RU2679396C2 - Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета - Google Patents

Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета Download PDF

Info

Publication number
RU2679396C2
RU2679396C2 RU2018109177A RU2018109177A RU2679396C2 RU 2679396 C2 RU2679396 C2 RU 2679396C2 RU 2018109177 A RU2018109177 A RU 2018109177A RU 2018109177 A RU2018109177 A RU 2018109177A RU 2679396 C2 RU2679396 C2 RU 2679396C2
Authority
RU
Russia
Prior art keywords
formula
informative
array
air target
samples
Prior art date
Application number
RU2018109177A
Other languages
English (en)
Other versions
RU2018109177A (ru
RU2018109177A3 (ru
Inventor
Виталий Юрьевич Есин
Дмитрий Геннадьевич Митрофанов
Владимир Геннадьевич Тулузаков
Алексей Владимирович Романенко
Николай Владимирович Силаев
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства обороны Российской Федерации
Priority to RU2018109177A priority Critical patent/RU2679396C2/ru
Publication of RU2018109177A publication Critical patent/RU2018109177A/ru
Publication of RU2018109177A3 publication Critical patent/RU2018109177A3/ru
Application granted granted Critical
Publication of RU2679396C2 publication Critical patent/RU2679396C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов воздушной цели (ВЦ) признака идентификации в виде пространственного размера ВЦ, оцененного по частотной протяженности доплеровского портрета (ДпП). Достигаемый технический результат - разработка способа оценки пространственного размера ВЦ по протяженности ДпП путем учета дополнительных параметров. Указанный результат достигается за счет того, что значение пространственного размера ВЦ предлагается измерять с учетом ракурса локации ВЦ. Способ оценивания пространственного размера ВЦ заключается в том, что с помощью значений координат ВЦ, полученных из сигналов канала угловой автоматики и системы измерения дальности, рассчитывают путевую скорость ВЦ. Полученную путевую скорость используют для расчета курсового угла полета ВЦ относительно РЛС, а дальность, соответствующую серединному периоду повторения интервала регистрации данных, используют для расчета уточненной угловой скорости поворота ВЦ относительно РЛС. Исходя из полученных значений курсового угла полета ВЦ и уточненного значения угловой скорости ее поворота рассчитывают поперечный размер ВЦ. Поперечный размер ВЦ является проекцией пространственного на поперечное относительно линии визирования направление. С учетом величины курсового угла по выведенным формулам рассчитывают пространственный размер воздушной цели, используемый в качестве признака идентификации. 14 ил.

Description

Изобретение относится к радиолокационным методам и предназначено для извлечения из доплеровских портретов (ДпП) воздушных целей (ВЦ) признака идентификации в виде пространственного размера ВЦ, оцененного по частотной протяженности ДпП.
В настоящее время использование признаков идентификации ВЦ в виде радиолокационных портретов является общепринятым. Однако используемые методы построения портретов не обеспечивают адекватной оценки размеров или конфигурации ВЦ из-за того, что являются проекциями на поперечное или продольное направление и не учитывают пространственного расположения ВЦ. Вследствие этого идентификацию чаще проводят по простейшим признакам, извлекаемым из структуры ДпП. Одним из таких признаков является размер ВЦ, воспроизводимый протяженностью портрета [1].
В настоящее время известен способ оценки размера ВЦ по частотной протяженности ДпП, описанный в [2], заключающийся в том, что в направлении реальной ВЦ с помощью радиолокационной станции (РЛС) излучают сверхвысокочастотные импульсные сигналы одинаковой несущей частоты сантиметрового диапазона, последовательно принимают отраженные ВЦ сигналы, переводят РЛС после обнаружения воздушной цели в режим автоматического сопровождения по угловым координатам и дальности. Определяют дальность R до воздушной цели, дискретизируют отраженные от ВЦ сигналы с помощью аналого-цифрового преобразователя (АЦП) с периодом дискретизации Δt, который на порядок меньше длительности импульса τи. Записывают в память электронно-вычислительной машины (ЭВМ) амплитуду Ai,s и фазу ϕi,s каждого s-го отраженного сигнала и просочившегося в приемный тракт излученного сигнала каждого i-го периода повторения Ти. Получают в каждом периоде повторения S дискретных отсчетов (фиг. 1). При этом в пределах длительности зондирующего сигнала (ЗС) для каждого периода повторения будет укладываться J дискретных отсчетов (фиг. 2). Проводят свертку принятых отраженных от ВЦ сигналов каждого i-го периода повторения с оцифрованным комплексно-сопряженным ЗС этого же периода повторения для получения откликов согласованного цифрового фильтра (фиг. 3) по формуле
Figure 00000001
где i=1…I - номер периода повторения РЛС; s=1…(S-J);
Figure 00000002
- комплексные значения отражений, получаемые после сжатия отраженного сигнала цифровым фильтром, соответствующие s-му отсчету отраженного сигнала в i-м периоде повторения;
Figure 00000003
,
Figure 00000004
- значения амплитуды и фазы отраженного сигнала, соответствующие (s+j-1)-му отсчету продискретизированного отраженного сигнала в i-м периоде повторения импульсов;
Figure 00000005
,
Figure 00000006
- значения амплитуды и фазы излученного сигнала, соответствующие j-му отсчету продискретизированного ЗС в i-м периоде повторения импульсов; I - количество периодов повторения ЗС, укладывающееся на интервале регистрации данных. Рассчитывают время прохождения излученного сигнала τвц до ВЦ и обратно по формуле
Figure 00000007
, где с - скорость распространения электромагнитных волн. Определяют предполагаемый номер отсчета g, на который при дальности R будет приходиться пик отраженного от ВЦ сигнала по формуле
Figure 00000008
, где round(*) - операция округления значения аргумента * до целого числа. В памяти ЭВМ РЛС формируют четырехстрочный массив отражений Hg (фиг. 4), в первую строку которого записывают номера используемых при анализе отражений i-x периодов повторения, во вторую - амплитуды
Figure 00000009
g-x отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженного от воздушной цели сигнала в i-x периодах повторения, в третью - фазы
Figure 00000010
g-x отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженных сигналов в i-x периодах повторения, в четвертую - моменты времени
Figure 00000011
, соответствующие амплитудам
Figure 00000012
и фазам
Figure 00000013
сжатых отраженных от воздушной цели сигналов в i-x периодах повторения. Формируют последовательность из амплитудных значений
Figure 00000014
массива Hg, которая графически представляет собой амплитудную отражательную характеристику (ОХ) ВЦ (фиг. 5). Из созданной последовательности, начиная с ее первого отсчета, последовательно извлекают d-e выборки Cd амплитуд отражений, смещенные друг относительно друга на один отсчет амплитудной ОХ, содержащие по N отсчетов (фиг. 6), причем
Figure 00000015
, где round0(*) - операция округления значения аргумента * до ближайшего предшествующего целого числа, Ти - период повторения импульсов, а Так - длительность интервала анализа корреляции, которую выбирают равной 0,5 с. Для каждой полученной выборки Cd формируют автокорреляционную функцию (АКФ) и определяют величину интервала корреляции τк (момент времени, когда АКФ первый раз становится равной нулю). Далее выбирают минимальную среди всех интервалов корреляции τк величину τкmin (фиг. 7). Определяют оценочное время корреляции τоц, равное величине 0,5 τкmin. Для каждой d-й выборки Cd определяют коэффициент корреляции (КК) zd, соответствующий w-му отсчету АКФ, где
Figure 00000016
. Формируют в памяти ЭВМ РЛС двухстрочный массив Hz, в первую строку которого записывают соответствующие d-e номера АКФ, во вторую - соответствующие им оценочные КК zd (фиг. 8). Из значений КК zd массива Hz формируют последовательность, графически представляющую собой корреляционную характеристику (КХ) отражений ВЦ (фиг. 9). Проводят цифровым способом одним из известных методов, например, методом наименьших квадратов [3], сглаживание сформированной КХ (фиг. 10), то есть устраняют локальные максимумы и минимумы, оставляя только глобальные. Далее определяют в сглаженной КХ такой ее участок между соседними глобальными максимумом zdmax и минимумом zdmin, на котором максимальное zdmax и минимальное zdmin значения коэффициентов корреляции имеют наибольшее отличие (фиг. 10). Находят на этом участке точку КХ со значением КК zd сред, которое наиболее точно соответствует величине
Figure 00000017
. Используют эту точку как середину информативного интервала синтезирования Тии длительностью Тии=0,5 с. По номеру выборки dc, соответствующему КК zd сред, определяют соответствующую dc-ю выборку ОХ. Далее находят отсчет, соответствующий середине dc-й выборки и определяют его номер в ОХ по формуле
Figure 00000018
. Принимают длительность Тии за длительность информативного интервала синтезирования Тс. Вычисляют номера отсчетов в ОХ, которые являются началом iн и концом iк информативного интервала синтезирования по соответствующим формулам
Figure 00000019
,
Figure 00000020
, где round1(*) - операция округления значения аргумента * до ближайшего следующего целого числа. Из массива Hg отражений извлекают амплитудные и фазовые значения, входящие в интервал синтезирования Тс, ограниченные номерами отсчетов слева iн (начальный) и справа iк (конечный). Далее создают в памяти ЭВМ РЛС четырехстрочный массив Ни (фиг. 11), в первую строку которого записывают μ-е номера периодов повторения с 1-го по М-й, причем
Figure 00000021
, а μ-й номер в пределах массива Ни соответствует (iн+μ-1)-му номеру в исходной ОХ, во вторую - амплитуды
Figure 00000022
μ-х отсчетов участка ОХ, входящего в информативный интервал синтезирования, в третью - фазы
Figure 00000023
соответствующих μ-х отсчетов ОХ, принадлежащих информативному интервалу, в четвертую - моменты времени tμ=(iн+μ-1)Ти, соответствующие амплитудам и фазам отраженных сигналов в μ-х периодах повторения. При этом первый элемент массива Ни соответствует началу интервала синтезирования, то есть iн-му элементу массива Hg, а последний элемент массива Ни соответствует концу интервала синтезирования, то есть iк-му элементу массива Hg. Далее проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями
Figure 00000024
выборки, состоящей из 8-ми первых отсчетов массива Ни, в результате преобразования получают начальный низкоинформативный доплеровский спектр. Определяют в полученном начальном низкоинформативном доплеровском спектре частоту Доплера
Figure 00000025
, которая соответствует максимальной по амплитуде составляющей спектра. Определяют радиальную скорость ВЦ в начале информативного интервала синтезирования
Figure 00000026
по формуле
Figure 00000027
, где λ - длина волны излученного сигнала. Проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями выборки, состоящей из 8-ми последних отсчетов массива Ни, в результате которого получают конечный низкоинформативный доплеровский спектр. После этого определяют в полученном конечном низкоинформативном доплеровском спектре частоту Доплера
Figure 00000028
, которая соответствует максимальной по амплитуде составляющей спектра. Определяют радиальную скорость ВЦ в конце интервала синтезирования
Figure 00000029
по формуле
Figure 00000030
. Определяют среднюю радиальную скорость
Figure 00000031
воздушной цели в пределах интервала синтезирования по формуле
Figure 00000032
. Далее определяют радиальное ускорение ар воздушной цели на выбранном информативном интервале синтезирования по формуле
Figure 00000033
. Рассчитывают на основе полученных значений средней радиальной скорости
Figure 00000034
и ускорения ар величину компенсируемой фазы для каждого tμ-го момента времени, входящего в информативный интервал синтезирования по формуле
Figure 00000035
. Проводят компенсацию фазового влияния радиального движения воздушной цели на информативном интервале синтезирования путем изменения фазы по формуле
Figure 00000036
, где знак «-» соответствует движению воздушной цели в направлении радиолокационной станции, т.е. приближению, а знак «+» соответствует удалению ВЦ. Создают в памяти ЭВМ РЛС четырехстрочный массив Нс (фиг. 12), в первую строку которого записывают номера периодов повторения с 1-го по М-й, во вторую - амплитуды
Figure 00000037
μ-x отсчетов ОХ, принадлежащих информативному интервалу синтезирования, в третью - скомпенсированные фазы
Figure 00000038
μ-х отсчетов ОХ, принадлежащих информативному интервалу синтезирования, в четвертую - моменты времени tμ, соответствующие амплитудам и фазам отраженных сигналов в μ-x периодах повторения. Для осуществления быстрого дискретного преобразования Фурье полученный массив дискретных отсчетов расширяют путем ввода новых элементов с нулевыми значениями амплитуд и фаз, добиваясь числа элементов массива Нс, равного Е=2m, где Е - ближайшее целое число, удовлетворяющее условию Е=2m и Е>М, m - целое число, например, m=8, m=9 и т.п. Проводят операцию быстрого дискретного преобразования Фурье с вектором комплексных величин
Figure 00000039
из массива Нс [3, 4]. Получают массив Ндоп, содержащий Е комплексных значений спектра отраженного сигнала, который представляет собой доплеровский портрет ВЦ [5-12], полученный на информативном интервале синтезирования Тс [2, 13-15]. В полученном массиве Ндоп, характеризующем доплеровский портрет, определяют крайний левый и крайний правый максимумы путем перебора и анализа амплитудных значений элементов массива Ндоп. Далее записывают в память ЭВМ РЛС номера отсчетов iн макс и iк макс в массиве Ндоп, соответствующих начальному и конечному максимумам. Вычисляют частотную протяженностью ΔF доплеровского портрета ВЦ по формуле ΔF=(iк макс-iн макс)/Тс. Предполагают, что все ВЦ движутся с близкими по величине курсовыми углами γ и заранее известной путевой скоростью V. Рассчитывают угловую скорость поворота ВЦ относительно РЛС по формуле
Figure 00000040
. На конечном этапе находят поперечный размер ВЦ по формуле
Figure 00000041
и принимают его за пространственный размер ВЦ.
Описанный способ не может быть признан эффективным вследствие того, что ряд параметров, используемых при определении размера ВЦ оцениваются недостаточно точно, а именно, при оценке размера ВЦ способом [2] предполагают, что все цели движутся с близкими по величине курсовыми углами γ и заранее известной путевой скоростью V, что выполняется не всегда, а точнее - почти никогда не выполняется. К тому же способ [2] приводит к измерению длины проекции L силуэта (размера) ВЦ на поперечное относительно линии визирования направление [16], что не позволяет сравнивать ВЦ между собой, так как проекция крупной цели с меньшим ракурсом полета может быть равна проекции малой цели с большим ракурсом (с боковым ракурсом, с большой величиной курсового угла). Соответствующий протяженности сформированного ДпП размер ВЦ находится в зависимости от величины курсового угла ВЦ γ, что способом не учитывается. И наконец, дальность R до ВЦ в описанном выше способе [2] измеряется только в момент начала регистрации данных, а за время регистрации дальность до ВЦ меняется, вследствие чего ОХ, используемая для построения ДпП, формируется с искажениями, и результирующий ДпП имеет неточности в своей внутренней структуре.
Задачей изобретения является устранение неточностей, присущих известному способу оценки размера ВЦ по протяженности ДпП, т.е. совершенствование способа оценки размера ВЦ по протяженности ДпП путем учета дополнительных параметров, таких как координаты ВЦ, путевая скорость ВЦ, угловая скорость поворота относительно радиолокационной станции (РЛС), текущая (изменяемая во времени) дальность и др.
Для решения задачи изобретения предлагается дополнительно учесть ряд факторов. Например, предлагается учесть, что за время регистрации данных дальность до ВЦ меняется. В прототипе считалось, что при расчетах и преобразованиях можно ограничиться начальной дальностью. Между тем дальность до ВЦ не является постоянной, а значит ОХ, получаемая из отсчетов с номером g в каждом периоде повторения, не будет соответствовать во всех периодах повторения пикам отклика отраженного сигнала. Соответственно и ДпП ВЦ, полученный из фрагмента ОХ, получит искажения, ведущие к нарушению структуры ДпП. Расчет угловой скорости поворота ВЦ также ориентирован на использование начальной дальности до цели, что не совсем корректно. В новом способе при расчете угловой скорости поворота ВЦ предлагается использовать дальность, соответствующую серединному отсчету на интервале регистрации. Для этого предлагается измерять дальность в каждом периоде повторения и фиксировать ее значение с помощью АЦП. Также в способе [2] предполагают, что все ВЦ движутся с близкими по величине курсовыми углами γ и заранее известной путевой скоростью V, что в реальной обстановке не выполняется. Поэтому в новом способе предлагается по изменению координат ВЦ оценивать (рассчитывать) путь, проделанный целью, и определять путевую скорость полета. В способе [2] подразумевают проводить оценку поперечного размера ВЦ, который является проекцией пространственного размера ВЦ на поперечное относительно линии визирования направление. Соответствующий ширине сформированного ДпП поперечный размер ВЦ находится в зависимости от величины курсового угла ВЦ [17], что снижает информативность данного признака. Для получения пространственного размера ВЦ по частотной протяженности ДпП в новом способе предлагается учитывать реальный ракурс локации ВЦ, который можно рассчитать по соотношению радиальной и путевой скоростей полета ВЦ [].
Предлагаемый подход приводит к независимости измеряемого размера ВЦ от ракурса локации, что обеспечивает адекватность производимого измерения. Признак размера ВЦ, оцененного предлагаемым способом, может повысить результативность классификации объектов и информативность радиолокационной системы в целом.
В соответствии с изложенной выше идеей, предлагаемый способ оценки пространственного размера ВЦ по частотной протяженности доплеровского портрета заключается в том, что в направлении реальной ВЦ с помощью РЛС излучают сверхвысокочастотные импульсные сигналы одинаковой несущей частоты сантиметрового диапазона, последовательно принимают отраженные от ВЦ сигналы, переводят РЛС после обнаружения ВЦ в режим автоматического сопровождения по угловым координатам и дальности. Из сигналов канала угловой автоматики, пропорциональных углу места ε и азимуту β воздушной цели, с помощью соответствующих аналого-цифровых преобразователей в каждом i-м периоде повторения получают цифровые отсчеты угла места εi и азимута βi. Определяют дальность до ВЦ Ri в каждом i-м периоде повторения. Дискретизируют отраженные ВЦ сигналы с помощью АЦП с периодом дискретизации Δt, который на порядок меньше длительности импульса τи. Записывают в память ЭВМ амплитуду Ai,s и фазу ϕi,s каждого s-го отраженного сигнала и просочившегося в приемный тракт излученного сигнала каждого i-го периода повторения Ти. Получают в каждом периоде повторения S дискретных отсчетов (фиг. 1). При этом в пределах длительности ЗС для каждого периода повторения будет укладываться J дискретных отсчетов (фиг. 2). Проводят свертку принятых отраженных от ВЦ сигналов каждого i-го периода повторения с оцифрованным комплексно-сопряженным ЗС этого же периода повторения для получения откликов согласованного цифрового фильтра (фиг. 3) по формуле
Figure 00000042
где i=1…I - номер периода повторения РЛС; s=1…(S-J);
Figure 00000043
- комплексные значения отражений, получаемые после сжатия отраженного сигнала цифровым фильтром, соответствующие s-му отсчету отраженного сигнала в i-м периоде повторения;
Figure 00000044
,
Figure 00000045
- значения амплитуды и фазы отраженного сигнала, соответствующие (s+j-1)-му отсчету продискретизированного отраженного сигнала в i-м периоде повторения импульсов;
Figure 00000046
,
Figure 00000047
- значения амплитуды и фазы излученного сигнала, соответствующие j-му отсчету продискретизированного ЗС в i-м периоде повторения импульсов; I - количество периодов повторения ЗС, укладывающееся на интервале регистрации данных. Для каждого периода повторения Ти рассчитывают время прохождения излученного сигнала до ВЦ и обратно по формуле
Figure 00000048
, где с - скорость распространения электромагнитных волн, на основании чего для каждого i-го периода повторения определяют номер отсчета gi оцифрованного отраженного сигнала, на который при дальности до ВЦ Ri будет приходится пик отклика отраженного сигнала после согласованной фильтрации. Для этого используют формулу
Figure 00000049
. Используют значение gi для расчета времени приема отраженного от воздушной цели сигнала в i-м периоде повторения по формуле ti=[(i-1)S+gi+round(J/2)]Δt. В памяти ЭВМ РЛС формируют четырехстрочный массив отражений Hg (фиг. 4), в первую строку которого записывают номера используемых при анализе отражений i-x периодов повторения, во вторую - амплитуды
Figure 00000050
gi-х отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженного от воздушной цели сигнала в i-x периодах повторения на дальности Ri, в третью - фазы
Figure 00000051
g-x отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженных сигналов в i-x периодах повторения, в четвертую - моменты времени ti=[(i-1)S+gi+round(J/2)]Δt, соответствующие амплитудам
Figure 00000052
и фазам
Figure 00000053
сжатых отраженных от воздушной цели сигналов в i-x периодах повторения. Формируют последовательность из амплитудных значений
Figure 00000054
массива Hg, которая графически представляет собой амплитудную ОХ ВЦ (фиг. 5). Из созданной последовательности, начиная с первого отсчета, последовательно извлекают d-e выборки Cd амплитуд отражений, смещенные друг относительно друга на один отсчет амплитудной ОХ, содержащие по N отсчетов (фиг. 6), причем
Figure 00000055
, где round0(*) - операция округления значения аргумента * до ближайшего предшествующего целого числа, Ти - период повторения импульсов, а Так - длительность интервала анализа корреляции, равная Так=0,5 с. Для каждой полученной выборки Cd формируют АКФ и определяют величину интервала корреляции τк (момент времени, когда АКФ первый раз становится равной нулю). Далее выбирают минимальную среди всех интервалов корреляции τк величину τкmin (фиг. 7). Определяют оценочное время корреляции τоц, равное величине 0,5 τкmin. Для каждой d-й выборки Cd определяют КК zd, соответствующий w-му отсчету АКФ. Формируют в памяти ЭВМ РЛС двухстрочный массив Hz, в первую строку которого записывают соответствующие d-e номера АКФ, во вторую - соответствующие им оценочные КК zd (фиг. 8). Из значений КК zd формируют последовательность массива Hz, графически представляющую собой КХ отражений ВЦ (фиг. 9). Проводят цифровым способом одним из известных методов, например методом наименьших квадратов [3] сглаживание сформированной КХ (фиг. 10), то есть устраняют локальные максимумы и минимумы, оставляя только глобальные. Далее определяют в сглаженной КХ такой ее участок между соседними глобальными максимумом zdmax и минимумом zdmin, на котором максимальное zdmax и минимальное zdmin значения коэффициентов корреляции имеют наибольшее отличие. Находят на этом участке точку КХ со значением КК zd сред, которое наиболее точно соответствует величине
Figure 00000056
(фиг. 10). Используют эту точку как середину информативного интервала синтезирования длительностью Тии=0,5 с. По номеру выборки dc, соответствующей КК zd сред, определяют соответствующую dc-ю выборку ОХ. Далее находят отсчет, соответствующий середине dc-й выборки и определяют его номер в ОХ по формуле
Figure 00000057
. Принимают длительность Тии за длительность информативного интервала синтезирования Тс. Вычисляют номера отсчетов в ОХ, которые являются началом iн и концом iк информативного интервала синтезирования по соответствующим формулам
Figure 00000058
,
Figure 00000059
. Из массива Hg отражений извлекают амплитудные и фазовые значения, входящие в информативный интервал синтезирования Тс, ограниченные номерами отсчета слева iн (начальный) и справа iк (конечный). Далее создают в памяти ЭВМ РЛС четырехстрочный массив Ни (фиг. 11), в первую строку которого записывают μ-е номера периодов повторения с 1-го по М-й, причем
Figure 00000060
, а μ-й номер в пределах массива Ни соответствует (iн+μ-1)-му номеру в исходной ОХ, во вторую - амплитуды
Figure 00000061
μ-x отсчетов участка ОХ, входящего в информативный интервал синтезирования, в третью - фазы
Figure 00000062
соответствующих μ-х отсчетов ОХ, принадлежащих информативному интервалу синтезирования, в четвертую - моменты времени tμ=(iн+μ-1)Ти, соответствующие амплитудам и фазам отраженных сигналов в μ-х периодах повторения. При этом первый элемент массива Ни соответствует началу информативного интервала синтезирования, то есть iн-му элементу массива Hg, а последний элемент массива Ни соответствует концу информативного интервала синтезирования, то есть iк-му элементу массива Hg. Далее проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями
Figure 00000063
выборки, состоящей из 8-ми первых отсчетов массива Ни, в результате которого получают начальный низкоинформативный доплеровский спектр. Определяют в полученном начальном низкоинформативном доплеровском спектре частоту Доплера
Figure 00000064
, которая соответствует максимальной по амплитуде составляющей спектра. Определяют радиальную скорость ВЦ в начале информативного интервала синтезирования
Figure 00000065
по формуле
Figure 00000066
. Проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями выборки, состоящей из 8-ми последних отсчетов массива Ни, в результате которого получают конечный низкоинформативный доплеровский спектр. Определяют в полученном конечном низкоинформативном доплеровском спектре частоту Доплера
Figure 00000067
, которая соответствует максимальной по амплитуде составляющей спектра. Определяют радиальную скорость ВЦ в конце интервала синтезирования
Figure 00000068
по формуле
Figure 00000069
. Определяют среднюю радиальную скорость
Figure 00000070
воздушной цели в пределах интервала синтезирования по формуле
Figure 00000071
. Далее определяют радиальное ускорение ар ВЦ на выбранном информативном интервале синтезирования по формуле
Figure 00000072
. Рассчитывают на основе полученных значений средней радиальной скорости
Figure 00000073
и ускорения ар величину компенсируемой фазы для каждого tμ-го момента времени, входящего в информативный интервал синтезирования по формуле
Figure 00000074
. Проводят компенсацию фазового влияния радиального движения ВЦ на информативном интервале синтезирования путем изменения фазы по формуле
Figure 00000075
, где знак «-» соответствует движению ВЦ в направлении РЛС, т.е. приближению, а знак «+» соответствует удалению ВЦ. Создают в памяти ЭВМ РЛС четырехстрочный массив Нс (фиг. 12), в первую строку которого записывают номера μ-x периодов повторения с 1-го по М-й, во вторую - амплитуды
Figure 00000076
μ-х отсчетов ОХ, принадлежащих информативному интервалу синтезирования, в третью - скомпенсированные фазы
Figure 00000077
μ-х отсчетов ОХ, принадлежащих информативному интервалу синтезирования, в четвертую - моменты времени tμ, соответствующие амплитудам и фазам отраженных сигналов в μ-x периодах повторения. Для осуществления быстрого дискретного преобразования Фурье полученный массив дискретных отсчетов расширяют путем ввода новых элементов с нулевыми значениями амплитуд и фаз, добиваясь числа элементов массива Нс, равного Е=2m, где Е - ближайшее целое число, удовлетворяющее условию Е=2m и Е>М, m - целое число. Проводят операцию быстрого дискретного преобразования Фурье с вектором комплексных величин
Figure 00000078
из массива Нс. Получают массив Ндоп, содержащий Е комплексных значений спектра отраженного сигнала, который представляет собой доплеровский портрет ВЦ, полученный на информативном интервале синтезирования Тс [5]. В полученном массиве Ндоп, характеризующем доплеровский портрет, определяют крайний левый и крайний правый максимумы путем перебора и анализа амплитудных значений элементов массива Ндоп. Далее записывают в память ЭВМ РЛС номера отсчетов iнmax и iкmax в массиве Ндоп, соответствующих начальному и конечному максимумам. Вычисляют частотную протяженность доплеровского портрета по формуле ΔF=(iкmax-iнmax)/Tc. С помощью цифровой вычислительной системы по известным формулам сферические координаты ВЦ 1-го и I-го периода повторения пересчитывают в прямоугольные координаты х, у, z соответствующих периодов повторения х1, y1, z1 и xI, yI, zI. Далее рассчитывают расстояние r, которое преодолела ВЦ за время регистрации отраженных сигналов по формуле
Figure 00000079
. С помощью цифровой вычислительной системы рассчитывают путевую скорость ВЦ V по формуле
Figure 00000080
. Рассчитывают курсовой угол ВЦ γ по формуле
Figure 00000081
(фиг. 13). Выбирают значение дальности, соответствующее серединному отсчету в интервале регистрации данных, равное RI/2, на основе чего рассчитывают уточненное значение угловой скорости
Figure 00000082
поворота ВЦ относительно РЛС по формуле
Figure 00000083
. На основе рассчитанных данных определяют пространственный размер Lпр ВЦ по формуле
Figure 00000084
(фиг. 14).
Сущность изобретения заключается в следующем. Современные РЛС имеют возможность измерять большое число параметров ВЦ, а для оценки размера ВЦ ранее использовалось ограниченное число параметров. К параметрам, учет которых может обеспечить уточнение размера ВЦ, относятся координаты ВЦ, ее путевая скорость, угловая скорость поворота относительно РЛС, текущая (изменяемая во времени) дальность и др. Способ предполагает учет этих дополнительных параметров при расчете пространственного размера ВЦ по протяженности ее ДпП.
Процесс уточнения величины пространственного размера Lпр можно пояснить следующими расчетными выражениями. Для расчета Lпр, как показано выше, может быть использована формула
Figure 00000085
. В нее входит уточненное значение угловой скорости поворота ВЦ
Figure 00000086
. Для получения величины уточненной угловой скорости поворота
Figure 00000087
ВЦ относительно РЛС может быть использована формула
Figure 00000088
. В ней используется величина дальности до ВЦ. Поскольку дальность на интервале регистрации данных меняется, для расчета
Figure 00000089
целесообразно использовать дальность, соответствующую середине интервала регистрации. А для этого необходимо из сигналов системы измерения дальности, пропорциональных дальности до ВЦ, с помощью АЦП получать для каждого i-го периода повторения цифровое значение дальности Ri, что и предполагает новый способ. Далее выбирают среднее за интервал регистрации значение дальности Rcp, соответствующее серединному отсчету в интервале регистрации данных Rcp=RI/2.
В интересах более корректного формирования ОХ ВЦ величины амплитуд и фаз целесообразно извлекать из точек, соответствующих пикам откликов отраженного сигнала. А пик отклика от периода к периоду перемещается в соответствии с изменением дальности. Поэтому для каждого периода повторения рассчитывают время прохождения излученного сигнала до ВЦ и обратно по формуле
Figure 00000090
. На основании этого для каждого i-го периода повторения определяют номер отсчета gi оцифрованного отраженного сигнала, на который при дальности до воздушной цели Ri будет приходиться пик отклика отраженного сигнала после согласованной фильтрации. Для расчета номера отсчета gi отраженного сигнала i-го периода повторения, из которой следует извлекать значение амплитуды и фазы отражений в i-м периоде, предложено использовать формулу
Figure 00000091
.
Для расчета (получения) путевой скорости V ВЦ из сигналов канала угловой автоматики РЛС, пропорциональных углу места ε и азимуту β ВЦ, с помощью соответствующих АЦП в каждом i-м периоде повторения получают цифровые отсчеты угла места εi и азимута βi. По известным формулам сферические координаты первого и I-го периодов повторения пересчитывают в прямоугольные координаты х, y, z соответствующих периодов повторения x1, y1, z1 и xI, yI, zI, на основе чего рассчитывают расстояние r, которое преодолела ВЦ за время регистрации отраженных сигналов по формуле
Figure 00000092
. Расчет путевой скорости V ВЦ предложено проводить по формуле
Figure 00000093
, для чего имеются все необходимые величины. Для получения величины курсового угла γ предложено использовать формулу
Figure 00000094
, внутренние переменные которой известны.
Значение ракурса ВЦ γ необходимо для пересчета поперечного размера ВЦ L в ее пространственный размер Lпр по формуле Lпр=L/sinγ, что в общем виде эквивалентно расчету по формуле
Способ легко реализуем за счет обработки отраженных сигналов в цифровом виде. Способ не требует введения в структуру радиолокационной станции новых элементов, вследствие чего является осуществимым на современном уровне развития техники. Извлекаемый из ДпП признак идентификации ВЦ в виде ее пространственного размера может быть использован в существующих радиолокационных станциях сопровождения для классификации и идентификации воздушных целей как автономно, так и в качестве дополнительного признака в совокупности с другими. Это, в свою очередь, может привести к улучшению информационных возможностей радиолокационной системы, используемой, к примеру, на аэродромах при контроле воздушного движения по трассовым коридорам пролета.
Источники информации
1. Патент РФ №2562060 от 7.08.2015 г. Способ извлечения из доплеровских портретов воздушных объектов признаков идентификации с использованием метода сверхразрешения. Романенко А.В., Митрофанов Д.Г. и др. Заявка №2014125641 от 24.06.2014 г. МПК G01S 13/90.
2. Митрофанов Д.Г., Прохоркин А.Г., Нефедов С.И. Измерение поперечных размеров летательных аппаратов по частотной протяженности доплеровского портрета // Радиотехника, 2008. №1. С. 84-90 (прототип).
3. Кирьянов Д.В., Mathcad 13, СПб., БХВ-Петербург, 2006. 608 с.
4. Селекция и распознавание на основе локационной информации / Под ред. А.Л. Горелика. М., Радио и связь, 1990. 240 с.
5. Комплексный адаптивный метод построения радиолокационных изображений в системах управления двойного назначения // Теория и системы управления. Известия РАН, 2006. №1. С. 101-118.
6. Митрофанов Д.Г. Метод построения радиолокационных изображений аэродинамических летательных аппаратов // Полет, 2006. №11. С. 52-60.
7. Радиолокационные характеристики летательных аппаратов / Под ред. Л.Т. Тучкова. М., Радио и связь, 1985. 236 с.
8. Митрофанов Д.Г. Влияние амплитудного и фазового шума на качество формирования радиолокационного изображения // Радиотехника и электроника, 1995. Т. 40. №4. С. 586-590.
9. Патент РФ №2066059. МПК G01S 13/89. Способ построения двумерного радиолокационного изображения в РЛС сопровождения прямолинейно движущейся цели / Митрофанов Д.Г. БИ №24, 1996.
10. Патент РФ №2099742. МПК G01S 13/89. Триангуляционный способ построения двумерного радиолокационного изображения цели в РЛС сопровождения с инверсным синтезированием апертуры / Митрофанов Д.Г. БИ №35, 1997.
11. Митрофанов Д.Г. Развитие методов формирования доплеровских портретов и двумерных радиолокационных изображений воздушных целей // Оборонная техника, 1998. №10-11. С. 75-81.
12. Митрофанов Д.Г. Синтез радиолокационного изображения цели методом математического моделирования ее доплеровских портретов. Киев, Радиоэлектроника. Известия вузов, 1994. Т. 37. №3. С. 72-76.
13. Митрофанов Д.Г. Формирование двумерного радиолокационного изображения цели с траекторными нестабильностями полета // Радиотехника и электроника. РАН, 2002. Т. 47. №7. С. 852-859.
14. Митрофанов Д.Г. Построение двумерного изображения объекта с использованием многочастотного зондирующего сигнала // Измерительная техника. 2001. №2. С. 57-62.
15. Митрофанов Д.Г. Развитие способа выбора интервала инверсного синтезирования при наличии траекторных нестабильностей полета воздушного объекта. Сборник докладов XVII международной НТК «RLNC-2011». 2011. Воронеж: НПФ «САКВОЕЕ» ООО. С. 2251-2258.
16. Радиолокационные системы. Справочник. Основы построения и теория / Под ред. Я.Д. Ширмана. М., Радиотехника, 2007. 510 с.
17. Небабин В.Г., Сергеев В.В. Методы и техника радиолокационного распознавания. - М.: Радио и связь, 1984.
18. Финкельштейн М.И. Основы радиолокации. М., Сов. радио, 1973. 496 с.

Claims (3)

  1. Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета, заключающийся в том, что в направлении реальной воздушной цели с помощью радиолокационной станции излучают сверхвысокочастотные импульсные сигналы одинаковой несущей частоты сантиметрового диапазона, последовательно принимают отраженные от воздушной цели сигналы, переводят радиолокационную станцию после обнаружения воздушной цели в режим автоматического сопровождения по угловым координатам и дальности, определяют дальность R до воздушной цели, дискретизируют с помощью аналого-цифрового преобразователя с периодом дискретизации Δt, который на порядок меньше длительности импульса τи, и записывают в память электронно-вычислительной машины амплитуду Ai,s и фазу ϕi,s каждого s-го отраженного сигнала и просочившегося в приемный тракт излученного сигнала каждого i-го периода повторения, получая в каждом периоде повторения S дискретных отсчетов, при этом в пределах длительности зондирующего сигнала для каждого периода повторения будет укладываться J дискретных отсчетов, проводят свертку принятых отраженных от воздушной цели сигналов каждого i-го периода повторения с оцифрованным комплексно-сопряженным зондирующим сигналом этого же периода повторения для получения откликов согласованного цифрового фильтра по формуле
  2. Figure 00000095
  3. где i=l…I - номер периода повторения радиолокационной станции; s=1…(S-J);
    Figure 00000096
    - комплексные значения отражений, получаемые после сжатия отраженного сигнала цифровым фильтром, соответствующие s-му отсчету отраженного сигнала в i-м периоде повторения;
    Figure 00000097
    - значения амплитуды и фазы отраженного сигнала, соответствующие (s+/-1)-му отсчету продискретизированного отраженного сигнала в i-м периоде повторения импульсов;
    Figure 00000098
    - значения амплитуды и фазы излученного сигнала, соответствующие j-му отсчету продискретизированного зондирующего сигнала в i-м периоде повторения импульсов; I - количество периодов повторения зондирующего сигнала, укладывающееся на интервале регистрации данных, рассчитывают время прохождения излученного сигнала τвц до воздушной цели и обратно по формуле
    Figure 00000099
    где с - скорость распространения электромагнитных волн, определяют предполагаемый номер отсчета g, на который при дальности R будет приходиться пик отраженного от воздушной цели сигнала по формуле
    Figure 00000100
    где round(*) - операция округления значения аргумента * до целого числа, в памяти электронно-вычислительной машины радиолокационной станции формируют четырехстрочный массив отражений Hg, в первую строку которого записывают номера используемых при анализе отражений i-x периодов повторения, во вторую - амплитуды
    Figure 00000101
    g-x отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженного от воздушной цели сигнала в i-x периодах повторения, в третью - фазы
    Figure 00000102
    g-x отсчетов сжатого сигнала, которые соответствуют пикам откликов отраженных сигналов в i-x периодах повторения, в четвертую - моменты времени
    Figure 00000103
    соответствующие амплитудам
    Figure 00000104
    и фазам
    Figure 00000105
    сжатых отраженных от воздушной цели сигналов в i-x периодах повторения, формируют последовательность из амплитудных значений
    Figure 00000106
    массива Hg, которая графически представляет собой амплитудную отражательную характеристику воздушной цели, из созданной последовательности, начиная с первого отсчета, последовательно извлекают d-e выборки амплитуд отражений Cd, содержащие по N отсчетов, смещенные относительно друг друга на один отсчет амплитудной отражательной характеристики, причем
    Figure 00000107
    где round0(*) - операция округления значения аргумента * до ближайшего предшествующего целого числа, Ти - период повторения импульсов, а Так - длительность интервала анализа корреляции, равная Так=0,5 с, для каждой полученной выборки Cd формируют автокорреляционную функцию и определяют величину интервала корреляции τк (момент времени, когда автокорреляционная функция первый раз становится равной нулю), выбирают минимальную среди всех интервалов корреляции τк величину τкmin, определяют оценочное время корреляции τоц, равное величине 0,5τкmin, нумеруют полученные автокорреляционные функции, определяют для каждой d-й выборки Cd коэффициент корреляции zd, соответствующий w-му отсчету автокорреляционной функции, где
    Figure 00000108
    формируют в памяти электронно-вычислительной машины радиолокационной станции двухстрочный массив Hz, в первую строку которого записывают соответствующие d-e номера автокорреляционной функции, во вторую - соответствующие им оценочные коэффициенты корреляции zd, формируют последовательность из значений коэффициентов корреляции zd массива Hz, графически представляющую собой корреляционную характеристику отражений воздушной цели, проводят сглаживание сформированной корреляционной характеристики, то есть устраняют локальные максимумы и минимумы, оставляя только глобальные, определяют в сглаженной корреляционной характеристике такой ее участок между смежными глобальными максимумом zdmax и минимумом zdmin, на котором максимальное zdmax и минимальное zdmin значения коэффициентов корреляции имеют наибольшее отличие, находят на этом участке точку корреляционной характеристики со значением коэффициента корреляции zd сред, которое наиболее точно соответствует величине
    Figure 00000109
    используют эту точку как середину информативного интервала синтезирования длительностью Тии=0,5 с, по номеру выборки d, соответствующей коэффициенту корреляции zd сред, определяют соответствующую d-ю выборку отражательной характеристики, находят отсчет, соответствующий середине d-й выборки и определяют его номер в отражательной характеристике по формуле
    Figure 00000110
    принимают длительность Тии за длительность информативного интервала синтезирования Тс, вычисляют номера отсчетов в отражательной характеристике, которые являются началом iн и концом iк информативного интервала синтезирования по соответствующим формулам
    Figure 00000111
    где roundl(*) - операция округления значения аргумента * до ближайшего следующего целого числа, из массива Hg отражений извлекают амплитудные и фазовые значения, входящие в интервал синтезирования Тс, ограниченные номерами отсчета слева iн и справа iк, создают в памяти электронно-вычислительной машины радиолокационной станции четырехстрочный массив Ни, в первую строку которого записывают μ-е номера периодов повторения с 1-го по М-й, причем
    Figure 00000112
    а μ-й номер в пределах массива Ни соответствует (iн+μ-1)-му номеру в исходной отражательной характеристике, во вторую - амплитуды
    Figure 00000113
    μ-x отсчетов участка отражательной характеристики, входящего в информативный интервал синтезирования, в третью - фазы
    Figure 00000114
    соответствующих μ-х отсчетов отражательной характеристики, принадлежащих информативному интервалу синтезирования, в четвертую - моменты времени tμ=(iн+μ-1)Ти, соответствующие амплитудам и фазам отраженных сигналов в μ-x периодах повторения, при этом первый элемент массива Ни соответствует началу информативного интервала синтезирования, то есть iн-му элементу массива Hg, а последний элемент массива Ни соответствует концу информативного интервала синтезирования, то есть iк-му элементу массива Hg, проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями
    Figure 00000115
    выборки, состоящей из 8-ми первых отсчетов массива Ни, в результате которого получают начальный низкоинформативный доплеровский спектр, определяют в полученном начальном низкоинформативном доплеровском спектре частоту Доплера
    Figure 00000116
    которая соответствует максимальной по амплитуде составляющей спектра, определяют радиальную скорость воздушной цели в начале информативного интервала синтезирования
    Figure 00000117
    по формуле
    Figure 00000118
    где λ - длина волны излученного сигнала, проводят операцию быстрого дискретного преобразования Фурье с комплексными значениями выборки, состоящей из 8-ми последних отсчетов массива Ни, в результате которого получают конечный низкоинформативный доплеровский спектр, определяют в полученном конечном низкоинформативном доплеровском спектре частоту Доплера
    Figure 00000119
    которая соответствует максимальной по амплитуде составляющей спектра, определяют радиальную скорость воздушной цели в конце информативного интервала синтезирования
    Figure 00000120
    по формуле
    Figure 00000121
    определяют среднюю радиальную скорость
    Figure 00000122
    воздушной цели в пределах информативного интервала синтезирования по формуле
    Figure 00000123
    определяют радиальное ускорение ар воздушной цели на выбранном информативном интервале синтезирования по формуле
    Figure 00000124
    рассчитывают на основе полученных значений средней радиальной скорости
    Figure 00000125
    и ускорения ар величину компенсируемой фазы для каждого tμ-го момента времени, входящего в информативный интервал синтезирования по формуле
    Figure 00000126
    проводят компенсацию фазового влияния радиального движения воздушной цели на информативном интервале синтезирования путем изменения фазы по формуле
    Figure 00000127
    где знак «-» соответствует движению воздушной цели в направлении радиолокационной станции, т.е. приближению, а знак «+» соответствует удалению воздушной цели, создают в памяти электронно-вычислительной машины радиолокационной станции четырехстрочный массив Нс, в первую строку которого записывают номера периодов повторения с 1-го по М-й, во вторую - амплитуды
    Figure 00000128
    μ-х отсчетов отражательной характеристики, принадлежащих информативному интервалу синтезирования, в третью - скомпенсированные фазы
    Figure 00000129
    μ-х отсчетов отражательной характеристики, принадлежащих интервалу синтезирования, в четвертую - моменты времени tμ, соответствующие амплитудам и фазам отраженных сигналов в μ-х периодах повторения, для осуществления быстрого дискретного преобразования Фурье полученный массив дискретных отсчетов расширяют путем ввода новых элементов с нулевыми значениями амплитуд и фаз, добиваясь числа элементов массива Нс, равного Е=2m, где Е - ближайшее целое число, удовлетворяющее условию Е=2m и Е>М, m - целое число, проводят операцию быстрого дискретного преобразования Фурье с вектором комплексных величин
    Figure 00000130
    из массива Нс, получают массив Ндоп, содержащий Е комплексных значений спектра отраженного сигнала, который представляет собой доплеровский портрет воздушной цели, полученный на информативном интервале синтезирования Тс, в полученном массиве Ндоп, характеризующем доплеровский портрет, определяют крайний левый и крайний правый максимумы путем перебора и анализа амплитудных значений элементов массива Ндоп, записывают в память электронно-вычислительной машины радиолокационной станции номера отсчетов iнmax и iкmax из массива Ндоп, соответствующих начальному и конечному максимумам, вычисляют частотную ширину доплеровского портрета по формуле ΔF=(iкmax-iнmax)/Tc, считают, что все воздушные цели движутся с одинаковым курсовым углом γ и заранее известной путевой скоростью V, рассчитывают угловую скорость поворота воздушной цели относительно радиолокационной станции по формуле
    Figure 00000131
    рассчитывают поперечный размер воздушной цели по формуле
    Figure 00000132
    отличающийся тем, что из сигналов канала угловой автоматики, пропорциональных углу места ε и азимуту β воздушной цели, с помощью соответствующих аналого-цифровых преобразователей в каждом i-м периоде повторения получают цифровые отсчеты угла места εi и азимута βi, а из сигналов системы измерения дальности, пропорциональных дальности до воздушной цели, с помощью аналого-цифрового преобразователя получают для каждого i-го периода повторения цифровое значение дальности Ri, для каждого периода повторения рассчитывают время прохождения излученного сигнала до воздушной цели и обратно по формуле
    Figure 00000133
    на основании чего для каждого i-го периода повторения определяют номер отсчета gi оцифрованного отраженного сигнала, на который при дальности до воздушной цели Ri будет приходится пик отклика отраженного сигнала после согласованной фильтрации, применяя при этом формулу
    Figure 00000134
    используют значение gi для расчета времени приема отраженного от воздушной цели сигнала в i-м периоде повторения по формуле
    Figure 00000135
    с помощью электронно-вычислительной машины сферические координаты воздушной цели 1-го и I-го периодов повторения пересчитывают в прямоугольные координаты х, у, z соответствующих периодов повторения х1, у1, z1 и xI, yI, zI, на основе чего рассчитывают расстояние r, которое преодолела воздушная цель за время регистрации отраженных сигналов по формуле
    Figure 00000136
    с помощью электронно-вычислительной машины рассчитывают путевую скорость V воздушной цели по формуле
    Figure 00000137
    рассчитывают курсовой угол γ воздушной цели по формуле
    Figure 00000138
    выбирают значение дальности, соответствующее серединному отсчету в интервале регистрации данных, равное RI/2, на основе чего рассчитывают уточненное значение угловой скорости
    Figure 00000139
    поворота воздушной цели относительно радиолокационной станции по формуле
    Figure 00000140
    на основе рассчитанных данных определяют пространственный размер Lпр воздушной цели по формуле
    Figure 00000141
RU2018109177A 2018-03-14 2018-03-14 Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета RU2679396C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018109177A RU2679396C2 (ru) 2018-03-14 2018-03-14 Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018109177A RU2679396C2 (ru) 2018-03-14 2018-03-14 Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета

Publications (3)

Publication Number Publication Date
RU2018109177A RU2018109177A (ru) 2018-04-24
RU2018109177A3 RU2018109177A3 (ru) 2018-10-09
RU2679396C2 true RU2679396C2 (ru) 2019-02-08

Family

ID=62044368

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018109177A RU2679396C2 (ru) 2018-03-14 2018-03-14 Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета

Country Status (1)

Country Link
RU (1) RU2679396C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809532C1 (ru) * 2023-01-13 2023-12-12 Владимир Григорьевич Бартенев Способ классификации объектов по межчастотному корреляционному признаку в одноканальных рлс

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111723335B (zh) * 2020-05-21 2023-03-24 河海大学 一种基于同心圆周滤波器的目标对称轴检测方法
CN115766361A (zh) * 2022-10-17 2023-03-07 湖南鼎英信息科技有限公司 用于雷达通信一体化设备的前导序列处理方法及相关装置
CN115617820B (zh) * 2022-12-19 2023-04-28 广东省气象公共服务中心(广东气象影视宣传中心) 位置相关的雷达定量降水估测的深度学习数据集制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2150714C1 (ru) * 1999-05-17 2000-06-10 Военный университет войсковой противовоздушной обороны Вооруженных Сил Российской Федерации Способ измерения поперечных размеров радиолокационных объектов рлс в реальном масштабе времени
US6680691B2 (en) * 2002-05-13 2004-01-20 Honeywell International Inc. Methods and apparatus for accurate phase detection
WO2005017553A1 (en) * 2003-07-25 2005-02-24 Raytheon Company An improved process for phase-derived range measurements
EP1806596A1 (en) * 2005-12-30 2007-07-11 VALEO RAYTHEON SYSTEMS Inc. Method and system for generating a target alert
RU92200U1 (ru) * 2009-07-02 2010-03-10 Открытое акционерное общество "НПК "ТРИСТАН" Многопрофильное устройство классификации объектов по совокупности признаков
RU2589737C1 (ru) * 2015-07-06 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Способ извлечения из доплеровских портретов воздушных объектов признаков идентификации с использованием метода сверхразрешения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2150714C1 (ru) * 1999-05-17 2000-06-10 Военный университет войсковой противовоздушной обороны Вооруженных Сил Российской Федерации Способ измерения поперечных размеров радиолокационных объектов рлс в реальном масштабе времени
US6680691B2 (en) * 2002-05-13 2004-01-20 Honeywell International Inc. Methods and apparatus for accurate phase detection
WO2005017553A1 (en) * 2003-07-25 2005-02-24 Raytheon Company An improved process for phase-derived range measurements
EP1806596A1 (en) * 2005-12-30 2007-07-11 VALEO RAYTHEON SYSTEMS Inc. Method and system for generating a target alert
RU92200U1 (ru) * 2009-07-02 2010-03-10 Открытое акционерное общество "НПК "ТРИСТАН" Многопрофильное устройство классификации объектов по совокупности признаков
RU2589737C1 (ru) * 2015-07-06 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия войсковой противовоздушной обороны Вооруженных Сил Российской Федерации имени Маршала Советского Союза А.М. Василевского" Министерства Обороны Российской Федерации Способ извлечения из доплеровских портретов воздушных объектов признаков идентификации с использованием метода сверхразрешения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МИТРОФАНОВ Д.Г. и др. Измерение поперечных размеров летательных аппаратов по частотной протяженности доплеровского портрета. Радиотехника, 2008, N1, с. 84-90. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809532C1 (ru) * 2023-01-13 2023-12-12 Владимир Григорьевич Бартенев Способ классификации объектов по межчастотному корреляционному признаку в одноканальных рлс

Also Published As

Publication number Publication date
RU2018109177A (ru) 2018-04-24
RU2018109177A3 (ru) 2018-10-09

Similar Documents

Publication Publication Date Title
US7969345B2 (en) Fast implementation of a maximum likelihood algorithm for the estimation of target motion parameters
US11506776B2 (en) Method and device with improved radar resolution
CN105487060B (zh) 一种双通道四斜率调制的多目标提取方法
US7116265B2 (en) Recognition algorithm for the unknown target rejection based on shape statistics obtained from orthogonal distance function
RU2679396C2 (ru) Способ оценки пространственного размера воздушной цели по частотной протяженности доплеровского портрета
EP1505408A1 (en) A method for SAR processing without INS data
CN108469608B (zh) 一种运动平台雷达多普勒质心精确估计方法
RU2589737C1 (ru) Способ извлечения из доплеровских портретов воздушных объектов признаков идентификации с использованием метода сверхразрешения
CN105954751A (zh) Ka FMCW SAR的运动目标检测方法及装置
CN108776342A (zh) 一种高速平台sar慢速动目标检测与速度估计方法
CN102121990B (zh) 基于空时分析的逆合成孔径雷达的目标转速估计方法
CN112241003A (zh) 用于对象检测的方法和系统
RU2416105C1 (ru) Способ определения параметров движения воздушных объектов в обзорных радиолокаторах за счет использования когерентных свойств отраженных сигналов
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
JP2009236720A (ja) 移動目標検出装置
CN109507654B (zh) 一种基于ls的复杂环境下相位信息计算方法
CN114839614A (zh) 一种空时联合雷达高速微弱目标角度估计方法
US20210326581A1 (en) DNN-Based Human Face Classification
CN113009473B (zh) 一种多波束凝视雷达低仰角目标测高方法、装置及介质
CN108776341A (zh) 一种机载合成孔径雷达多普勒中心偏移计算方法
CN112505647A (zh) 一种基于序贯子图像序列的动目标方位速度估计方法
CN109116325B (zh) 基于捷变相参雷达的目标识别方法及系统
RU2571957C1 (ru) Способ экспериментальной проверки информационных и идентификационных возможностей доплеровских портретов воздушных объектов
RU2714884C1 (ru) Способ определения курса объекта на линейной траектории с использованием измерений его радиальной скорости
Baczyk et al. 3D High-resolution ISAR Imaging for Non-cooperative Air Targets