RU2680350C2 - Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации - Google Patents

Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации Download PDF

Info

Publication number
RU2680350C2
RU2680350C2 RU2017115539A RU2017115539A RU2680350C2 RU 2680350 C2 RU2680350 C2 RU 2680350C2 RU 2017115539 A RU2017115539 A RU 2017115539A RU 2017115539 A RU2017115539 A RU 2017115539A RU 2680350 C2 RU2680350 C2 RU 2680350C2
Authority
RU
Russia
Prior art keywords
data
data storage
information
storage nodes
data processing
Prior art date
Application number
RU2017115539A
Other languages
English (en)
Other versions
RU2017115539A3 (ru
RU2017115539A (ru
Inventor
Дмитрий Владимирович Самойленко
Олег Анатольевич Финько
Михаил Алексеевич Еремеев
Сергей Александрович Диченко
Original Assignee
федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации filed Critical федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации
Priority to RU2017115539A priority Critical patent/RU2680350C2/ru
Publication of RU2017115539A3 publication Critical patent/RU2017115539A3/ru
Publication of RU2017115539A publication Critical patent/RU2017115539A/ru
Application granted granted Critical
Publication of RU2680350C2 publication Critical patent/RU2680350C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09CCIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
    • G09C1/00Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1458Management of the backup or restore process
    • G06F11/1464Management of the backup or restore process for networked environments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0653Monitoring storage devices or systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/067Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Storage Device Security (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

Изобретение относится к области вычислительной техники. Техническим результатом является повышение устойчивости системы распределенного хранения информации. Технический результат достигается тем, что распределенная система хранения информации (РСХИ) состоит из k блоков обработки данных с соответствующими узлами хранения данных, включая файлы, подлежащие хранению. Блок управления отслеживает доступность узлов хранения данных, их местоположение, объемы допустимой памяти узлов хранения данных с блоком восстановления данных. Взаимодействие в РСХИ осуществляется посредством локальной или беспроводной сети. Физическая утрата (потеря) любого узла хранения данных (деградация РСХИ) или его неспособность к соединению с сетью в условиях преднамеренных (имитирующих) действий злоумышленника приведет к частичной потере или полной утрате информации. При этом распределенное по узлам хранения данных множество информационных данных с вычисленными избыточными данными позволяет выполнить блоком восстановления данных полное восстановление утраченных файлов данных даже при отказе одного или более узлов хранения данных. Недоступный узел хранения данных может быть заменен другим узлом хранения данных, при этом доступные узлы хранения данных совместно с введенным новым узлом хранения данных формируют множество информационных и избыточных данных для введенного узла хранения данных и осуществляют их повторное распределение (реконфигурация системы). При этом совокупность распределенных узлов хранения данных рассматривается как единая система запоминающих устройств, предусматривающая введение избыточности в сохраняемую информацию. В одном варианте исполнения способ (система) распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации может быть реализован(а) с использованием избыточных модулярных кодов. 2 н. и 3 з.п. ф-лы, 7 ил., 2 табл.

Description

Область техники
Предлагаемое изобретение относится к области радио- и электросвязи и может быть использовано для распределенного хранения информации.
Уровень техники
Известны способы хранения данных, защита от утраты которых обеспечивается за счет средств резервного копирования данных с использованием программно-аппаратной или программной реализации, например, технологии RAID (Redundant Array of Independent Disks) [Патент США №7392458 публ. 24.06.2008; Патент США №7437658 публ. 14.10.2008; Патент США №7600176 публ. 06.10.2009; Заявка на патент США №20090132851 публ. 21.05.2009: Заявка на патент США №20100229033 публ. 09.09.2010; Заявка на патент США №201101145677 публ. 16.06.2011; Заявка на патент США №20110167294 публ. 07.07.2011].
Недостатками данных способов являются:
сложная процедура восстановления утерянных данных;
распределение данных между узлами хранения (дисками), выполненными в едином конструктивном блоке (RAID-массиве).
Известен способ [Патент РФ №2502124 С1 публ. 20.12.2013] распределенного хранения данных на нескольких узлах хранения данных, позволяющий на базе набора узлов хранения данных (жестких дисков, флэш-накопителей и т.п.) построить запоминающее устройство (хранилище), устойчивое к утрате данных даже при выходе из строя некоторого количества носителей, образующих запоминающее устройство (хранилище).
Недостатками данного способа являются:
фиксированный уровень восстанавливаемых данных при единовременном возникновении отказов и сбоев;
размещение накопителей информации в едином конструктивном исполнении:
отсутствие механизмов обеспечения безопасности хранимой информации.
Известны способы комплексной защиты информации, используемые как в системах хранения, выполненных в едином конструктивном исполнении, так и в распределенных системах [Заявка на патент США №20050081048 А1 публ. 14.04.2005; Заявка на патент США №8209551 В2 публ. 26.06.2012], для которых требования безопасности информации: конфиденциальность, целостность и доступность - обеспечиваются последовательным применением средств криптографического преобразования данных и технологий их резервного копирования.
Недостатками данных способов являются:
характерная для многих режимов работы средств криптографической защиты информации конструктивная способность к размножению ошибок, когда один или более ошибочных бит в блоке криптограммы оказывает(ют) влияние при расшифровании последующих блоков сообщения:
достаточно высокая избыточность хранимой информации.
Наиболее близким по своей технической сущности к заявленному техническому решению и принятым за прототип является способ, описанный в [Патент РФ №2501072 С2 публ. 10.12.2013].
В рассматриваемом способе-прототипе распределенное хранение восстанавливаемых данных осуществляется путем замены отказавшего узла, хранящего распределенные данные, содержащего этапы, на которых: посредством первого узла хранения данных принимают первый набор квот (контрольных сумм), сгенерированный из файла данных, при этом каждая контрольная сумма в первом наборе включает в себя линейную комбинацию частей файла данных наряду с набором коэффициентов, использованных для генерирования этой линейной комбинации; посредством первого узла хранения данных принимают указание нового узла хранения данных, заменяющего отказавший узел, при этом отказавший узел включает в себя второй набор контрольных сумм, сгенерированный из файла данных; посредством первого узла хранения данных генерируют первую заменяющую контрольную сумму в качестве реакции на упомянутое указание, при этом первую заменяющую контрольную сумму генерируют путем умножения каждой контрольной суммы в первом наборе и набора коэффициентов на случайное масштабирующее значение и объединения умноженного первого набора контрольных сумм и умноженного набора коэффициентов; и посредством первого узла хранения данных передают сгенерированную первую заменяющую контрольную сумму в новый узел хранения данных, при этом первая заменяющая контрольная сумма и по меньшей мере одна другая заменяющая контрольная сумма формируют второй набор контрольных сумм в новом узле хранения данных, причем эта другая заменяющая контрольная сумма генерируется вторым узлом хранения данных (фиг. 1). Однако и данному способу-прототипу присущи следующие недостатки. Начиная с узла, исказившего один элемент хотя бы одной контрольной суммы, происходит «лавинное» размножение ошибок в системе распределенного хранения информации. И все узлы хранения данных, связанные с формированием контрольных сумм через такой узел, принимают некоторую часть или даже все контрольные суммы искаженными. При восстановлении исходного файла из полученных линейных комбинаций контрольных сумм с высокой вероятностью искаженным окажется исходный файл. Предложенные решения по обеспечению целостности контрольных сумм предполагают использование дополнительной информации для проверки путем осуществления запросов контрольных сумм от других узлов хранения данных, что, в свою очередь, снижает пропускную способность системы в условиях преднамеренных имитирующих воздействий злоумышленника.
Из уровня техники широко известны распределенные системы защищенного хранения данных. Так, в [Патент США № US 7945784 В1 публ. 17.05.2011] предложена система распределенного хранения данных с возможностью их восстановления, которая основана на (n, k) схеме разделения секрета, содержащая по крайней мере один сервер, процессор, осуществляющий соответствующую обработку данных для последующего хранения на n носителях.
К недостаткам рассматриваемой системы следует отнести:
зависимость параметров восстановления защищаемых k данных от количества узлов n хранения данных, на которые они распределяются;
отсутствие выраженных в явном виде решений восстановления информации при физической утрате некоторого узла хранения данных или реконфигурации системы.
Наиболее близкой по технической сущности является компьютерная система распределенного хранения данных на различных узлах сети [Патент РФ №2501072 С2 публ. 10.12.2013], состоящая из функциональных компонент: блока выгрузки, блока загрузки, блока слежения и узлов хранения данных, реализуемая средствами вычислительной техники (компьютерными системами), содержащими центральный процессор (CPU - central processing unit), память, жесткий диск или другое устройство хранения (невременный машиночитаемый носитель информации, на котором сохранены исполняемые инструкции компьютерной программы, исполняемые процессором), сетевой интерфейс, периферийные интерфейсы и ряд других известных компонент. Узлы хранения данных могут включать в себя большие объемы доступного пространства для хранения. В дополнение также может существовать множество блоков выгрузки и блоков загрузки, получающих доступ к узлам хранения данных. Также может существовать множество блоков слежения (например, могут существовать резервные блоки слежения для случая отказа основного блока слежения). При этом блок выгрузки, блок загрузки, блок управления и узлы хранения данных осуществляют связь посредством сети. Сеть может быть выполнена в виде Internet, локальной сети, беспроводной сети и различных других типов сетей.
Недостатком данной системы является отсутствие механизмов обеспечения конфиденциальности данных, что особенно актуально в условиях имитирующих воздействий злоумышленника.
Целью заявляемого технического решения является повышение устойчивости системы распределенного хранения информации.
Раскрытие изобретения
Технический результат изобретения достигается тем, что:
1. В известном способе распределенного хранения данных на различных узлах сети обеспечение восстановления заключается в том, что осуществляется замена отказавшего узла, хранящего данные, относящиеся к части файла данных, при этом каждым из множества доступных узлов хранения данных принимается указание от блока управления на замену отказавшего узла новым узлом хранения данных, каждый из доступных узлов хранения данных содержит множество контрольных сумм, сформированных из файла данных, которые могут быть сформированы на основании частей файла данных, используя методики кодирования со стиранием, при этом заменяющая контрольная сумма формируется на каждом из множества доступных узлов хранения данных посредством создания линейной комбинации контрольных сумм на каждом узле хранения данных, используя случайные коэффициенты, в дальнейшем эти заменяющие контрольные суммы используются для восстановления утерянного файла данных. Новым является то, что каждый из доступных блоков обработки данных с соответствующим узлом хранения данных содержит множество данных, сформированных из файлов, соответствующих блокам обработки данных с узлами хранения данных; что множество данных предварительно подвергается процедуре блочного шифрования с нелинейными биективными преобразованиями; что сформированное множество блоков криптограмм блоков обработки данных с узлами хранения данных распределяется между узлами хранения данных, в которых, используя методы многозначного помехоустойчивого кодирования, формируется соответствующее множество избыточных данных, далее поступившие от других блоков обработки данных с узлами хранения данных блоки криптограмм удаляются с целью сокращения общей избыточности. Также новым является то, что сформированное множество избыточных данных с блоками криптограмм блока обработки данных с узлом хранения данных, осуществлявшего их формирование, используется для восстановления утерянных файлов данных, при этом блок восстановления данных получает информацию от блока управления в отношении того, какие блоки обработки данных с соответствующими узлами хранения данных в настоящий момент доступны и, соответственно, имеют множестве информационных и избыточных данных файла, затем блок восстановления данных получает множество информационных и избыточных данных от указанных блоков обработки данных с узлами хранения данных, блок восстановления данных выполняет полное восстановление утраченных файлов данных, данные, восстановленные блоком восстановления данных, совместно с данными доступных блоков обработки данных с соответствующими узлами хранения данных передаются на вновь введенный блоком управления блок обработки данных с узлом хранения данных для формирования блоков избыточных данных.
2. Распределенная система хранения информации (РСХИ) на различных узлах сети представляет собой компьютерную систему, содержащую центральный(е) процессор(ы), память, жесткий диск или другое устройство хранения, на котором сохранены необходимые ключи шифрования и исполняемые инструкции программного обеспечения, исполняемые процессором, сетевой интерфейс, периферийные интерфейсы, состоящую из следующих функциональных компонент: k блоков обработки данных, включающих узлы хранения данных, содержащие файлы, подлежащие хранению; блока управления, отслеживающего доступность блоков обработки данных и соответствующих узлов хранения данных, их местоположение, объемы допустимой памяти узлов хранения данных; блока восстановления данных, взаимодействие которых осуществляется посредством локальной или беспроводной сети.
Дополнительно введенные блоки обработки данных являются однотипными и включают в себя: узлы хранения данных, устройство ввода данных, устройство приема данных, устройство криптографического преобразования информации, устройство многозначного кодирования сформированных блоков криптограмм, устройство передачи данных, причем выход устройства ввода данных подключен: к входу устройства криптографического преобразования информации, выход которого подключен: к входу устройства передачи данных, к входу узла хранения данных, к первому входу устройства многозначного кодирования, ко второму входу которого подключен выход устройства приема данных, при этом выход устройства многозначного кодирования подключен к узлу хранения данных.
Блок восстановления данных включает: устройство приема данных; устройство многозначного декодирования данных; устройство передачи восстановленных данных, причем выход устройства приема данных подключен к входу устройства многозначного декодирования данных, выход которого подключен к входу устройства передачи данных.
Благодаря введению в известный объект совокупности существенных отличительных признаков, способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации позволяет:
обнаруживать преднамеренные (имитирующие) воздействия злоумышленника;
обеспечить целостность в рамках всей системы за счет восстановления информации, подвергнутой преднамеренным (имитирущим) воздействиям злоумышленника:
обеспечить целостность в рамках всей системы за счет восстановления утерянной информации при физической утрате некоторой заранее установленной предельной численности узлов хранения данных;
осуществлять реконфигурацию системы, равномерно перераспределяя хранимую информацию с соответствующими избыточными данными по узлам хранения данных при переполнении предельно допустимого объема памяти узла хранения данных или его физической утрате.
Указанные отличительные признаки заявленного изобретения по сравнению с прототипом позволяют сделать вывод о соответствии заявленного технического решения критерию «новизна».
Описание чертежей
На чертежах представлено:
на фиг. 1 изображена схема, поясняющая сущность работы способа-прототипа:
на фиг. 2 изображена схема системы распределенного хранения информации с централизованным управлением;
на фиг. 3 изображена схема структурных компонент блока обработки данных:
на фиг. 4 изображена схема структурных компонент блока восстановления данных;
на фиг. 5 изображена схема системы распределенного хранения информации в момент времени t в условиях преднамеренных (имитирующих) воздействий злоумышленника:
на фиг. 6 изображена структурная схема, поясняющая принцип формирования совокупности информационных блоков криптограмм в Si блоке обработки данных и его соответствующем узле хранения данных;
на фиг. 7 изображена схема, поясняющая процедуру восстановления потерянной или искаженной информации.
Реализация заявленного(ой) способа, системы
Для большей ясности описание изобретения, позволяющее специалисту произвести осуществление предложенного изобретения и показывающее влияние признаков, приведенных в формуле изобретения, на указанный выше технический результат, будем производить следующим образом: сначала раскроем структуру системы, а затем опишем реализацию способа в рамках предложенной системы.
Система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации представляет собой компьютерную систему, содержащую CPU (центральный процессор), память, жесткий диск или другое устройство хранения, на котором сохранены исполняемые инструкции программного обеспечения, исполняемые процессором, и необходимый ключевой материал, сетевой интерфейс, периферийные интерфейсы, состоящую из следующих функциональных компонент (фиг. 2): k блоков 11 обработки данных, включающих узлы 10 хранения данных, содержащие файлы, подлежащие хранению; блока 13 управления, отслеживающего доступность блоков 11 обработки данных и соответствующих узлов 10 хранения данных, их местоположение, объемы допустимой памяти узлов 10 хранения данных; блока 14 восстановления данных, взаимодействие которых осуществляется посредством локальной или беспроводной сети 12.
Блоки обработки данных включают в себя (фиг. 3): узел 10 хранения данных, устройство 111 ввода данных, устройство 114 приема данных, устройство 112 криптографического преобразования информации, устройство 115 многозначного кодирования сформированных блоков криптограмм, устройство 113 передачи данных.
Блок управления представляет собой программно-аппаратный или программный комплекс на базе средств вычислительной техники со специальным программным обеспечением, подключенным к сети (исполняемые инструкции программного обеспечения, позволяющего отслеживать доступность блоков обработки данных и соответствующих узлов хранения данных, их местоположение, объемы допустимой памяти в рамках данного изобретения не рассматриваются).
Блок восстановления данных включает в себя (фиг. 4): устройство 141 приема данных, устройство 142 многозначного декодирования данных, устройство 143 передачи восстановленных данных.
В момент времени t в условиях деструктивных (имитирующих) воздействий злоумышленника структура сети РСХИ может быть представлена в виде графа G(S, U), где ребра (Si, Sj) ∈ U (являются смежными), когда Si и Sj (i ≠ j; i, j = 1, 2, …, k) блоки 11 обработки данных с соответствующими узлами 10 хранения данных функционируют в пределах сети 12 (обеспечивается дальность передачи) (фиг. 5). Физическая утрата (потеря) любого блока 11 обработки данных с соответствующим узлом 10 хранения данных (деградация РСХИ), неспособность к соединению с сетью 12, обусловленная преднамеренными (имитирующими) действиями злоумышленника, приведет к частичной потере или полной утрате информации. При этом распределенное по узлам 10 хранения данных множество информационных данных с вычисленными избыточными данными позволяет блоку 14 восстановления данных выполнить полное восстановление утраченных файлов данных даже при отказе одного или более блоков 11 обработки данных с узлами хранения 10 данных. Недоступный блок обработки 11 данных с соответствующим узлом 10 хранения данных может быть заменен другим блоком 11 обработки данных с узлом 10 хранения данных, введенным блоком 13 управления. При этом доступные блоки 11 обработки данных с соответствующими узлами 10 хранения данных совместно с введенным новым блоком 11 обработки данных с узлом 10 хранения данных выполняют процедуру формирования множества информационных и избыточных данных и повторного распределения сформированной информации, выполняется реконфигурация системы. При этом совокупность распределенных узлов 10 хранения данных рассматривается как единая система запоминающих устройств, предусматривающая введение избыточности в сохраняемую информацию.
Кроме того, настоящее изобретение предлагает способ распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации.
В одном варианте исполнения способ (система) распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации может быть реализован(а) с использованием модулярных полиномиальных кодов.
Математический аппарат модулярных полиномиальных кодов основывается на фундаментальных положениях Китайской теоремы об остатках для многочленов [Mandelbaum D.M. On Efficient Burst Correcting Residue Polynomial Codes // Information and control. 1970. 16. p. 319-330]. Пусть m1(z),m2(z),…,mk(z) ∈ F[z] неприводимые полиномы, упорядоченные по возрастанию степеней, т.е. deg m1(z) ≤ deg m2(z) ≤ … ≤ deg mk(z), где deg mi(z) - степень полинома. Причем gcd(mi(z),mj(z)) = 1, i ≠ j; i, j = 1, 2, …, k. Положим
Figure 00000001
Тогда отображение ϕ устанавливает взаимно-однозначное соответствие между полиномами a(z), не превосходящими по степени P(z) (deg a(z)<deg P(z)), и наборами остатков по приведенной выше системе оснований полиномов (модулей):
Figure 00000002
где ϕi(a(z)) := a(z) mod mi(z) (i=1, 2, …, k). В соответствии с Китайской теоремой об остатках для многочленов существует обратное преобразование ϕ-1, позволяющее переводить набор остатков по системе оснований полиномов к позиционному представлению [Mandelbaum D.M. On Efficient Burst Correcting Residue Polynomial Codes // Information and control. 1970. 16. p. 319-330]:
Figure 00000003
где Bi(z) = ki(z)Pi(z) - полиномиальные ортогональные базисы. ki(z) = P-l(z) mod mi(z),
Figure 00000004
r(z) - ранг a(z) (i = 1, 2, …, k). Введем вдобавок к имеющимся k еще r избыточных оснований полиномов с соблюдением условия упорядоченности:
Figure 00000005
тогда получим расширенный модулярный полиномиальный код (МПК) - множество вида:
Figure 00000006
где n = k + r, ci(z) ≡ a(z) mod mi(z) (i = 1, 2, …, k), a(z) ∈ F[z]/(P(z)). Элементы кода ci(z) назовем символами, каждый из которых - суть полиномов из фактор-кольца многочленов по модулю
Figure 00000007
. Назовем
Figure 00000008
- рабочим диапазоном системы,
Figure 00000009
- полным диапазоном системы. При этом если а(z) ∈ F[z]/(P(z)), то считается, что данная комбинация содержит ошибку. Следовательно, местоположение полинома a(z) позволяет определить, является ли кодовая комбинация a(z) = (c1(z), …, ck(z), ck+1(z), …, cn(z)) разрешенной, или она содержит ошибочные символы. Введем метрику. Весом кодового слова расширенного МПК С является количество ненулевых символов (вычетов) ci(z), 1 ≤ i ≤ n, обозначается как ω (С). Кодовое расстояние между С и D определяется как вес их разности d(C, D) = ω(C - D). Минимальное кодовое расстояние - наименьшее расстояние между двумя любыми кодовыми векторами по Хэммингу с учетом данного определения веса:
Figure 00000010
где ζ - кодовое пространство. Минимальное кодовое расстояние dmin связано с корректирующими способностями расширенного МПК. Так как два кодовых слова отличаются по крайней мере в dmin вычетах, то невозможно изменить одно кодовое слово на другое путем замены dmin - 1 или меньшего количества вычетов. Таким образом, расширенный МПК может гарантирование обнаружить любые
Figure 00000011
ошибочных вычетов. Если b наибольшее целое число, меньшее или равное
Figure 00000012
то для b или меньшего числа ошибочных вычетов результирующее кодовое слово остается ближе к исходному, что позволяет расширенному МПК гарантированно исправлять b ошибочных вычетов.
Пусть Sj блок 11 обработки данных формирует файл данных W, представленный в полиномиальной форме:
Figure 00000013
где ωj ∈ {0,1} (j = s - 1, s - 2, …, 0).
С целью обеспечения необходимого уровня конфиденциальности информации сформированный набор данных W(z) блоком 11 обработки данных подлежит процедуре блочного зашифрования, осуществляющей нелинейные биективные преобразования (например, ключевое хэширование). При этом W(z) разбивается на блоки фиксированной длины W(z) = W1(z) || W2(z) || … || Wk(z), где || - операция конкатенации. Причем длина блока данных определяется используемым алгоритмом шифрования, например, ГОСТ 34.12-2015 с блоками 64, 128 бит соответственно. Далее блок 13 управления на основании связности сети 12 в момент времени t осуществляет распределение блоков криптограмм, выработанных Sj блоком 11 обработки данных (передающий), между другими (доступными) блоками 11 обработки данных, т.е. Si блок 11 обработки данных (принимающий) принимает и сохраняет совокупность блоков криптограмм Ωi(z) (i = 1, 2, …, k) от других блоков 11 обработки данных в узле 10 хранения данных. Полученную совокупность информационных блоков криптограмм Ωi(z) (i = 1, 2, …, k) Si блока 11 обработки данных представим в виде наименьших вычетов по основаниям полиномов mi(z), где i = 1, 2, …, k. Причем deg Ωi(z) < deg mi(z) (фиг. 6).
Далее в Si блоке 11 обработки данных в соответствии с выражением (3) по дополнительно введенным r избыточным основаниям полиномов mk+1(z), mk+2(z), …, mn(z), удовлетворяющим условию (2), таким, что gcd(mi(z),mj(z)) = 1 для i ≠ j; i, j = 1, 2, …, n, вырабатываются избыточные вычеты, которые обозначим как ωi(z) (i = k + 1, k + 2, …, n). Полученная совокупность информационных блоков криптограмм и избыточных вычетов образует расширенный МПК: {Ω1(z),…,Ωk(z),ωk+1(z),…,ωn(z)}МПК. Структурная схема, поясняющая принцип формирования совокупности информационных блоков криптограмм в Si блоке 11 обработки данных и его соответствующем узле 10 хранения данных, представлена на фигуре 6.
После вычисления Si блоком 11 обработки данных избыточных элементов МПК принятая совокупность информационных блоков криптограмм от других блоков 11 обработки данных удаляется из узла 10 хранения данных для снижения общего объема памяти. Далее полученные избыточные вычеты ωk+1(z), ωk+2(z), …, ωn(z) поступают в узел 10 хранения данных.
Централизованное управление, реализуемое блоком 13 управления, который отслеживает доступность блоков 11 обработки данных с соответствующими узлами 10 хранения данных, их местоположение, предельные объемы допустимой памяти, позволяет рассматривать совокупность узлов 10 хранения данных как единый узел хранения данных, а его содержимое представить в виде информационной матрицы:
Figure 00000014
С учетом вычисленных избыточных блоков криптограмм Si блоком 11 обработки данных информационная матрица А примет «расширенный» вид (таблица 1).
Тогда целостность информации РСХИ определяется системой функций от переменных ci,j(z) (блоков криптограмм, данных) расширенной матрицы А:
Figure 00000015
Для нахождения значения полиномов a i(z) через значения координат функций ƒi воспользуемся выражением (1). Элементы кодового слова
Figure 00000016
Figure 00000017
(i = t, t + 1, t + h; j = 1, 2, …, h) из совокупности узлов 10 хранения данных и, соответственно, блоки данных
Figure 00000018
могут содержать искажения. Критерием отсутствия обнаруживаемых ошибок является выполнение условия:
Figure 00000019
. Критерием существования обнаруживаемой ошибки - выполнение условия:
Figure 00000020
, где символ «*» указывает на наличие возможных искажений в кодовом слове. В случае физической утраты некоторой предельной численности блоков 11 обработки данных и, соответственно, узлов 10 хранения данных из их совокупности, расширенная матрицы А примет вид (таблица 2).
С учетом заранее введенной избыточности в сохраняемую информацию физическая утрата некоторых блоков 11 обработки данных с соответствующими узлами 10 хранения данных или непригодность хранимой на них информации, обусловленная преднамеренными (имитирующими) действиями злоумышленника, не приводит к полной или частичной потере информации. Блок 14 восстановления данных получает информацию от блока 13 управления в отношении того, какие блоки 11 обработки данных с соответствующими узлами 10 хранения данных в настоящий момент доступны и, соответственно, имеют множество информационных и избыточных данных файла. Затем блок 14 восстановления данных может непосредственно получить множество информационных и избыточных данных от указанных блоков 11 обработки данных с узлами 10 хранения данных (фиг. 7). Блок 14 восстановления данных выполняет процедуру обнаружения искаженных (имитируемых) злоумышленником данных, где их количество обусловлено выражением (4). Восстановление потерянной или искаженной информации осуществляется с учетом (5)
Figure 00000021
путем вычисления наименьших вычетов или любым другим известным методом декодирования избыточных МПК:
Figure 00000022
где символы «**» указывают на вероятностный характер восстановления.
Восстановленные блоком 14 данные, совместно с данными доступных блоков 11 обработки данных и соответствующими узлами 10 хранения данных передаются на вновь введенный блоком 13 управления блок 11 обработки данных с узлом 10 хранения данных для формирования блоков избыточных данных.
Заявленное изобретение может быть осуществлено с помощью средств и методов, описанных в доступных источниках информации. Это позволяет сделать вывод о соответствии заявленного изобретения признакам «промышленной применимости».
Рассмотрим пример. Выберем систему оснований полиномов для блоков 11 обработки данных с соответствующими узлами 10 хранения данных:
m1(z) = 1 + z + z7
m2(z) = 1 + z + z2 + z7 + z9;
m3(z) = 1 + z9 + z10 + z12 + z13;
m4(z) = 1 + z + z2 + z4 + z6 + z7 + z12 + z14 + z16.
Введем контрольное (избыточное) основание-полином:
m5(z) = 1 + z12 + z17.
Представим содержание узлов 10 хранения данных в следующем виде (в рассматриваемом варианте примера избыточные вычеты представлены только S1 блоком 11 обработки данных и соответствующим узлом 10 хранения данных):
Figure 00000023
Пусть S3 блок 11 обработки данных с соответствующим узлом 10 хранения данных считается утерянным. Тогда исходные данные для блока 14 восстановления данных примут следующий вид:
Figure 00000024
Для восстановления исходных данных, соответствующих файлу блока обработки S3 данных, блок 14 восстановления данных вычисляет
Figure 00000025
для момента времени t:
Figure 00000026
Полиномиальные ортогональные базисы системы в момент времени t :
Figure 00000027
Figure 00000028
Figure 00000029
Figure 00000030
Исходный полином
Figure 00000031
mod m3(z):
Figure 00000032
Далее вычисляет
Figure 00000033
для момента времени t + 1:
Figure 00000034
Полиномиальные ортогональные базисы системы в момент времени t + 1:
Figure 00000035
Figure 00000036
Figure 00000037
Figure 00000038
Исходный полином
Figure 00000039
mod m3(z):
Figure 00000040
Далее вычисляет
Figure 00000041
для момента времени t + 2:
Figure 00000042
Полиномиальные ортогональные базисы системы в момент времени t + 2:
Figure 00000043
Figure 00000044
Figure 00000045
Figure 00000046
Исходный полином
Figure 00000047
mod m3(z):
Figure 00000048
Далее вычисляет
Figure 00000049
для момента времени t + 3:
Figure 00000050
Полиномиальные ортогональные базисы системы в момент времени t + 3:
Figure 00000051
Figure 00000052
Figure 00000053
Figure 00000054
Исходный полином
Figure 00000055
mod m3(z):
Figure 00000056
Пусть узлы 10 хранения данных содержат имитируемые злоумышленником данные. Тогда исходные данные для блока 14 восстановления данных представим в следующем виде (в рассматриваемом варианте примера избыточные вычеты представлены только S1 блоком 11 обработки данных и соответствующим узлом 10 хранения данных):
Figure 00000057
Блок 14 восстановления данных выполняет процедуру проверки МПК.
Для момента времени t:
Figure 00000058
Поскольку a t(z) ∈ F[z]/(P(z)), то полином a t(z) является правильным и не содержит искажений.
Для момента времени t + 1:
Figure 00000059
Поскольку a t+1(z) ∉ F[z]/(P(z)), то полином a t+1(z) является неправильным и содержит искажения.
Для момента времени t + 2:
Figure 00000060
Поскольку a t+2(z) ∉ F[z]/(P(z)), то полином a t+2(z) является неправильным и содержит искажения.
Для момента времени t + 3:
Figure 00000061
Поскольку a t+3(z) ∈ F[z]/(P(z)), то полином a t+3(z) является правильным и не содержит искажения.
Приведенный пример показал, что заявляемый(ая) способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации функционирует корректно, технически реализуем (а) и позволяет решить поставленную задачу.

Claims (5)

1. Способ распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации, заключающийся в том, что осуществляется замена отказавшего узла, хранящего данные, относящиеся к части файла данных, при этом каждым из множества доступных узлов хранения данных принимается указание от блока управления на замену отказавшего узла новым узлом хранения данных, каждый из доступных узлов хранения данных содержит множество контрольных сумм, сформированных из файла данных, которые могут быть сформированы на основании частей файла данных, используя методики кодирования со стиранием, при этом заменяющая контрольная сумма формируется на каждом из множества доступных узлов хранения данных посредством создания линейной комбинации контрольных сумм на каждом узле хранения данных, используя случайные коэффициенты, в дальнейшем эти заменяющие контрольные суммы используются для восстановления утерянного файла данных, отличающийся тем, что каждый из доступных блоков обработки данных с соответствующими узлами хранения данных содержит множество данных, сформированных из файлов, соответствующих блокам обработки данных с узлами хранения данных, при этом множество данных предварительно подвергается процедуре блочного шифрования с нелинейными биективными преобразованиями, а сформированное множество блоков криптограмм блоков обработки данных с узлами хранения данных распределяется между доступными узлами хранения данных, в которых, используя методы многозначного помехоустойчивого кодирования, формируется соответствующее множество избыточных данных, далее поступившие от других блоков обработки данных с узлами хранения данных блоки криптограмм удаляются с целью сокращения общей избыточности, при этом сформированное множество избыточных данных с блоками криптограмм блока обработки данных с узлом хранения данных, осуществлявшего их формирование, используется для восстановления утерянных файлов данных, при этом блок восстановления данных получает информацию от блока управления в отношении того, какие блоки обработки данных с соответствующими узлами хранения данных в настоящий момент доступны и, соответственно, имеют множество информационных и избыточных данных файла, затем блок восстановления данных получает множество информационных и избыточных данных от указанных блоков обработки данных с узлами хранения данных, блок восстановления данных выполняет полное восстановление утраченных файлов данных, данные, восстановленные блоком восстановления данных, совместно с данными доступных блоков обработки данных с соответствующими узлами хранения данных передаются на вновь введенный блоком управления блок обработки данных с узлом хранения данных для формирования блоков избыточных данных.
2. Способ по п. 1, в котором общее количество избыточных блоков криптограмм, сгенерированных для восстановления утерянных файлов или формирования данных в новом узле хранения данных, равно параметру, который основывается на корректирующих свойствах используемого многозначного помехоустойчивого кода и суммарном количестве узлов хранения данных, требуемом для того, чтобы файлы данных оставались восстановимыми.
3. Система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации, обеспечивающая выполнение способа по п. 1, при этом система содержит k блоков 11 обработки данных, включающих узлы 10 хранения данных, содержащие файлы, подлежащие хранению, блок 13 управления, отслеживающий доступность блоков 11 обработки данных и соответствующих узлов 10 хранения данных, их местоположение, объемы допустимой памяти узлов 10 хранения данных, блок 14 восстановления данных, взаимодействие которых осуществляется посредством локальной или беспроводной сети 12.
4. Система по п. 3, отличающаяся тем, что блоки обработки данных включают в себя: узлы хранения данных, устройство ввода данных, устройство приема данных, устройство криптографического преобразования информации, устройство многозначного кодирования сформированных блоков криптограмм, устройство передачи данных, причем выход устройства ввода данных подключен к входу устройства криптографического преобразования информации, выход которого подключен: к входу устройства передачи данных, к входу узла хранения данных, к первому входу устройства многозначного кодирования, ко второму входу которого подключен выход устройства приема данных, при этом выход устройства многозначного кодирования подключен к узлу хранения данных.
5. Система по п. 3, отличающаяся тем, что блок восстановления данных включает в себя: устройство приема данных, устройство многозначного декодирования данных, устройство передачи восстановленных данных, причем выход устройства приема данных подключен к входу устройства многозначного декодирования данных, выход которого подключен к входу устройства передачи данных.
RU2017115539A 2017-05-02 2017-05-02 Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации RU2680350C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017115539A RU2680350C2 (ru) 2017-05-02 2017-05-02 Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017115539A RU2680350C2 (ru) 2017-05-02 2017-05-02 Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации

Publications (3)

Publication Number Publication Date
RU2017115539A3 RU2017115539A3 (ru) 2018-11-07
RU2017115539A RU2017115539A (ru) 2018-11-07
RU2680350C2 true RU2680350C2 (ru) 2019-02-19

Family

ID=64102709

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017115539A RU2680350C2 (ru) 2017-05-02 2017-05-02 Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации

Country Status (1)

Country Link
RU (1) RU2680350C2 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758481C1 (ru) * 2021-04-01 2021-10-28 Общество с ограниченной ответственностью «УБИК» Компьютерно-реализуемый способ суммирования данных об объектах, с использованием методов совместных конфиденциальных вычислений и методов разделения секрета
RU2758943C1 (ru) * 2020-12-07 2021-11-03 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ распределенного хранения данных с подтвержденной целостностью
RU2771146C1 (ru) * 2021-07-07 2022-04-27 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения треугольных кодов
RU2771209C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения квадратных кодов
RU2771238C1 (ru) * 2021-01-11 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ восстановления данных с подтвержденной целостностью
RU2771236C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных
RU2771208C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля и восстановления целостности многомерных массивов данных
RU2771273C1 (ru) * 2021-07-07 2022-04-29 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения прямоугольных кодов
RU2777270C1 (ru) * 2021-08-03 2022-08-01 Коннект Медиа Лтд Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111291046B (zh) * 2020-01-16 2023-07-14 湖南城市学院 一种计算机大数据存储控制系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2411685C2 (ru) * 2005-11-29 2011-02-10 Конинклейке Филипс Электроникс Н.В. Способ управления распределенной системой хранения
RU2501072C2 (ru) * 2009-02-03 2013-12-10 Битторрент, Инк. Распределенное хранение восстанавливаемых данных
WO2016151584A2 (en) * 2015-03-26 2016-09-29 Storone Ltd. Distributed large scale storage system
EP3151515A1 (en) * 2014-08-15 2017-04-05 Huawei Technologies Co., Ltd. Data storage method, sdn controller and distributed network storage system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2411685C2 (ru) * 2005-11-29 2011-02-10 Конинклейке Филипс Электроникс Н.В. Способ управления распределенной системой хранения
RU2501072C2 (ru) * 2009-02-03 2013-12-10 Битторрент, Инк. Распределенное хранение восстанавливаемых данных
EP3151515A1 (en) * 2014-08-15 2017-04-05 Huawei Technologies Co., Ltd. Data storage method, sdn controller and distributed network storage system
WO2016151584A2 (en) * 2015-03-26 2016-09-29 Storone Ltd. Distributed large scale storage system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758943C1 (ru) * 2020-12-07 2021-11-03 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ распределенного хранения данных с подтвержденной целостностью
RU2771238C1 (ru) * 2021-01-11 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ восстановления данных с подтвержденной целостностью
RU2782153C2 (ru) * 2021-02-09 2022-10-21 Сергей Сергеевич Тарасенко Способ и система организации защищенного обмена информацией с использованием технологии блокчейн и распределённых систем хранения данных
RU2758481C1 (ru) * 2021-04-01 2021-10-28 Общество с ограниченной ответственностью «УБИК» Компьютерно-реализуемый способ суммирования данных об объектах, с использованием методов совместных конфиденциальных вычислений и методов разделения секрета
RU2771209C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения квадратных кодов
RU2771236C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных
RU2771208C1 (ru) * 2021-07-07 2022-04-28 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля и восстановления целостности многомерных массивов данных
RU2771273C1 (ru) * 2021-07-07 2022-04-29 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения прямоугольных кодов
RU2771146C1 (ru) * 2021-07-07 2022-04-27 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения треугольных кодов
RU2777270C1 (ru) * 2021-08-03 2022-08-01 Коннект Медиа Лтд Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации
RU2823453C2 (ru) * 2021-10-21 2024-07-23 Общество С Ограниченной Ответственностью «Яндекс» Способ совместной работы с использованием вычислительных блокнотов на основе ячеек
RU2785862C1 (ru) * 2021-11-17 2022-12-14 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения кода рида-соломона
RU2785469C1 (ru) * 2021-11-24 2022-12-08 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ обеспечения целостности и доступности информации в распределенных системах хранения данных
RU2785800C1 (ru) * 2021-12-17 2022-12-13 федеральное государственное казенное военное образовательное учреждение высшего образования "Краснодарское высшее военное орденов Жукова и Октябрьской Революции Краснознаменное училище имени генерала армии С.М. Штеменко" Министерства обороны Российской Федерации Способ контроля целостности многомерных массивов данных на основе правил построения кубических кодов

Also Published As

Publication number Publication date
RU2017115539A3 (ru) 2018-11-07
RU2017115539A (ru) 2018-11-07

Similar Documents

Publication Publication Date Title
RU2680350C2 (ru) Способ и система распределенного хранения восстанавливаемых данных с обеспечением целостности и конфиденциальности информации
US11233643B1 (en) Distributed data storage system data decoding and decryption
US8132073B1 (en) Distributed storage system with enhanced security
US10360392B2 (en) Generating shares of secret data
US20220229727A1 (en) Encoding and storage node repairing method for minimum storage regenerating codes for distributed storage systems
US8984384B1 (en) Distributed storage system with efficient handling of file updates
Silberstein et al. Error resilience in distributed storage via rank-metric codes
RU2696425C1 (ru) Способ двумерного контроля и обеспечения целостности данных
US10985914B2 (en) Key generation device and key generation method
US8381048B2 (en) Transmission system, method and program
US20170213047A1 (en) Secure raid schemes for distributed storage
KR20150112893A (ko) 대수적 조작으로부터 데이터를 보호하는 방법
US9116833B1 (en) Efficiency for erasure encoding
Han et al. Exact regenerating codes for byzantine fault tolerance in distributed storage
JP5854443B2 (ja) 誤り訂正符号方式を用いて計算環境における資産集合についての識別子を生成する変化許容力を有する方法
Silberstein et al. Error-correcting regenerating and locally repairable codes via rank-metric codes
Han et al. Update-efficient error-correcting product-matrix codes
CN103703446B (zh) 网络存储中抗拜占庭失效的数据重构、失效数据恢复方法及装置
Li et al. Beyond the MDS bound in distributed cloud storage
Papailiopoulos et al. Distributed storage codes through Hadamard designs
TW202001920A (zh) 在資料儲存系統中用於改善資料回復之方法及裝置
Han et al. Efficient exact regenerating codes for byzantine fault tolerance in distributed networked storage
RU2707940C1 (ru) Способ многоуровневого контроля и обеспечения целостности данных
US11128475B2 (en) Electronic device capable of data communication through electronic signatures based on syndrome and operating method thereof
Li et al. Secure regenerating code