RU2679970C1 - Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики - Google Patents

Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики Download PDF

Info

Publication number
RU2679970C1
RU2679970C1 RU2018121088A RU2018121088A RU2679970C1 RU 2679970 C1 RU2679970 C1 RU 2679970C1 RU 2018121088 A RU2018121088 A RU 2018121088A RU 2018121088 A RU2018121088 A RU 2018121088A RU 2679970 C1 RU2679970 C1 RU 2679970C1
Authority
RU
Russia
Prior art keywords
field
input
effect transistor
effect transistors
current output
Prior art date
Application number
RU2018121088A
Other languages
English (en)
Inventor
Анна Витальевна Бугакова
Николай Николаевич Прокопенко
Олег Владимирович Дворников
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ)
Priority to RU2018121088A priority Critical patent/RU2679970C1/ru
Application granted granted Critical
Publication of RU2679970C1 publication Critical patent/RU2679970C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/4521Complementary long tailed pairs having parallel inputs and being supplied in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов. Технический результат заключается в повышении стабильности статического режима при отрицательных температурах и изменении напряжений питания, также обеспечивается возможность изменения численных значений напряжения ограничения проходной характеристики при фиксированном токопотреблении. Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики содержит первый (1) вход входного полевого транзистора (2), второй (3) вход входного полевого транзистора (4), первый (5) токовый выход, первую (6) шину источника питания, второй (7) токовый выход, первый (8) вспомогательный полевой транзистор, третий (9) токовый выход, вторую (10) шину источника питания, второй (11) вспомогательный полевой транзистор, четвертый (12) токовый выход, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости. Дифференциальный усилитель также включает первый (13), второй (14), третий (15), четвертый (16) и пятый (17) дополнительные резисторы. 8 ил.

Description

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов, в структуре аналоговых микросхем различного функционального назначения, например, операционных усилителях (ОУ), компараторах, мостовых усилителях мощности и т.п., в т.ч. работающих при низких температурах и воздействии радиации.
Известны схемы классических дифференциальных усилителей (ДУ) на комплементарных транзисторах [1-61], в т.ч. на комплементарных биполярных транзисторах [1-32], на комплементарных КМОП полевых транзисторах [33-61] и комплементарных полевых транзисторах с управляющим p-n переходом (JFet) [4], которые стали основой многих серийных аналоговых микросхем. В литературе по аналоговой микроэлектронике этот класс ДУ имеет специальное обозначение – dual-input-stage [62].
Для работы при низких температурах при жестких ограничениях на уровень шумов перспективно использование JFet полевых транзисторов [63-67]. ДУ данного класса активно применяются в структуре малошумящих аналоговых интерфейсов для обработки сигналов датчиков [68-70].
Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный усилитель, описанный в патенте US 5.291.149, fig.4, 1994г., который содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости (например, n-канал), а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости (р-канал).
Существенный недостаток известного ДУ фиг. 1 состоит, во-первых, в том, что его статический режим определяется двумя источниками опорного тока I1 (I2), которые, как правило, неидентичны, что становится источником дополнительных погрешностей усиления малых сигналов. Во-вторых, в известном ДУ при фиксированном токе потребления затруднено изменение напряжения ограничения Uгр проходной характеристики iвых=f(uвх), которое оказывает существенное влияние на максимальную скорость нарастания выходного напряжения (SR) операционного усилителя с входным ДУ фиг. 1 [71-72]
Figure 00000001
где f1 – частота единичного усиления скорректированного ОУ с входным ДУ фиг. 1, как правило, не зависящая от Uгр.
Это не позволяет управлять численными значениями SR в конкретных схемах ОУ при заданных ограничениях на токопотребление, запас устойчивости по фазе, коэффициент усиления по напряжению и т.п.
Основная задача предполагаемого изобретения состоит в создании условий, при которых в ДУ фиг. 1 обеспечивается:
- более высокая стабильность статического режима ДУ при отрицательных температурах (до -197°С) и изменении напряжений питания;
- возможность изменения напряжения ограничения проходной характеристики Uгр по усмотрению разработчика (в зависимости от заданных значений SR [71-72]) при фиксированном токопотреблении.
Поставленная задача решается тем, что в дифференциальном усилителе фиг. 1, содержащем первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости, предусмотрены новые элементы и связи – между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.
На чертеже фиг. 1 представлена схема ДУ-прототипа, а на чертеже фиг. 2 – схема заявляемого устройства в соответствии с формулой изобретения.
На чертеже фиг. 3 в среде LTspice показан статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивление третьего 15 дополнительного резистора (фиг. 2) значительно превышает сопротивление четвертого 16 и пятого 17 дополнительных резисторов.
На чертеже фиг. 4 приведены проходные характеристики ДУ фиг. 3 iвых=f(uвх), при температуре -197°С и разных сопротивлениях R3*=R4*=100/1к/10к/100кОм: Iout1,V3=Vin=-3÷3В (а), Iout2,V3=Vin=-3÷3В (б), Iout3,V3=Vin=-3÷3В (в), Iout4,V3=Vin=-3÷3В (г).
На чертеже фиг. 5 представлена зависимость Uгр для первого 5 токового выхода out.1 ДУ фиг. 3 от сопротивлений резисторов R3*=R4* при различных температурах.
На чертеже фиг. 6 показаны проходные характеристики ДУ фиг. 3 для первого 5 токового выхода out.1 (ДУ фиг. 2) при разных сопротивлениях дополнительных резисторов R3*=R4*=100/1к/10к/100кОм и температуре -197°С.
На чертеже фиг. 7 в среде LTspice приведен статический режим ДУ фиг. 2 при температуре -197°С для случая, когда сопротивления первого 13 и второго 14 дополнительных резисторов (фиг.2) значительно превышают сопротивления четвертого 16 и пятого 17 дополнительных резисторов.
На чертеже фиг. 8 представлены проходные характеристики ДУ фиг. 3 при R3*=R4*=100кОм и разных сопротивлениях дополнительного резистора R5*=Rvar=100/1к/10к/100кОм: Iout1,V3=Vin=-5÷5В при -197°С (а), Iout3,V3=Vin=-5÷5В при -197°С (б).
Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики фиг. 2 содержит первый 1 вход, соединенный с затвором первого 2 входного полевого транзистора, второй 3 вход, соединенный с затвором второго 4 входного полевого транзистора, первый 5 токовый выход, соединенный со стоком первого 2 входного полевого транзистора и согласованный с первой 6 шиной источника питания, второй 7 токовый выход, соединенный со стоком второго 4 входного полевого транзистора и согласованный с первой 6 шиной источника питания, первый 8 вспомогательный полевой транзистор, сток которого соединен с третьим 9 токовым выходом и согласован со второй 10 шиной источника питания, второй 11 вспомогательный полевой транзистор, сток которого соединен с четвертым 12 токовым выходом и согласован со второй 10 шиной источника питания, причем каналы первого 2 и второго 4 входных полевых транзисторов имеют первый тип проводимости, а каналы первого 8 и второго 11 вспомогательных полевых транзисторов имеют другой тип проводимости. Между истоками первого 2 и второго 4 входных полевых транзисторов включены два последовательно соединенных первый 13 и второй 14 дополнительные резисторы, между истоками первого 8 и второго 11 вспомогательных полевых транзисторов включен третий 15 дополнительный резистор, между истоками первого 2 входного полевого и первого 8 вспомогательного полевого транзисторов включен четвертый 16 дополнительный резистор, между истоками второго 4 входного полевого и второго 11 вспомогательного полевого транзисторов включен пятый 17 дополнительный резистор, причем объединенные затворы первого 8 и второго 11 вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого 13 и второго 14 дополнительных резисторов.
На чертеже фиг. 2 свойства нагрузок для первого 5, второго 7, третьего 9 и четвертого 12 токовых выходов моделируются соответственно двухполюсниками 18, 19, 20 и 21. В практических схемах эти двухполюсники – входные сопротивления токовых зеркал, на которых реализуется схема того или иного операционного усилителя или компаратора.
Рассмотрим работу ДУ фиг. 2.
В статическом режиме, например, при подключении первого 1 и второго 3 входов ДУ фиг. 2 к общей шине источников питания (6 и 10), первый 13, второй 14 и третий 15 дополнительные резисторы не влияют на статические токи истока всех полевых транзисторов схемы из-за ее симметрии. При этом
Figure 00000002
где Iиi – ток стока i-го полевого транзистора;
Uзи.8, Uзи.11 – напряжение затвор-исток соответствующих первого 8 и второго 11 вспомогательных полевых транзисторов в рабочей точке при токе истока, равном I0;
UR16=UR17 – падение напряжения на четвертом 16 и пятом 17 дополнительных резисторах от тока I0.
Таким образом, за счет выбора четвертого 16 и пятого 17 дополнительных резисторов обеспечивается идентичный заданный статический режим по току всех полевых транзисторов 2, 4, 8, 11 ДУ фиг. 2:
Figure 00000003
Следует заметить, что статический режим ДУ фиг. 2 практически не зависит от величины входного синфазного сигнала и изменений напряжений питания на первой 6 и второй 10 шинах. Это позволяет исключить из схемы ДУ фиг. 2 традиционные источники опорного тока, отрицательно влияющие на данные параметры.
Если на вход 1 подается положительное входное напряжение uвх относительно входа 3, то это вызывает увеличение тока через первый 13 и второй 14 дополнительные резисторы и уменьшение тока истока второго 4 входного полевого транзистора. В пределе ток истока первого 2 входного полевого транзистора может принимать удвоенное значение относительно своего статического уровня при uвх=0. Численные значения сопротивлений первого 13 и второго 14 дополнительных резисторов определяют напряжение ограничения проходной характеристики ДК фиг. 2: чем больше сопротивления дополнительных резисторов R13=R14, тем при большем входном напряжении uвх=Uгр произойдет ограничение выходного тока ДУ для первого 5 токового выхода. Об этом свидетельствуют графики фиг. 4, фиг. 5, фиг. 6, полученные для схемы фиг. 3.
Аналогичным образом на напряжение ограничения Uгр ДУ фиг. 7 влияет третий 15 дополнительный резистор (фиг. 8). Чем меньше его сопротивление, тем при меньших значениях входного напряжения uвх=Uгр произойдет ограничение выходного тока ДУ фиг. 2 для четвертого 12 токового выхода.
Таким образом, первый 13, второй 14 и третий 15 дополнительные резисторы определяют численные значения напряжения ограничения Uгр предлагаемого дифференциального усилителя для всех его токовых выходов 5, 7, 9, 12.
Графики, представленные на чертежах фиг. 4, фиг. 5, фиг. 6, фиг. 8, снятые при разных температурах и численных значениях сопротивлений первого 13, второго 14 и третьего 15 дополнительных резисторов подтверждают сделанные выше качественные выводы.
Результаты компьютерного моделирования в среде LTspice схем фиг. 3 и фиг. 7 показывают, что на основе предлагаемого ДУ фиг. 2 реализуется широкий спектр проходных характеристик с разными численными значениями напряжения ограничения Uгр для первого 5 и второго 7 токовых выходов, согласованных с первой 6 шиной источника питания, и третьего 9 и четвертого 12 токовых выходов, согласованных со второй 10 шиной источника питания. В итоге, это позволяет проектировать дифференциальные и мультидифференциальные операционные усилители с заданным (см. формулу (1)) быстродействием [71-72].
Таким образом, заявляемое устройство имеет существенные преимущества в сравнении с известными схемотехническими решениями ДУ класса dual-input-stage [1-61], что позволяет рекомендовать его для практического использования в ОУ и построения низкотемпературных и радиационно-стойких аналоговых микросхем по техпроцессу CJFet ОАО «Интеграл» (г. Минск), а также комплементарному биполярно-полевому технологическому процессу АО «НПП «Пульсар» (г. Москва).
Библиографический список
1. Патент US 5.814.953, 1995 г.
2. Патент US 5.225.791, 1993 г.
3. Патент US 6.844.781, 2005 г.
4. Патент US 5.291.149, 1994 г.
5. Патентная заявка US 2005/0024140, 2005 г.
6. Патентная заявка US 2006/0226908, 2006 г.
7. Патент US 4.636.743, 1985 г.
8. Патент SU 1220105, 1986 г.
9. Патент US 5.515.005, 1994 г.
10. Патент US 5.374.897, 1994 г.
11. Патент US 5.512.859, 1996 г.
12. Патент US 4.649.352, 1987 г.
13. Патент JP 8222972, 1996 г.
14. Патент US 6.268.769, 2001 г.
15. Патент RU 2193273, 2002 г.
16. Патент US 4.241.315, 1980 г.
17. Патент JP 2004129018, 2004 г.
18. Патент SU 530425, 1976 г.
19. Патент US 5.153.529, 1992 г.
20. Патент US 5.420.540, 1995 г.
21. Патент US 6.222.416, fig. 2, 2001 г.
22. Патент US 3.974.455, fig. 7, 1976 г.
23. Патент US 4.349.786, 1982 г.
24. Патент US 4.783.637, 1988 г.
25. Патент US 5.293.136, 1994 г.
26. Патент US 6.366.170, 2002 г.
27. Патент US 6.163.290, 2000 г.
28. Патент US 4.417.292, fig. 1, 1981 г.
29. Патент SU 1385255, 1988 г.
30. Патент US 2005/0285677, 2005 г.
31. Патент US 5.610.547, fig. 28, 1997 г.
32. Патент SU 459780, 1975 г.
33. Патентная заявка US 2003/0206060, 2003 г.
34. Патент US 6.794.940, 2004 г.
35. Патентная заявка US 2004/0174216, 2004 г.
36. Патентная заявка US 2006/0125522, 2006 г.
37. Патент US 6.433.637, 2002 г.
38. Патентная заявка US 2007/0159248, 2007 г.
39. Патент US 5.714.906, 1995 г.
40. Патент US 7.907.011, 2011 г.
41. Патент US 6.100.762, 2000 г.
42. Патент US 5.909.146, 1999 г.
43. Патент ЕР 1150423, 2001 г.
44. Патент JP 2004/222104, 2004 г.
45. Патент US 6.801.087, 2004 г.
46. Патент US 5.917.378, 1999 г.
47. Патентная заявка US 2008/0074405, 2008 г.
48. Патентная заявка US 2009/0206930, 2009 г.
49. Патент US 6.356.153, 2002 г.
50. Патент US 5.621.357, 1997 г.
51. Патент US 6.970.043, 2005 г.
52. Патент US 6.731.169, 2004 г.
53. Патент US 5.070.306, fig. 3, 1991 г.
54. Патент US 2010/001797, 2001 г.
55. Патент US 5.610.547, fig. 34, 1997 г.
56. Патент US 6.972.623, fig. 4, fig. 6, 2005 г.
57. Патент US 2008/0238546, fig. 2, 2008 г.
58. Патент US 2008/0252374, 2008 г.
59. Патент US 7.567.124, 2009 г.
60. Патент US 7.586.373, 2009 г.
61. Патент US 2006/0215787, 2006 г.
62. N. N. Prokopenko, N. V. Butyrlagin, A. V. Bugakova and A. A. Ignashin, "Method for speeding the micropower CMOS operational amplifiers with dual-input-stages," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Batumi, 2017, pp. 78-81.
63. The Radiation-Hardened BiJFet Differential Amplifiers with Negative Current Feedback on the Common-Mode Signal / N. N. Prokopenko, O. V. Dvornikov, N. V. Butyrlagin, A. V. Bugakova // 2016 13th International conference on actual problems of electronic instrument engineering (APEIE – 2016) – 39281. Proceedings; Novosibirsk, October 3-6, 2016. In 12 Vol. Vol. 1. Part 1. Pp. 104-108 DOI: 10.1109/APEIE.2016.7802224.
64. K. O. Petrosyants, M. R. Ismail-zade, L. M. Sambursky, O. V. Dvornikov, B. G. Lvov and I. A. Kharitonov, "Automation of parameter extraction procedure for Si JFET SPICE model in the −200…+110°C temperature range," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2018, pp. 1-5. DOI: 10.1109/MWENT.2018.8337212
65. Создание низкотемпературных аналоговых ИС для обработки импульсных сигналов датчиков. Часть 2 / О. Дворников, В. Чеховский, В. Дятлов, Н. Прокопенко // Современная электроника, 2015, № 5. С. 24-28
66. O. V. Dvornikov, N. N. Prokopenko, N. V. Butyrlagin and I. V. Pakhomov, "The differential and differential difference operational amplifiers of sensor systems based on bipolar-field technological process AGAMC," 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-6. DOI: 10.1109/SIBCON.2016.7491792
67. O. V. Dvornikov, N. N. Prokopenko, I. V. Pakhomov and A. V. Bugakova, "The analog array chip AC-1.3 for the tasks of tool engineering in conditions of cryogenic temperature, neutron flux and cumulative radiation dose effects," 2016 IEEE East-West Design & Test Symposium (EWDTS), Yerevan, 2016, pp. 1-4. DOI: 10.1109/EWDTS.2016.7807724
68. Дворников О.В., Чеховский В.А., Дятлов В.Л., Прокопенко Н.Н. "Малошумящий электронный модуль обработки сигналов лавинных фотодиодов" Приборы и методы измерений, no. 2 (7), 2013, pp. 42-46.
69. Дворников О. Чеховский В., Дятлов В., Прокопенко Н. Применение структурных кристаллов для создания интерфейсов датчиков //Современная электроника. – 2014. – №. 1. – С. 32-37.
70. O. V. Dvornikov, A. V. Bugakova, N. N. Prokopenko, V. L. Dziatlau and I. V. Pakhomov, "The microcircuits MH2XA010-02/03 for signal processing of optoelectronic sensors," 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, 2017, pp. 396-402. DOI: 10.1109/EDM.2017.7981781
71. Операционные усилители с непосредственной связью каскадов: монография / Анисимов В.И., Капитонов М.В., Прокопенко Н.Н., Соколов Ю.М. - Л.: «Энергия», 1979. - 148 с.
72. Прокопенко, Н.Н. Архитектура и схемотехника быстродействующих операционных усилителей: монография / Н.Н. Прокопенко, А.С. Будяков. – Шахты: Изд-во ЮРГУЭС, 2006. – 231 с.

Claims (1)

  1. Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики, содержащий первый (1) вход, соединенный с затвором первого (2) входного полевого транзистора, второй (3) вход, соединенный с затвором второго (4) входного полевого транзистора, первый (5) токовый выход, соединенный со стоком первого (2) входного полевого транзистора и согласованный с первой (6) шиной источника питания, второй (7) токовый выход, соединенный со стоком второго (4) входного полевого транзистора и согласованный с первой (6) шиной источника питания, первый (8) вспомогательный полевой транзистор, сток которого соединен с третьим (9) токовым выходом и согласован со второй (10) шиной источника питания, второй (11) вспомогательный полевой транзистор, сток которого соединен с четвертым (12) токовым выходом и согласован со второй (10) шиной источника питания, причем каналы первого (2) и второго (4) входных полевых транзисторов имеют первый тип проводимости, а каналы первого (8) и второго (11) вспомогательных полевых транзисторов имеют другой тип проводимости, отличающийся тем, что между истоками первого (2) и второго (4) входных полевых транзисторов включены два последовательно соединенных первый (13) и второй (14) дополнительные резисторы, между истоками первого (8) и второго (11) вспомогательных полевых транзисторов включен третий (15) дополнительный резистор, между истоками первого (2) входного полевого и первого (8) вспомогательного полевого транзисторов включен четвертый (16) дополнительный резистор, между истоками второго (4) входного полевого и второго (11) вспомогательного полевого транзисторов включен пятый (17) дополнительный резистор, причем объединенные затворы первого (8) и второго (11) вспомогательных полевых транзисторов соединены с общим узлом последовательно включенных первого (13) и второго (14) дополнительных резисторов.
RU2018121088A 2018-06-07 2018-06-07 Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики RU2679970C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018121088A RU2679970C1 (ru) 2018-06-07 2018-06-07 Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018121088A RU2679970C1 (ru) 2018-06-07 2018-06-07 Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Publications (1)

Publication Number Publication Date
RU2679970C1 true RU2679970C1 (ru) 2019-02-14

Family

ID=65442476

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018121088A RU2679970C1 (ru) 2018-06-07 2018-06-07 Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики

Country Status (1)

Country Link
RU (1) RU2679970C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786941C1 (ru) * 2022-09-01 2022-12-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дифференциальный каскад на комплементарных полевых транзисторах

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291149A (en) * 1992-03-30 1994-03-01 Murata Manufacturing Co., Ltd. Operational amplifier
RU2119243C1 (ru) * 1990-12-12 1998-09-20 Самсунг Электроникс Ко., Лтд. Дифференциальный усилитель считывания
EP1622260A2 (en) * 2004-07-31 2006-02-01 Integrant Technologies Inc. Differential amplifier circuit and mixer circuit having improved linearity
RU2523124C1 (ru) * 2013-01-09 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Мультидифференциальный операционный усилитель
WO2017213804A2 (en) * 2016-06-09 2017-12-14 Qualcomm Incorporated Source-degenerated amplification stage with rail-to-rail output swing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2119243C1 (ru) * 1990-12-12 1998-09-20 Самсунг Электроникс Ко., Лтд. Дифференциальный усилитель считывания
US5291149A (en) * 1992-03-30 1994-03-01 Murata Manufacturing Co., Ltd. Operational amplifier
EP1622260A2 (en) * 2004-07-31 2006-02-01 Integrant Technologies Inc. Differential amplifier circuit and mixer circuit having improved linearity
RU2523124C1 (ru) * 2013-01-09 2014-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") Мультидифференциальный операционный усилитель
WO2017213804A2 (en) * 2016-06-09 2017-12-14 Qualcomm Incorporated Source-degenerated amplification stage with rail-to-rail output swing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786941C1 (ru) * 2022-09-01 2022-12-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Дифференциальный каскад на комплементарных полевых транзисторах
RU2797043C1 (ru) * 2023-02-22 2023-05-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Входной каскад быстродействующего дифференциального операционного усилителя с нелинейной коррекцией переходного процесса

Similar Documents

Publication Publication Date Title
RU2688225C1 (ru) Дифференциальный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом
CN103488234B (zh) 具有电压生成电路的半导体器件
RU2710296C1 (ru) Дифференциальный каскад на комплементарных jfet полевых транзисторах с повышенным ослаблением входного синфазного сигнала
RU2624565C1 (ru) Инструментальный усилитель для работы при низких температурах
RU2566963C1 (ru) Дифференциальный входной каскад быстродействующего операционного усилителя для кмоп-техпроцессов
RU2712414C1 (ru) Дифференциальный каскад на комплементарных полевых транзисторах с управляющим p-n переходом класса ав с изменяемым напряжением ограничения проходной характеристики
WO2012083781A1 (en) Voltage comparator
RU2710847C1 (ru) Дифференциальный каскад класса ав на комплементарных полевых транзисторах с управляющим p-n переходом для работы в условиях низких температур
RU2684489C1 (ru) Буферный усилитель на комплементарных полевых транзисторах с управляющим p-n переходом для работы при низких температурах
RU2677401C1 (ru) Биполярно-полевой буферный усилитель
RU2736412C1 (ru) Дифференциальный усилитель на основе комплементарных полевых транзисторов с управляющим p-n переходом
RU2679970C1 (ru) Дифференциальный усилитель на комплементарных полевых транзисторах с управляемым напряжением ограничения проходной характеристики
RU2684473C1 (ru) Дифференциальный каскад на комплементарных полевых транзисторах
RU2736548C1 (ru) Компенсационный стабилизатор напряжения на полевых транзисторах для работы при низких температурах
RU2712416C1 (ru) Входной дифференциальный каскад на комплементарных полевых транзисторах для работы при низких температурах
RU2687161C1 (ru) Буферный усилитель для работы при низких температурах
RU2710846C1 (ru) Составной транзистор на основе комплементарных полевых транзисторов с управляющим p-n переходом
RU2740306C1 (ru) Дифференциальный каскад класса ав с нелинейным параллельным каналом
US20130154604A1 (en) Reference current generation circuit and reference voltage generation circuit
RU2724975C1 (ru) Преобразователь дифференциального входного напряжения с парафазными токовыми выходами на основе комплементарных полевых транзисторов с управляющим p-n переходом
RU2739213C1 (ru) Широкополосный преобразователь «напряжение-ток» на полевых транзисторах с управляющим p-n переходом
RU2712411C1 (ru) Промежуточный каскад cjfet операционного усилителя с парафазным токовым выходом
RU2710298C1 (ru) Неинвертирующий усилитель с токовым выходом для работы при низких температурах
Pandey et al. OFCC based logarithmic amplifier
RU2710930C1 (ru) Дифференциальный усилитель на комплементарных полевых транзисторах с повышенной стабильностью статического режима