RU2675977C1 - Способ передачи тепла и теплопередающее устройство для его осуществления - Google Patents
Способ передачи тепла и теплопередающее устройство для его осуществления Download PDFInfo
- Publication number
- RU2675977C1 RU2675977C1 RU2017144446A RU2017144446A RU2675977C1 RU 2675977 C1 RU2675977 C1 RU 2675977C1 RU 2017144446 A RU2017144446 A RU 2017144446A RU 2017144446 A RU2017144446 A RU 2017144446A RU 2675977 C1 RU2675977 C1 RU 2675977C1
- Authority
- RU
- Russia
- Prior art keywords
- heat
- tube
- heater
- refrigerator
- ring
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012546 transfer Methods 0.000 claims abstract description 35
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 239000002826 coolant Substances 0.000 claims abstract description 26
- 238000001816 cooling Methods 0.000 claims abstract description 22
- 230000004907 flux Effects 0.000 claims abstract description 16
- 230000001174 ascending effect Effects 0.000 claims abstract description 5
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 38
- 210000003127 knee Anatomy 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 abstract description 24
- 238000001704 evaporation Methods 0.000 abstract description 11
- 230000008020 evaporation Effects 0.000 abstract description 11
- 238000009833 condensation Methods 0.000 abstract description 10
- 230000005494 condensation Effects 0.000 abstract description 10
- 238000009835 boiling Methods 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 3
- 238000003466 welding Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000013529 heat transfer fluid Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 230000010349 pulsation Effects 0.000 description 6
- 235000019441 ethanol Nutrition 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Изобретение относится к устройствам для передачи тепла от нагретой поверхности к холодной по принципу тепловой трубки, то есть за счет испарения и/или частичного вскипания рабочей жидкости, находящейся в трубке, в зоне контакта с нагревателем, и конденсации паров в зоне контакта с холодильником, с циркуляцией рабочей жидкости внутри тепловой трубки, и может быть использовано в электронике для охлаждения микропроцессоров, чипсетов, мощных светодиодных ламп, в химической промышленности для охлаждения и нагрева микрореакторов, для утилизации тепла реакций, в бытовых машинах (в холодильниках, посудомоечных машинах, водонагревателях и других устройствах), для охлаждения сварочных аппаратов, в солнечной энергетике для повышения эффективности нагрева воды в солнечных коллекторах, а также для других целей. Способ передачи тепла от нагревателя к холодильнику с использованием принципа гравитационной тепловой трубки, заключающийся в том, что тепловой поток передается от нагревателя к холодильнику при помощи замкнутой в кольцо трубки, состоящей из одного или нескольких витков, частично заполненной жидким теплоносителем, при нагреве которого происходит образование двухфазной системы, движущейся по трубке в снарядном режиме. Подвод теплоты к трубке нагревателем и отвод теплоты от трубки холодильником осуществляют асимметрично, так, чтобы создать в одном из колен каждого из витков кольца трубки непрерывное восходящее движение нагретого теплоносителя, при этом в другом колене каждого из витков кольца трубки создают непрерывное нисходящее движение нагретого теплоносителя. Также представлено теплопередающее устройство для осуществления способа. Согласно изобретению, асимметричный подвод теплоты к трубке и отвод теплоты от нее реализуются посредством того, что нагреватель и холодильник имеют асимметричную форму, причем одна часть поверхностей нагревателя и холодильника расположена горизонтально, а другая часть расположена вертикально. Кроме того, в теплопередающем устройстве на одном или нескольких из восходящих колен трубки установлены дополнительные пусковые нагревательные элементы, а на одном или нескольких из нисходящих колен трубки установлены дополнительные пусковые охлаждающие элементы. Изобретение позволяет повысить передаваемую тепловую мощность, повысить устойчивость и эффективность работы устройства за счет гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки, а также позволяет облегчить управляемость ее пуском. 2 н. и 1 з.п. ф-лы, 4 ил.
Description
Предлагаемое изобретение относится к устройствам для передачи тепла от нагретой поверхности к холодной по принципу тепловой трубки, то есть за счет испарения и/или частичного вскипания рабочей жидкости, находящейся в трубке, в зоне контакта с нагревателем, и конденсации паров в зоне контакта с холодильником, с циркуляцией рабочей жидкости внутри тепловой трубки, и может быть использовано в электронике для охлаждения микропроцессоров, чипсетов, мощных светодиодных ламп, в химической промышленности для охлаждения и нагрева микрореакторов, для утилизации тепла реакций, в бытовых машинах (в холодильниках, посудомоечных машинах, водонагревателях и других устройствах), для охлаждения сварочных аппаратов, в солнечной энергетике для повышения эффективности нагрева воды в солнечных коллекторах, а также для других целей.
Впервые идея тепловой трубы была предложена, по-видимому, Гоглером (фирма Дженерал Моторс корп.) и описана в пат. США 2350348 (Heat transfer device, заявл. 21.12.1942, опубл. 6.06.1944). Согласно известному изобретению, способ передачи тепла от одной точки к другой осуществляется с помощью замкнутой системы, в которой летучая жидкость последовательно испаряется и конденсируется при практически таком же давлении, которое включает испарение жидкого хладагента на одном уровне, конденсацию пара на другом при температуре ниже той, при которой происходит испарение, и жидкость возвращается из точки конденсации в точку испарения под действием капиллярных сил.
Устройство для передачи тепла, содержащее герметичный контейнер, имеющий две точки, подвергнутые воздействию двух разных температур, причем указанный контейнер содержит капиллярное средство, непрерывно продолжающееся от одной из указанных точек к другому, а также содержащее соединительный канал, проходящий между указанными точками, поверхность капиллярного средства между указанными точками, открытыми для указанного прохода, причем указанное контейнерное средство снабжено летучей жидкостью, контактирующей с капиллярными средствами, причем указанное капиллярное средство находится в форме не уплотненного спеченного железного порошка, связанного со стенками контейнера.
Известное устройство позволяет существенно (в несколько раз) увеличить интенсивность переноса тепловой энергии от одной точки к другой по сравнению с переносом тепла теплопроводными материалами (медью, серебром). Вместе с тем, известное устройство имеет существенные ограничения по тепловой мощности (тепловому потоку), т.е. по тепловому потоку, переносимому от нагревателя к холодильнику. Это связано с применением капиллярного средства, обладающего довольно высоким гидравлическим сопротивлением, ограничивающим транспорт конденсата из зоны конденсации (охлаждения) в зону нагрева.
Известно теплопередающее устройство (патент РФ №2120593, МПК F28D 15/04, 1998 г.), относящееся к двухфазным теплопередающим устройствам с капиллярной прокачкой теплоносителя, которое включает контурную тепловую трубу, содержащую испаритель с капиллярной структурой внутри и конденсатор. Испаритель и конденсатор сообщаются посредством раздельных паропровода и конденсатопровода. Теплопередающее устройство снабжено плоской тепловой трубой. Активная зона испарителя контурной тепловой трубы размещена внутри корпуса плоской тепловой трубы. На наружной поверхности активной зоны контурной тепловой трубы выполнена капиллярная структура, например, в виде мелкой винтовой нарезки, гидравлически связанная с капиллярной структурой плоской тепловой трубы, выполненной в виде нескольких слоев металлической сетки.
Изобретение позволяет увеличить теплопередающую способность при выполнении плоской контактной поверхности в зоне подвода тепла при любой ориентации в гравитационном поле. К недостаткам известного устройства относится низкая пропускная способность капиллярной структуры по сконденсированному теплоносителю, что существенно лимитирует тепловую мощность (тепловой поток) устройства.
Известен способ передачи тепла, реализованный в тепловой трубке (ТТ) (патент РФ №2568105, МПК F28D 15/04, 2015 г. ), включенной в состав объемного светодиодного (СД) модуля. Полости СД-модуля выполнены или в каждой из них установлена в тепловом контакте оболочка испарительной зоны ТТ с фитилем, имеющим капиллярную структуру, и с частично заполняющим указанную оболочку низкотемпературным жидким двухфазным теплоносителем, смачивающим фитиль. Испарительная зона ТТ соединена через адиабатическую зону с зоной конденсации пара указанного теплоносителя в окружающее пространство. Часть зоны испарения и/или адиабатическая зона может быть окружена теплоизолированным от нее кольцевым отсеком с электронным преобразователем питающей сети, подключенным к СД-модулю и к цоколю лампы. Жидкий двухфазный теплоноситель может быть выбран из группы спиртов, фреонов или дистиллированной воды с температурой кипения в пределах 36-145°С, обеспечивающих транспортирование теплоносителя в оболочке ТТ при произвольной ориентации лампы в пространстве и работоспособность в режимах испарения и/или кипения. Техническим результатом изобретения является повышение эффективности и мощности СД-ламп до уровня 20-120 Вт. Как и в других ТТ с использованием фитиля общая тепловая мощность (тепловой поток) способа и устройства передачи тепла определяется скоростью возврата теплоносителя из зоны конденсации в зону испарения.
Известно теплопередающее устройство (пат. РФ №2346862, МПК B64G 1/50, F28D 15/04, 2008 г.), которое содержит замкнутый двухфазный контур, заправленный низкокипящим теплоносителем. Контур включает в себя сообщенные трубопроводами конденсатор и испаритель. Конденсатор встроен в конструкцию панели радиатора и имеет внутренний канал с гладкими стенками. Испаритель соединен с гидроаккумулятором, имеющим тепловую связь с термостатируемой поверхностью. Внутри испарителя установлен капиллярный насос, выполненный в виде основной капиллярной структуры, соприкасающейся внутри ее центральной зоны с выступающей из гидроаккумулятора концентрической вспомогательной капиллярной структурой. Вблизи внутренней поверхности данной вспомогательной структуры с зазором между ней и торцевой поверхностью основной капиллярной структуры расположена концевая часть трубопровода подачи жидкого теплоносителя из конденсатора в испаритель. Подача осуществляется через гидроаккумулятор, корпус которого с установленной в нем капиллярной системой соединен с корпусом испарителя через переходник. Внутренний объем гидроаккумулятора в зоне вспомогательной капиллярной структуры и вблизи его внутренней поверхности снабжен фитилем с более мелкими ячейками, чем ячейки в остальной зоне. В последней расположена часть трубопровода подачи теплоносителя из конденсатора в испаритель, выполненная в виде спирали. На наружной поверхности гидроаккумулятора, ближе к испарителю, установлен электрообогреватель переменной мощности. Техническим результатом изобретения является стабильность рабочих характеристик устройства в течение длительного времени его эксплуатации (типично, 15 лет) в условиях космического пространства.
Вместе с тем, в известном устройстве капиллярный насос, выполненный в виде основной капиллярной структуры, а также гидроаккумулятор, с установленной в нем капиллярной системой не позволяют увеличить тепловую мощность (тепловой поток) устройства, что существенно ограничивает его применение в случаях, требующих повышенной тепловой нагрузки.
Наиболее близкими к заявляемым являются способ и устройство для его реализации, описанные в работах (P. Charoensawan, S. Khandekar, М. Groll, P. Terdtoon Closed loop pulsating heat pipes. Part A: parametric experimental investigations, Applied Thermal Engineering, 2003, V. 23, p. 2009-2020; B. Mehta, S. Khandekar, Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes, International Journal of Heat and Mass Transfer, 2014, V. 79, p. 279-290) и патенте H. Akachi (Structure of micro-heat pipe, пат США (US Patent) 5219020, 1993.). Согласно известному техническому решению, способ передачи тепла от нагревателя к холодильнику с использованием принципа гравитационной тепловой трубки, заключается в том, что тепловой поток передается от нагревателя к холодильнику при помощи замкнутой в кольцо (кольцевой) тепловой трубки, состоящей из одного или нескольких витков, частично заполненной жидким теплоносителем, при нагреве которого происходит образование двухфазной системы, движущейся по трубке в снарядном режиме.
Под снарядным режимом здесь подразумевается такое течение двухфазной среды, когда паровые или парогазовые включения имеют форму длинных пузырей, диаметр которых незначительно отличается от диаметра трубки, а отношение длины к диаметру составляет не менее 2-3 (Абиев Р.Ш. Моделирование гидродинамики снарядного режима течения газожидкостной системы в капиллярах, Теор. основы хим. технол., 2008, Т.42, №2, с. 115-127; В. Mehta, S. Khandekar, Taylor bubble-train flows and heat transfer in the context of Pulsating Heat Pipes, International Journal of Heat and Mass Transfer, 2014, V. 79, p. 279-290).
Особенностью известного решения является осциллирующий (или пульсационный) режим работы, когда направление течения двухфазного рабочего тела (жидкости с парогазовыми включениями - пузырями) в кольцевой тепловой трубке может резко меняться в пульсирующем режиме.
В результате такие тепловые трубки в литературе стали называться «кольцевыми пульсирующими тепловыми трубками» или «пульсирующими тепловыми трубками» ('closed-loop pulsating heat pipes' или 'pulsating heat pipes', сокращенно «СЬРНР», «РНР», по-русски «ПТТ») (B.Y. Tong, T.N. Wong, K.T. Ooi, Closed-loop pulsating heat pipe, Applied Thermal Engineering. 2001, V. 21, p. 1845-1862; V. S. Nikolayev, Oscillatory instability of the gas-liquid meniscus in a capillary under the imposed temperature difference, Int. Journal of Heat and Mass Transfer. 2013, V. 64, p. 313-321).
В известном техническом решении не удается создать направленное движение двухфазного рабочего тела: даже когда при пуске течение приобретает одно из направлений движения, оно может менять при работе устройства. Такое поведение системы в кольцевых тепловых трубках называют пульсирующей нестабильностью, для которой изучены установившиеся частоты пульсаций в трубках (V. S. Nikolayev, Oscillatory instability of the gas-liquid meniscus in a capillary under the imposed temperature difference, Int. Journal of Heat and Mass Transfer. 2013, V. 64, p.313-321; H. Yang, S. Khandekar, M. Groll, Operational limit of closed loop pulsating heat pipes, Applied Thermal Engineering, 2008, V. 28, p. 49-59). При таком режиме работы известного устройства по мере повышения тепловой нагрузки при определенном значении теплового потока происходит перегрев зоны нагрева, что приводит к «высушиванию» (dry-out) этой зоны, т.е. в зоне нагрева (для теплообменного устройства, работающего в поле гравитации - обычно в нижней части) вся жидкость переходит в паровую фазу, а жидкость выше зоны нагрева не участвует в процесса нагрева, поскольку при пульсациях она некоторое время «подвисает» в верхней части трубки.
Все это приводит к ограничению передаваемой тепловой мощности. Так, при значении удельной тепловой мощности, передаваемой вдоль оси трубки примерно 430 Вт/м, для известного устройства с внутренним диаметром трубки 2 мм (отнесенной к площади поперечного сечения трубки), наступало «высушивание» (Н. Yang, S. Khandekar, М. Groll, Operational limit of closed loop pulsating heat pipes, Applied Thermal Engineering, 2008, V. 28, p. 49-59). Кроме того, при высоких значениях тепловой мощности при локальном «высушивании» может происходить сильный перегрев трубок, приводящий к нарушению структуры металла, из которого они изготовлены, и их преждевременному выходу из строя. Помимо этого, при высоких тепловых нагрузках при попадании жидкости на сильно перегретую внутреннюю поверхность трубки может происходить резкое ее вскипание с образованием пара, что еще больше усилит пульсации, а при работе с легковоспламеняющимися жидкостями (например, спиртами), возможно их самовоспламенение при перегреве.
Указанные недостатки существенно ограничивают тепловую мощность, передаваемую устройством, снижают устойчивость работы и не позволяют получить ожидаемый эффект от использования устройства - стабильную передачу тепловой энергии с движущимся рабочим телом с заданной высокой тепловой нагрузкой, т.е. обеспечить стабильный конвективный перенос тепла. Кроме того, при пуске известного устройства не удается гарантированно определить направление циркуляции рабочего тела в тепловой трубке.
Анализ работы известного устройства, реализующего известный способ, показывает, что основной причиной указанных недостатков является отсутствие гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки.
Задача предлагаемого изобретения - повышение передаваемой тепловой мощности, повышение устойчивости и эффективности работы устройства за счет гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки, облегчение управляемости ее пуском.
Поставленная задача достигается тем, что в способе передачи тепла от нагревателя к холодильнику с использованием принципа гравитационной тепловой трубки, заключающийся в том, что тепловой поток передается от нагревателя к холодильнику при помощи замкнутой в кольцо трубки, состоящей из одного или нескольких витков, частично заполненной жидким теплоносителем, при нагреве которого происходит образование двухфазной системы, движущейся по трубке в снарядном режиме, согласно изобретению, подвод теплоты к трубке нагревателем и отвод теплоты от трубки холодильником осуществляют асимметрично, так, чтобы создать в одном из колен каждого из витков кольца трубки непрерывное восходящее движение нагретого теплоносителя, при этом в другом колене каждого из витков кольца трубки создают непрерывное нисходящее движение нагретого теплоносителя.
Поставленная задача достигается также тем, что теплопередающее устройство для осуществления способа содержит замкнутую в кольцо трубку из теплопроводящего материала, выполненную в виде оснащенного арматурой для заполнения жидкостью замкнутого контура, соприкасающегося в нижней части с нагревателем, а в верхней части соприкасающегося с холодильником, согласно изобретению, трубка имеет диаметр меньше критического, асимметричный подвод теплоты к трубке и отвод теплоты от нее реализуются посредством того, что нагреватель и холодильник имеют асимметричную форму, причем одна часть поверхностей нагревателя и холодильника расположена горизонтально, а другая часть расположена вертикально, при этом трубка имеет термический контакт с горизонтальной и вертикальной поверхностями нагревателя и холодильника.
Поставленная задача достигается также тем, что в теплопередающем устройстве на одном или нескольких из восходящих колен трубки установлены дополнительные пусковые нагревательные элементы, а на одном или нескольких из нисходящих колен трубки установлены дополнительные пусковые охлаждающие элементы.
На фиг. 1 изображен общий вид предлагаемого устройства для реализации заявляемого способа в состоянии до подвода тепла к нагревателю (т.е. в состоянии перед началом работы), на фиг. 2 - в работающем состоянии. На фиг. 3 представлен вариант реализации устройства с дополнительными пусковыми нагревательным и охлаждающим элементами, в работающем состоянии. На фиг. 4 изображен вариант замкнутой в кольцо трубки, состоящей из несколько витков (нагреватель и холодильник условно не показаны).
Теплопередающее устройство для осуществления заявленного способа содержит замкнутую в кольцо трубку 1 из теплопроводящего материала, выполненную в виде оснащенного арматурой (на фиг. 1-3 условно не показана) для заполнения жидкостью замкнутого контура трубки 1, соприкасающегося в нижней части с нагревателем 2 (элемент, от которого отводится тепло, например, процессор компьютера или лампа), а в верхней части соприкасающегося с холодильником 3 (конденсатор). При этом трубка 1 имеет внутренний диаметр меньше критического, что соответствует значению числа Бонда Во<3,368 (Bremerton F.P. The Motion of Long Bubbles in Tubes // J. Fluid Mech. 1961. №10. P. 166-188; Уоллис Г. Одномерные двухфазные течения. М.: Мир, 1972. 440 с.), что обеспечивает преобладание капиллярных сил над гравитационными, тем самым гарантируя стабильность межфазной границы раздела жидкость-газ/пар в трубке 1 (при более высоких значениях числа Бонда происходит распад межфазной границы и сепарация фаз).
На фиг. 1-3 представлен вариант, когда трубка 1 замкнута в кольцо с одним витком, на фиг. 4 показан случай с замкнутой в кольцо трубки, содержащей четыре витка. Количество витков может быть любым (ограничение сверху на количество витков обусловлено растущим гидравлическим сопротивлением), при этом витки могут быть расположены как в одной плоскости, с замыканием сверху (фиг. 4) или снизу, так и с параллельным расположением витков, навитых вокруг прямой оси, по аналогии с расположением витков в спиральной пружине или змеевике, либо вокруг оси, имеющей произвольную форму (окружности, эллипса, прямоугольника, синусоиды или другой формы).
В качестве нагревателя могут служить объекты, от которых необходимо отводить тепло - процессоры, лампы, нагревательные элементы в системах обогрева и т.п. В качестве холодильника могут служить объекты, к которым необходимо подвести тепло, либо специальные элементы, предназначенные для поддержания низкой температуры - например, теплообменные трубки, через которые пропускают хладагент - холодную воду или другие теплоносители.
Асимметричный подвод теплоты к трубке и отвод теплоты от нее реализуются посредством того, что нагреватель и холодильник имеют асимметричную форму, например, в форме тел с Г-образным сечением (фиг. 1-3), причем одна часть поверхностей нагревателя (2а) и холодильника (3а) расположена горизонтально, а другая часть нагревателя (2б) и холодильника (3б) расположена вертикально, при этом трубка 1 имеет хороший термический контакт с горизонтальной и вертикальной поверхностями нагревателя 2 и холодильника 3, например, при помощи сварки, пайки или плотного механического прижатия. Наличие асимметричного подвода теплоты к трубке и отвод теплоты от нее позволяют организовать направленное циркуляционное течение парогазожидкостной смеси по трубке 1, предотвращая пульсации течения, в конечном счете повышая количество энергии, переносимой с жидкостью и паром от нагревателя 2 к холодильнику 3 по трубке 1.
Соотношение размеров горизонтальной и вертикальной поверхностями нагревателя 2 и холодильника 3 может варьироваться в зависимости от выделяемой нагревателем мощности и вида жидкости, используемой в качестве рабочего тела, вплоть до полного вырождения горизонтальной части.
В теплопередающем устройстве могут быть также на одном или нескольких из восходящих колен трубки 1 могут быть установлены дополнительные пусковые нагревательные элементы 5, а на одном или нескольких из нисходящих колен трубки 1 могут быть установлены дополнительные пусковые охлаждающие элементы 6 (фиг. 3). Пусковые элементы 5 и 6 включают только при пуске, и служат они для создания стабильного однонаправленного циркуляционного течения. После стабилизации течения элементы пусковые элементы 5 и 6, как правило, можно выключить.
Техническим результатом является повышение передаваемой устройством тепловой мощности, повышение устойчивости и эффективности работы устройства за счет гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки, облегчение управляемости ее пуском. Этот результат достигается за счет реализации предлагаемого способа, обеспечивающего устойчивое направленное циркуляционного течение парогазожидкостной смеси в снарядном режиме благодаря асимметричному подводу и отводу тепла. Асимметрия приводит к тому, что в системе исчезает бифуркационный режим движения рабочего тела, когда восходящее течение имеет место то в одном колене, то в другом. В итоге в системе устанавливается стационарное течение, обеспечивающее стабильность гидродинамических параметров, вследствие чего стабильными становятся и параметры теплообмена - относительные площади кипения (в нагревателе) и конденсации (в холодильнике), коэффициенты теплоотдачи в нагревателе и в холодильнике.
Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.
Аппарат работает следующим образом. Трубку 1 через устройство ввода (арматура для заполнения жидкостью замкнутого контура, на фиг. 1-3 не показана) заполняют рабочим телом - жидким теплоносителем, предпочтительно на 50-70% (фиг. 1). Включают нагреватель 2, подают хладагент в холодильник 3. При наличии пусковых нагревательных элементов 5 и пусковых охлаждающих элементов 6 включают и эти элементы (фиг. 3). В результате нагрева начинается локальное кипение жидкого теплоносителя в зоне нагревателя 2. Тепловые потоки qha от горизонтальной части нагревателя 2а частично направлены непосредственно к горизонтальной части трубки 1, а частично перетекают по теплопроводящему материалу нагревателя 2 к его вертикальной части 26, формируя поток qhb. Благодаря асимметричной форме нагревателя парогазовые пузыри 4 (содержащие пары закипевшей жидкости и растворенные в ней газы) формируются преимущественно в левом колене трубки 1. В результате в период пуска в левом колене трубки 1 образуется парогазожидкостная смесь, а в правом колене находится чистая жидкость. За счет разности плотностей парогазожидкостная смесь поднимается выше, достигая поверхности трубки 1, контактирующей с холодильником 3. Этому же способствует и расширение пузырей 4 в трубке 1 при нагреве рабочего тела. При контакте с холодной частью трубки 1, контактирующей с холодильником 3, пары конденсируются, отдавая холодильнику тепло с тепловыми потоками qca в горизонтальной части и qcb в вертикальной части (при наличии пусковых охлаждающих элементов 6 возникают дополнительные потоки qcd, пузыри 4, поступающие в правое колено (фиг. 2 и 3) уменьшаются в размерах или полностью исчезают. При включении пусковых нагревательных элементов 5 и пусковых охлаждающих элементов 6 возникают дополнительные потоки qhd и qcd соответственно, суммируясь с потоками qhb и qcb (фиг. 3). В правом колене охлажденное рабочее тело (двухфазная парогазожидкостная смесь или чистая жидкость, в зависимости от степени охлаждения) с уменьшенными по длине пузырями стекает вниз, по направлению к нагревателю. В аппарате устанавливается циркуляционное течение, обусловленное разностью плотностей парогазожидкостной смеси в левом и правом коленах (в левом колене объемная доля пузырей выше, поэтому плотность ниже). При этом в одном из колен (левом на фиг. 1-3) каждого из витков (на фиг. 1-3 показан случай одного витка) кольца трубки 1 возникает непрерывное восходящее движение, при этом в другом колене (правом на фиг. 1-3, показан случай одного витка) трубки 1 возникает непрерывное нисходящее движение. Наличие вертикального участка нагревателя 2б способствует интенсивному созданию пузырей в левом колене трубки 1, а благодаря вертикальному участку холодильника 3б обеспечивается интенсивная конденсация паров и охлаждение газа, за счет чего размеры пузырей в левом колене трубки 1 уменьшаются до минимальных значений (при определенных условиях могут уменьшиться до нуля, т.е. произойдет полная конденсация пара и растворение газа в жидкости).
После установления стабильного течения рабочего тела по циркуляционному контуру трубки 1 дополнительные пусковые нагревательные элементы 5 и дополнительные пусковые охлаждающие элементы 6, как правило, следует отключить. Необходимость в их непрерывной работе может возникать при слабой плотности потока от основного нагревателя или слабом охлаждении основным холодильником (при нештатных ситуациях).
При этом тепловые потоки, поступающие на вертикальные участки 2а нагревателя и За холодильника, обеспечивают асимметричное генерирование пузырей в восходящем потоке и их сжатие - в нисходящем.
В известных технических решениях - аналогах с пульсирующим режимом течения рабочего тела - парогазожидкостной смеси - пульсации приводят к тому, что направление движения нагретого теплоносителя резко меняется на противоположное. В результате горячий поток рабочего тела, двигавшийся по направлению к холодильнику, до момента смены направления течения успевает передать полученное им количество теплоты от нагревателя лишь частично, оставшаяся же часть теплоты возвращается с конвективным потоком рабочего тела при его возвратном движении обратно в зону нагревателя. В итоге парогазожидкостная смесь охлаждается в холодильнике в значительно меньшей степени, чем при направленной циркуляции, и ее последующий нагрев при попадании в зону нагревателя происходит с меньшей движущей силой, т.е. меньшим перепадом между температурой поверхностью трубки в зоне нагревателя и температурой рабочего тела в этой зоне. В конечном счете все описанные явления в известных технических решениях - аналогах с пульсирующим режимом течения рабочего тела приводят к снижению эффективности процесса переноса тепла от нагревателя к холодильнику. При следующей пульсации в холодильник попадает рабочее тело, которое не успело нагреться в достаточной степени, и поэтому разность температур между поверхностью трубки в зоне холодильника и рабочим телом также ниже достигаемого при направленной циркуляции.
При направленном циркуляционном течении, в отличие от пульсирующего режима течения рабочего тела по трубке 1, обеспечиваются наиболее благоприятные условия для теплообмена, когда теплоноситель последовательно проходит зоны нагрева и охлаждения, сначала получая теплоту от нагретого объекта (нагревателя) и достигая максимальной температуры на выходе из зоны нагрева, затем перенося эту теплоту к холодному объекту (холодильнику) со снижением температуры до минимального значения на выходе из зоны охлаждения. В итоге как в зоне нагревателя, так и в зоне холодильника достигаются максимальные значения перепадов температур, а значит, и максимальные тепловые потоки, что влечет за собой повышение общей эффективности переноса тепла в предлагаемом устройстве.
Кроме того, стационарное течение, в отличие от хаотического осциллирующего, легче поддается управлению, и увеличение тепловой нагрузки на устройство дает прогнозируемый и контролируемый результат в виде усиления циркуляционного течения.
Все вышеуказанные явления и процессы, происходящие в предлагаемом изобретении, приводят к повышению передаваемой устройством тепловой мощности, повышению устойчивости и эффективности работы устройства за счет гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки, облегчение управляемости ее пуском.
Пример конкретного выполнения 1. Устройство-прототип, изготовленное по известному изобретению, содержащее замкнутую в кольцо трубку диаметром 1 мм из латуни с высотой витков 300 мм (количество витков 4, количество колен 8), выполненную в виде оснащенного арматурой для заполнения жидкостью замкнутого контура, соприкасающегося в нижней части с нагревателем, а в верхней части соприкасающегося с холодильником, и работающее в пульсационном режиме, при этом трубка заполнена на 60% этиловым спиртом.
Достигнутая передаваемая от нагревателя к холодильнику тепловая мощность достигла 65 Вт.
Пример конкретного выполнения 2. При проведении того же процесса в аппарате-прототипе, выполненном из трубок с диаметром 4 мм, который больше критического диаметра (критический диаметр для спирта этилового составляет 3,09 мм; см. пояснения ниже) с теми же размерами и количеством витков, снарядный режим в трубке не возникал, пар поднимался в виде сплошного потока вверх, а жидкость оставалась внизу, причем ее уровень постепенно снижался за счет испарения, с одинаковой скоростью во всех коленах трубки 1. Направленной циркуляции в аппарате также не возникало. Эффективный тепловой поток от нагревателя к холодильнику составил 20 Вт. При увеличении потока выше этой величины практически весь объем жидкости переходил в парообразное состояние, а в трубке 1 в зоне нагревателя возникал кризис кипения, приводивший к перегреву трубки в нижней части на 30-40°С.
Расчет критического диаметра: для этанола плотность ρ=789 кг/м3, поверхностное натяжение σ=0.022 Н/м. По определению число Бонда Во=gd2Δρ/σ; откуда следует значение критического диаметра: dcr=(Bo⋅σ/Δρg)0 5=(3.368⋅0.022 /789⋅9.81)0.5=3,09 мм.
Пример конкретного выполнения 3. Реализация предлагаемых способа и устройства. При проведении того же процесса в устройстве, аналогичном описанному в примере конкретного выполнения 1, выполненном по предлагаемому изобретению (см. фиг. 4, трубка имеет диаметр 1 мм меньше критического, асимметричный подвод теплоты к трубке и отвод теплоты от нее реализуются посредством того, что нагреватель и холодильник имеют асимметричную форму, причем одна часть поверхностей нагревателя и холодильника расположена горизонтально, а другая часть расположена вертикально, при этом трубка имеет термический контакт с горизонтальной и вертикальной поверхностями нагревателя и холодильника), в трубке 1 возникает устойчивое направленное течение парогазожидкостной смеси. В одном из колен каждого из витков кольца трубки 1 создается непрерывное восходящее движение нагретого теплоносителя, при этом в другом колене каждого из витков кольца трубки 1 создают непрерывное нисходящее движение нагретого теплоносителя.
При этом значение передаваемой от нагревателя к холодильнику тепловой мощности достигло 150 Вт, т.е. в 2,3 раза. Время выхода на стационарный режим циркуляционного течения составило 8 минут.
Пример конкретного выполнения 4. Реализация предлагаемых способа и устройства с дополнительными пусковыми элементами. При проведении того же процесса в устройстве, выполненном по предлагаемому изобретению, на двух из четырех восходящих коленах трубки установлены дополнительные пусковые нагревательные элементы 5, а на двух нисходящих коленах трубки 1 установлены дополнительные пусковые охлаждающие элементы 6. Мощность каждого дополнительных пусковых элементов составляла 20 Вт.
Благодаря дополнительным пусковым элементам время выхода на стационарный режим циркуляционного течения сократилось до 3 минут. После выхода на режим дополнительные пусковые элементы были отключены, а рабочее тело продолжало циркулировать по трубке 1.
Таким образом, предлагаемое изобретение позволяет повысить передаваемую тепловую мощность, повысить устойчивость и эффективность работы устройства за счет гарантированной направленной циркуляции теплоносителя по каналам тепловой трубки, облегчить управляемости ее пуском.
Claims (3)
1. Способ передачи тепла от нагревателя к холодильнику с использованием принципа гравитационной тепловой трубки, заключающийся в том, что тепловой поток передается от нагревателя к холодильнику при помощи замкнутой в кольцо трубки, состоящей из одного или нескольких витков, частично заполненной жидким теплоносителем, при нагреве которого происходит образование двухфазной системы, движущейся по трубке в снарядном режиме, отличающийся тем, что подвод теплоты к трубке нагревателем и отвод теплоты от трубки холодильником осуществляют асимметрично, так, чтобы создать в одном из колен каждого из витков кольца трубки непрерывное восходящее движение нагретого теплоносителя, при этом в другом колене каждого из витков кольца трубки создают непрерывное нисходящее движение нагретого теплоносителя.
2. Теплопередающее устройство для осуществления способа по п. 1, содержащее замкнутую в кольцо трубку из теплопроводящего материала, выполненную в виде оснащенного арматурой для заполнения жидкостью замкнутого контура, соприкасающегося в нижней части с нагревателем, а в верхней части соприкасающегося с холодильником, отличающееся тем, что трубка имеет диаметр меньше критического, асимметричный подвод теплоты к трубке и отвод теплоты от нее реализуются посредством того, что нагреватель и холодильник имеют асимметричную форму, причем одна часть поверхностей нагревателя и холодильника расположена горизонтально, а другая часть расположена вертикально, при этом трубка имеет термический контакт с горизонтальной и вертикальной поверхностями нагревателя и холодильника.
3. Теплопередающее устройство по п. 2, отличающееся тем, что на одном или нескольких из восходящих колен трубки установлены дополнительные пусковые нагревательные элементы, а на одном или нескольких из нисходящих колен трубки установлены дополнительные пусковые охлаждающие элементы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017144446A RU2675977C1 (ru) | 2017-12-18 | 2017-12-18 | Способ передачи тепла и теплопередающее устройство для его осуществления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017144446A RU2675977C1 (ru) | 2017-12-18 | 2017-12-18 | Способ передачи тепла и теплопередающее устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2675977C1 true RU2675977C1 (ru) | 2018-12-25 |
Family
ID=64753764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017144446A RU2675977C1 (ru) | 2017-12-18 | 2017-12-18 | Способ передачи тепла и теплопередающее устройство для его осуществления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2675977C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710982A (zh) * | 2019-05-08 | 2021-11-26 | 株式会社日立制作所 | 自激振荡热管冷却装置和搭载有该冷却装置的铁道车辆 |
CN115468116A (zh) * | 2021-06-10 | 2022-12-13 | 麦格纳斯太尔汽车技术两合公司 | 液态氢储存器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5219020A (en) * | 1990-11-22 | 1993-06-15 | Actronics Kabushiki Kaisha | Structure of micro-heat pipe |
RU2346862C2 (ru) * | 2007-03-05 | 2009-02-20 | Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" | Теплопередающее устройство космического аппарата |
RU2588142C2 (ru) * | 2010-02-03 | 2016-06-27 | Шеврон Филлипс Кемикал Компани Лп | Сжимаемый жидкий разбавитель для полимеризации полиолефинов |
RU2635720C2 (ru) * | 2015-12-28 | 2017-11-15 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) | Эффективный конденсатор пара для условий микрогравитации |
-
2017
- 2017-12-18 RU RU2017144446A patent/RU2675977C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5219020A (en) * | 1990-11-22 | 1993-06-15 | Actronics Kabushiki Kaisha | Structure of micro-heat pipe |
RU2346862C2 (ru) * | 2007-03-05 | 2009-02-20 | Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. академика М.Ф. Решетнева" | Теплопередающее устройство космического аппарата |
RU2588142C2 (ru) * | 2010-02-03 | 2016-06-27 | Шеврон Филлипс Кемикал Компани Лп | Сжимаемый жидкий разбавитель для полимеризации полиолефинов |
RU2635720C2 (ru) * | 2015-12-28 | 2017-11-15 | Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) | Эффективный конденсатор пара для условий микрогравитации |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710982A (zh) * | 2019-05-08 | 2021-11-26 | 株式会社日立制作所 | 自激振荡热管冷却装置和搭载有该冷却装置的铁道车辆 |
CN113710982B (zh) * | 2019-05-08 | 2023-05-30 | 株式会社日立制作所 | 自激振荡热管冷却装置和搭载有该冷却装置的铁道车辆 |
CN115468116A (zh) * | 2021-06-10 | 2022-12-13 | 麦格纳斯太尔汽车技术两合公司 | 液态氢储存器 |
US20220397240A1 (en) * | 2021-06-10 | 2022-12-15 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Liquid hydrogen storage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5940270A (en) | Two-phase constant-pressure closed-loop water cooling system for a heat producing device | |
Chen et al. | Steady-state and transient performance of a miniature loop heat pipe | |
CN111642103A (zh) | 高热流密度多孔热沉流动冷却装置 | |
CN103712498B (zh) | 一种应用于平板型lhp系统的双毛细芯蒸发器 | |
US3677336A (en) | Heat link, a heat transfer device with isolated fluid flow paths | |
RU2675977C1 (ru) | Способ передачи тепла и теплопередающее устройство для его осуществления | |
CN108253830A (zh) | 具有辅助输液管路的回路热管 | |
CN105716896A (zh) | 一种提高沸腾流动传热实验操作弹性的工艺装置及实施方法 | |
EA030562B1 (ru) | Пассивный двухфазный охлаждающий контур | |
CN108253829A (zh) | 微通道阵列辅助驱动的回路热管 | |
Ma et al. | In-situ phase separation to improve phase change heat transfer performance | |
CN112432532B (zh) | 蒸发器组件及环路热管 | |
RU2656037C1 (ru) | Напорный капиллярный насос | |
KR102005339B1 (ko) | 곡면 다공판을 구비한 열사이펀 | |
EP3611769A1 (en) | System for heat recovery | |
WO2023279757A1 (zh) | 散热装置和电子设备 | |
CN110701934A (zh) | 一种低热阻半导体制冷器导冷组件 | |
JP2006313052A (ja) | 上部加熱ループ熱交換熱輸送装置 | |
KR200242427Y1 (ko) | 고효율 열매체 방열기를 이용한 3중관 열교환기 및 이를이용한 보일러장치 | |
Patel et al. | A capillary tube pulsating heat pipe with asymmetric adiabatic channels for thermal management | |
US4884627A (en) | Omni-directional heat pipe | |
RU2473035C1 (ru) | Контурная тепловая труба | |
Van Oost et al. | Secondary wick operation principle and performance mapping in LHP and FLHP evaporators | |
WO2002050488A1 (en) | Horizontal two-phase loop thermosyphon with capillary structures | |
JP4391048B2 (ja) | 気泡ポンプ型熱交換熱輸送機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191219 |