7-0,9 мл/г ( A. I. Rat’ko, V. P. Samodurov, V. P. Kol’nenkov. Tritium Sorption by Modified Natural Aluminosilicates. Radiochemistry. 2001 г., Т. 43, 5, стр. 519 -3522)(прототип).
Недостатками известного способа при его применении для очистки от трития водных растворов с малым солевым фоном является: - низкие коэффициенты распределения (менее 10 мл/г); - необходимость применения большого количества сорбента (сотни – тысячи тонн на тонну очищаемой воды); - выделение в воду продукты растворения сорбента, катионов и анионов; - необходимость создания специальных условия для хранения насыщенного тритием алюмосиликатного сорбента, предотвращающих возможность перехода тритированной воды из сорбента в водяной пар и испарение из высыхающего сорбента.
Таким образом, перед авторами стояла задача разработать способ очистки воды, загрязненной тритием, обеспечивающий достижение высокого коэффициента распределения наряду с относительно невысоким расходом сорбирующего реагента, а также обеспечение хранения конечного продукта, обогащенного тритием, без нарушения экологии без создания специальных условий.
Поставленная задача решена в способе очистки воды, загрязненной тритием, включающем обработку изотопообменным сорбентом с отделением осадка, в котором в качестве изотопообменного сорбента используют природную или синтетическую гуминовую кислоту в жидком или порошкообразном состоянии, вводимую в соотношении гуминовая кислота : вода, загрязненная тритием, =1:4÷5, с доведением путем добавления серной кислоты при перемешивании рН ≤ 4 и отделением осадка фильтрацией через бумажный фильтр или коллоидно-химической экстракцией. При этом отделение осадка может быть осуществлено коллоидно-химической экстракцией в изобутиловый спирт.
В настоящее время из патентной и научно-технической литературы не известен способ очистки воды, загрязненной тритием, с использованием природной или синтетической гуминовой кислоты в жидком или порошкообразном состоянии, вводимой в соотношении гуминовая кислота: вода, загрязненная тритием, =1:4÷5 с доведением путем добавления серной кислоты при перемешивании рН ≤ 4 и отделением осадка фильтрацией через бумажный фильтр или коллоидно-химической экстракцией, например, в изобутиловый спирт.
Использование авторами гуминовой кислоты для очистки воды, загрязненной тритием, основано на изучении процесса изотопного обмена, при котором происходит спонтанное перераспределение радиоактивных изотопов трития в структуре осадка гуминовой кислоты. При этом происходит обмен протия (Н) на тритий (7) в макромолекуле гуминовой кислоты (сорбция) по реакции
Figure 00000001
Экспериментальные исследования, проведенные авторами, позволили выявить оптимальные условия сорбции трития гуминовой кислотой. Существенным в данном случае является установление и поддержание рН раствора, равным или ниже 4, при котором гуминовая кислота переходит в водородную форму и выделяется в виде осадка из раствора. Существенным также является соотношение количества вводимой гуминовой кислоты к объему обрабатываемой воды. Так соотношение меньше 1:4 не позволяет достичь нужной степени очистки. При соотношении более 1:5 наблюдается образование объемного осадка твердой гуминовой кислоты, трудноотделяемого от раствора.
Предлагаемый способ может быть осуществлен следующим образом. В объем воды, содержащей молекулы тритированной воды ТНО, вносят аликвоту раствора гуминовой кислоты в количестве, необходимом для установления соотношения гуминовая кислота : вода, загрязненная тритием = 1:4÷5. Затем, путем добавления серной кислоты при перемешивании доводят рН раствора до величины не более 4. После выпадения осадка гуминовой кислоты, обогащенной тритием, осадок отделяют от маточного раствора фильтрованием или коллоидно-химической экстракцией, водную фазу направляют на повторную очистку, или на сброс в канализацию. Твердая гуминовая кислота, обогащенная тритием, может далее храниться на воздухе неограниченное время без выделения трития в газовую фазу. В предлагаемом способе используют гуминовые кислоты в виде раствора (при сорбции в статике), или порошка (при сорбции в режиме хроматографии).
Положительным эффектом предлагаемого способа является: - высокий коэффициент распределения трития между раствором и осадком гуминовых кислот, достигающий величин в диапазоне 103-105 мл/г; - низкая дисперсность (в среднем 0.01-5 мкм) осадка гуминовых кислот, что позволяет вводить его в цементную матрицу или жидкое стекло для долговременного хранения. Дополнительным положительным эффектом предлагаемого способа является достижение высокого коэффициента распределения не только по тритию, но и по ряду других элементов (см. табл.).
Figure 00000002
Примеры реализации способа.
Пример 1. В 250 мл речной воды, имеющей рН 7.8 при температуре 23°С и удельную активность по тритию в виде ТНО (30,9 Бк/мл), вносят аликвоту 50 мл раствора гуминовой кислоты (ГК) природного происхождения с начальной концентрацией 0.99 г/л. Это обеспечивает отношение массы ГК к объему воды 0.2 мг/мл (1:5). Доводят кислотность раствора серной кислотой до рН=3.8 и после установления сорбционного равновесия и отделения осадка фильтрованием через целлюлозный фильтр «синяя лента» измеряют равновесную активность аликвоты прозрачного фильтрата, находят долю сорбированного трития = 0.186, что отвечает коэффициенту распределения Kd=(1.14±0.15)⋅104 мл/г.
Пример 2. В 200 мл речной воды, имеющей рН 7.8 при температуре 23°С с введенной радиоактивной меткой трития в виде ТНО, вносят аликвоту 50 мл раствора синтетической ГК с начальной концентрацией 0.99 г/л. Это обеспечивает отношение массы ГК (мг) к объему (мл) воды 0.25 мг/мл (1:4). После установления сорбционного равновесия суспензию раствора с осадком пропускают через колонку с дренажным дном из фильтра «синяя лента», собирают фильтрат в стеклянный стакан и измеряют равновесную активность аликвоты фильтрата. Изменение удельной активности соответствует сорбции трития = 0,158, что отвечает Kd=(1.7±0.6)⋅103 мл/г.
Пример 3. В 250 мл речной воды, имеющей рН 7.9 при температуре 22°С и удельную активность по тритию в виде ТНО (41,0 Бк/мл), вносят аликвоту 50 мл раствора гуминовой кислоты (ГК) природного происхождения с начальной концентрацией 0.99 г/л, состава, отношение массы ГК к объему воды 0.2 мг/мл (1:5). Корректируют кислотность раствора серной кислотой до рН=3.8 и, после установления сорбционного равновесия, к раствору приливают изобутиловый спирт в соотношении 100 мл спирта / 250 мл воды. После перехода осадка гуминовой кислоты в органическую фазу измеряют равновесную активность аликвоты фильтрата, находят долю сорбированного трития = 0.230, что отвечает коэффициенту распределения для гуминовой кислоты - Kd=(1.50±0.20)⋅104 мл/г.
Пример 4. В 250 мл речной воды, имеющей рН 7.9 при температуре 22°С и удельную активность по тритию в виде ТНО (41,0 Бк /мл), вносят аликвоту 50,0 мг порошка твердой гуминовой кислоты, приготовленного из природной ГК после осаждения, отмывки и сушки до постоянной массы на воздухе при 160°С. Отношение массы ГК к объему воды = 0.2 мг/мл (1:5). Корректируют кислотность раствора серной кислотой до рН=3.8 и, после установления сорбционного равновесия осадок гуминовой кислоты отделяют от раствора фильтрацией через фильтр «синяя лента», измеряют равновесную активность аликвоты фильтрата, находят долю сорбированного трития = 0.210, что отвечает коэффициенту распределения для гуминовой кислоты - Kd=(1.30±0.20)⋅104 мл/г.
Таким образом, авторами предлагается способ очистки воды, загрязненной тритием, обеспечивающий достижение высокого коэффициента распределения наряду с относительно невысоким расходом сорбирующего реагента, а также обеспечение хранения конечного продукта, обогащенного тритием, без нарушения экологии без создания специальных условий.

Claims (2)

1. Способ очистки воды, загрязненной тритием, включающий обработку изотопообменным сорбентом с отделением осадка, отличающийся тем, что в качестве изотопообменного сорбента используют природную или синтетическую гуминовую кислоту в жидком или порошкообразном состоянии, вводимую в соотношении гуминовая кислота:вода, загрязненная тритием, равном 1:4÷5, с доведением путем добавления серной кислоты при перемешивании рН ≤ 4 и отделением осадка фильтрацией через бумажный фильтр или коллоидно-химической экстракцией.
2. Способ очистки воды, загрязненной тритием, по п. 1, в котором осадок отделяют коллоидно-химической экстракцией в изобутиловый спирт.
RU2018108984A 2018-03-14 2018-03-14 Способ очистки вод, загрязненных тритием RU2680507C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018108984A RU2680507C1 (ru) 2018-03-14 2018-03-14 Способ очистки вод, загрязненных тритием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018108984A RU2680507C1 (ru) 2018-03-14 2018-03-14 Способ очистки вод, загрязненных тритием

Publications (1)

Publication Number Publication Date
RU2680507C1 true RU2680507C1 (ru) 2019-02-21

Family

ID=65479268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018108984A RU2680507C1 (ru) 2018-03-14 2018-03-14 Способ очистки вод, загрязненных тритием

Country Status (1)

Country Link
RU (1) RU2680507C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712541C1 (ru) * 2019-05-22 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ концентрирования трития из загрязненных вод
RU2767867C1 (ru) * 2020-12-29 2022-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ выделения трития из загрязненных им вод

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2060801C1 (ru) * 1994-03-17 1996-05-27 Юрий Александрович САХАРОВСКИЙ Способ извлечения трития и протия из дейтерийсодержащей воды
RU2380144C1 (ru) * 2008-05-06 2010-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки воды от трития каталитическим изотопным обменом между водой и водородом
JP2015081840A (ja) * 2013-10-23 2015-04-27 日本ソリッド株式会社 トリチウム等の放射性物質を含有する汚染水の処理方法
US20160233001A1 (en) * 2013-09-13 2016-08-11 Hideki Koyanaka Tritium adsorbent, method for separating tritium in water, and method for regenerating tritium adsorbent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2060801C1 (ru) * 1994-03-17 1996-05-27 Юрий Александрович САХАРОВСКИЙ Способ извлечения трития и протия из дейтерийсодержащей воды
RU2380144C1 (ru) * 2008-05-06 2010-01-27 Государственное образовательное учреждение высшего профессионального образования "Российский химико-технологический университет им. Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ очистки воды от трития каталитическим изотопным обменом между водой и водородом
US20160233001A1 (en) * 2013-09-13 2016-08-11 Hideki Koyanaka Tritium adsorbent, method for separating tritium in water, and method for regenerating tritium adsorbent
JP2015081840A (ja) * 2013-10-23 2015-04-27 日本ソリッド株式会社 トリチウム等の放射性物質を含有する汚染水の処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAT'KO A.I., SAMODUROV V.P., KOL'NENKOV V.P. Tritium Sorption by Modified Natural Aluminosilicates, Radiochemistry, 2001, vol. 43, N5, p. 519-522. *
ВОЛКОВ И.В. Реакции микроэлементов с гуминовыми кислотами как основа сорбционной дезактивации и очистки техногенных отходов, Диссертация на соискание ученой степени кандидата химических наук, Екатеринбург, 2016, с. 1, 5, 7-8, 13. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712541C1 (ru) * 2019-05-22 2020-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Способ концентрирования трития из загрязненных вод
RU2767867C1 (ru) * 2020-12-29 2022-03-22 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В.Ломоносова» (МГУ) Способ выделения трития из загрязненных им вод

Similar Documents

Publication Publication Date Title
Rahman et al. Liquid radioactive wastes treatment: a review
US4461711A (en) Method for separating and collecting iodine
Ma et al. Radioactive wastewater treatment technologies: a review
Fu et al. Degradation of Ni–EDTA complex by Fenton reaction and ultrasonic treatment for the removal of Ni 2+ ions
Luo et al. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium
RU2680507C1 (ru) Способ очистки вод, загрязненных тритием
Liu et al. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system
Talebi et al. Nickel ion coupled counter complexation and decomplexation through a modified supported liquid membrane system
Chakraborty et al. A critical review of the removal of radionuclides from wastewater employing activated carbon as an adsorbent
Tachibana et al. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water
WO2014172360A2 (en) Advanced tritium system for separation of tritium from radioactive wastes and reactor water in light water systems
CN105719718A (zh) 一种去除放射性水中胶体态核素110mAg和60Co/58Co的方法
CN105617982B (zh) 一种去除放射性水中110mAg的无机吸附剂及其制备方法
Jin et al. Removal of nickel and strontium from simulated radioactive wastewater via a pellet coprecipitation-microfiltration process
CN105107478A (zh) 一种去除水中放射性铯的载锆有机杂化吸附剂及制备和使用方法
Zong et al. Prediction and optimization of removal performance for europium onto phosphate decorated zirconium-based metal–organic framework nanocomposites: Structure-activity relationship and mechanism evaluation
Grandjean et al. Comparing hexacyanoferrate loaded onto silica, silicotitanate and chabazite sorbents for Cs extraction with a continuous-flow fixed-bed setup: Methods and pitfalls
JP2018004588A (ja) トリチウムを含む放射能汚染水からのトリチウムの分離除去方法
JP2013246139A (ja) 放射性物質汚染排水の処理方法
Pátzay et al. Modification of the radioactive wastewater treatment technology in the Hungarian PWR
Miśkiewicz et al. Application of biosorbents in hybrid ultrafiltration/sorption processes to remove radionuclides from low-level radioactive waste
TWI612014B (zh) 以流體化床均質顆粒化技術處理含硼廢水之方法
JP2015081891A (ja) 原子力発電使用済み燃料プール水の浄化法及び装置並びに使用済み燃料プール水の処理方法及び装置
Zhang et al. Large-scale synthesis of nano Cu 2 O/Cu–C for iodide removal in a novel countercurrent two-stage adsorption and membrane separator system
RU2767867C1 (ru) Способ выделения трития из загрязненных им вод

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210315