RU2674806C1 - Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя - Google Patents

Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя Download PDF

Info

Publication number
RU2674806C1
RU2674806C1 RU2017135495A RU2017135495A RU2674806C1 RU 2674806 C1 RU2674806 C1 RU 2674806C1 RU 2017135495 A RU2017135495 A RU 2017135495A RU 2017135495 A RU2017135495 A RU 2017135495A RU 2674806 C1 RU2674806 C1 RU 2674806C1
Authority
RU
Russia
Prior art keywords
fuel
turbine engine
gas turbine
pump
pressure
Prior art date
Application number
RU2017135495A
Other languages
English (en)
Inventor
Михаил Викторович Россик
Юрий Семенович Савенков
Игорь Георгиевич Лисовин
Вячеслав Евгеньевич Рукавишников
Original Assignee
Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") filed Critical Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК")
Priority to RU2017135495A priority Critical patent/RU2674806C1/ru
Priority to EP18864776.2A priority patent/EP3693577A4/en
Priority to JP2020541334A priority patent/JP7123150B2/ja
Priority to PCT/RU2018/000646 priority patent/WO2019070160A1/ru
Priority to US16/754,023 priority patent/US20210254552A9/en
Priority to CA3078274A priority patent/CA3078274C/en
Priority to CN201880065302.3A priority patent/CN111655993B/zh
Application granted granted Critical
Publication of RU2674806C1 publication Critical patent/RU2674806C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/32Arrangement, mounting, or driving, of auxiliaries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/263Control of fuel supply by means of fuel metering valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/50Application for auxiliary power units (APU's)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/606Bypassing the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/85Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Turbines (AREA)
  • Supercharger (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Изобретение относится к способу создания необходимого давления и расхода топлива в топливной системе авиационного газотурбинного двигателя. Способ создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающийся в том, что обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают, режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более чем на режиме земного малого газа обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давления или температуру топлива на необходимом уровне. Таким образом, предлагаемое изобретение позволяет исключить ограничения по расходу и давлению топлива при низкой частоте вращения газотурбинного двигателя, снизить величины подогрева топлива от топливного насоса с нерегулируемой производительностью (механический привод) на основных режимах газотурбинного двигателя с низким расходом топлива, повысить отказоустойчивость газотурбинного двигателя по функциональному отказу «самопроизвольное выключение», обеспечить условия для достижения длительных ресурсов топливных насосов, получить оптимальные массогабаритные параметры топливных насосов. 1 ил.

Description

Изобретение относится к способу создания необходимого давления и расхода топлива в топливной системе авиационного газотурбинного двигателя (далее ГТД).
Известна система топливопитания газотурбинного двигателя, содержащая электронный регулятор (контроллер), вход которого соединен с датчиками параметров двигателя и режима полета, последовательно соединенные электронасос высокого давления и дозирующий механизм. Недостатком такой системы для ГТД с большой тягой являются: повышенные массогабаритные характеристики электронасоса, зависимость надежности ГТД на критичных режимах полета (взлет, посадка) от качества электрического питания электропривода насоса, необходимость в большой мощности и высокой надежности источников электропитания и вторичных преобразователей электропитания электропривода насоса, трудности в обеспечении достаточной надежности электропривода насоса большой мощности в условиях работы ГТД в течение длительных ресурсов (Патент RU №2329387, МПК F02C 9/26, опубл. 20.07.2008). При этом наиболее распространенные топливные системы авиационных ГТД оборудуются топливным насосом с механическим приводом, имеющим значительные преимущества по массогабаритным показателям и высокой подтвержденной надежности.
Наиболее близким к заявляемому изобретению является способ работы топливной системы вспомогательной силовой установки ГТД, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающийся в том, что осуществляют подачу топлива в камеру сгорания (далее КС) ГТД на частотах вращения ГТД 1-8% за счет включения и работы топливного насоса с электрическим приводом, когда частота вращения топливного насоса с механическим приводом недостаточна для обеспечения необходимого расхода топлива, при достижении частоты вращения ГТД более 8% контроллером выключают топливный насос с электрическим приводом, осуществляют подачу топлива в КС за счет работы топливного насоса с механическим приводом (Патент US №9206775, МПК B64D 37/34, F02C 7/236, F02M 31/16, F02M 37/00, опубл. 08.12.2015).
Недостатком известной топливной системы вспомогательной силовой установки ГТД, является то, что при эффективном применении аналогичных подходов к конструкции для маршевого авиационного двигателя, требуются другие комбинации режимов работы двух топливных насосов с регулируемой (топливный насос с электроприводом) и нерегулируемой производительностью (топливный насос с механическим приводом).
Техническая задача, на решение которой направлено изобретение, заключается в эффективном использовании на маршевом авиационном ГТД преимуществ двух топливных насосов с разным типом приводов, минимизации их недостатков и получения высоких удельных и оптимальных параметров топливных насосов, в исключении ограничений по расходу и давлению топлива по частоте вращения компрессора высокого давления на этапе розжига КС при запуске ГТД, в снижении величины подогрева топлива от топливного насоса с нерегулируемой производительностью (механический привод) на основных режимах с низким расходом топлива (в зоне режимов: малый газ, полетный малый газ, крейсерский полет), в повышении отказоустойчивости двигателя по функциональному отказу «самопроизвольное выключение», в обеспечении условий для достижения длительных ресурсов топливных насосов, в получении оптимальных массогабаритных параметров топливных насосов.
Техническая задача решается тем, что в способе создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающемся в том, что обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают, режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более чем на режиме земного малого газа обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давление или температуру топлива на необходимом уровне.
В предлагаемом изобретении обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают, режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более чем на режиме земного малого газа обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давление или температуру топлива на необходимом уровне, что обеспечивает эффективное использование на маршевом авиационном газотурбинном двигателе преимуществ двух топливных насосов с разным типом привода.
На фиг. 1 представлена схема способа создания необходимого давления и расхода топлива в топливной системе ГТД.
Способ создания необходимого давления и расхода топлива в топливной системе ГТД осуществляется следующим образом. Топливный насос с электрическим приводом 1 используется как основной насос на начальном этапе запуска ГТД (не показан), обеспечивая процессы подачи топлива в КС (не показан) и подачу рабочей жидкости (топлива) для работы гидроприводных агрегатов для запуска двигателя.
Топливный насос с механическим приводом 2 от коробки приводов 5 на начальном этапе запуска двигателя работает в замкнутом контуре. Подключение к процессам подачи топлива в КС топливного насоса с механическим приводом 2 происходит плавно по мере увеличения частоты вращения насоса и выхода двигателя на режим малого газа. При этом используемая производительность топливного насоса с электрическим приводом 1 соответственно снижается.
Режим земного малого газа и все режимы двигателя с более высокими частотами вращения роторов ГТД и приводного вала топливного насоса с механическим приводом 2 полностью обеспечиваются работой топливного насоса с механическим приводом 2 для подачи необходимого расхода топлива в КС двигателя и создания необходимого давления рабочей жидкости для работы гидроприводных агрегатов. При этом топливный насос с электрическим приводом 1 в зависимости от потребностей двигателя может быть выключен, либо работать в замкнутом контуре с пониженной подачей, либо подключаться к подаче топлива в КС, либо для поддержания необходимых параметров давления и температуры топлива в особых условиях.
Контроллер 4 по показаниям измерений датчиков 6 управляет подключением и режимами работы топливного насоса с электрическим приводом 1 и дозатором/распределителем топлива 3. Дозатор/распределитель топлива 3 обеспечивает дозирование топлива в КС и распределение топлива по топливной системе.
Таким образом, выполнение предлагаемого изобретения с вышеуказанными признаками, позволяет исключить ограничения по расходу и давлению топлива по частоте вращения при запуске газотурбинного двигателя, снизить величины подогрева топлива от топливного насоса с нерегулируемой производительностью топливного насоса с механическим приводом на основных режимах с низким расходом топлива, повысить отказоустойчивость двигателя по функциональному отказу «самопроизвольное выключение», обеспечить условия для достижения длительных ресурсов топливных насосов за счет распределения функций по разным режимам работы газотурбинного двигателя и по длительности включения, получить оптимальные массогабаритные параметры топливных насосов.

Claims (1)

  1. Способ создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающийся в том, что обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более, чем на режиме земного малого газа, обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давления или температуру топлива на необходимом уровне.
RU2017135495A 2017-10-05 2017-10-05 Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя RU2674806C1 (ru)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2017135495A RU2674806C1 (ru) 2017-10-05 2017-10-05 Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя
EP18864776.2A EP3693577A4 (en) 2017-10-05 2018-10-03 OPERATING PROCEDURE FOR THE FUEL SUPPLY SYSTEM OF A GAS TURBINE ENGINE
JP2020541334A JP7123150B2 (ja) 2017-10-05 2018-10-03 ガスタービンエンジンの燃料系統における必要な圧力および燃料流量の創出方法
PCT/RU2018/000646 WO2019070160A1 (ru) 2017-10-05 2018-10-03 Способ работы топливной системы газотурбинного двигателя
US16/754,023 US20210254552A9 (en) 2017-10-05 2018-10-03 Method for the creation of the required pressure and fuel flow rate in the fuel system of the gas turbine engine
CA3078274A CA3078274C (en) 2017-10-05 2018-10-03 Method for creating a required pressure and fuel flow rate in a fuel system of a gas turbine engine
CN201880065302.3A CN111655993B (zh) 2017-10-05 2018-10-03 用于运行燃气涡轮发动机的燃料系统的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017135495A RU2674806C1 (ru) 2017-10-05 2017-10-05 Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя

Publications (1)

Publication Number Publication Date
RU2674806C1 true RU2674806C1 (ru) 2018-12-13

Family

ID=64753114

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017135495A RU2674806C1 (ru) 2017-10-05 2017-10-05 Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя

Country Status (7)

Country Link
US (1) US20210254552A9 (ru)
EP (1) EP3693577A4 (ru)
JP (1) JP7123150B2 (ru)
CN (1) CN111655993B (ru)
CA (1) CA3078274C (ru)
RU (1) RU2674806C1 (ru)
WO (1) WO2019070160A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798893C1 (ru) * 2022-11-07 2023-06-28 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Электропневматическая система управления устройствами перепуска, отбора воздуха газотурбинного двигателя

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2329387C2 (ru) * 2006-05-10 2008-07-20 Открытое акционерное общество "СТАР" Система топливопитания газотурбинного двигателя
RU2507406C1 (ru) * 2012-08-14 2014-02-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Система подачи топлива в газотурбинный двигатель с форсажной камерой сгорания
US9206775B2 (en) * 2012-02-01 2015-12-08 United Technologies Corporation Fuel preheating using electric pump

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3696612A (en) * 1970-12-30 1972-10-10 Westinghouse Electric Corp Fuel pump system for gas turbines
US6836086B1 (en) * 2002-03-08 2004-12-28 Hamilton Sundstrand Corporation Controlled starting system for a gas turbine engine
US7216487B2 (en) * 2004-09-16 2007-05-15 Hamilton Sundstrand Metering demand fuel system for gas turbine engines
FR2882095B1 (fr) * 2005-02-17 2011-05-06 Hispano Suiza Sa Alimentation en carburant d'un moteur d'aeronef
FR2923871B1 (fr) * 2007-11-19 2013-11-08 Hispano Suiza Sa Surveillance d'une pompe haute-pression dans un circuit d'alimentation en carburant d'une turbomachine.
FR2925594B1 (fr) * 2007-12-20 2014-05-16 Hispano Suiza Sa Systeme de regulation d'une turbomachine
US8127548B2 (en) * 2008-02-21 2012-03-06 Honeywell International Inc. Hybrid electrical/mechanical turbine engine fuel supply system
US8276360B2 (en) * 2009-05-22 2012-10-02 Hamilton Sundstrand Corporation Dual-pump fuel system and method for starting a gas turbine engine
US9316157B2 (en) * 2012-02-01 2016-04-19 Hamilton Sundstrand Corporation Fuel system for starting an APU using a hybrid pump arrangement
BR112014031543A2 (pt) * 2012-07-05 2017-06-27 United Technologies Corp sistema de combustível, e, método para prover combustível aquecido para uma unidade de potência auxiliar
EP3137756B1 (fr) * 2014-04-28 2018-04-18 Safran Aircraft Engines Circuit d'alimentation en fluide de géometries variables de turbomachine sans pompe volumétrique
US9512783B2 (en) * 2014-11-14 2016-12-06 Hamilton Sundstrand Corporation Aircraft fuel system
CN104763534B (zh) * 2015-02-06 2017-02-22 中国人民解放军空军工程大学 一种模块化组合式电动燃油供应与控制系统
GB2573585A (en) * 2018-05-08 2019-11-13 Eaton Intelligent Power Ltd A fuel boost pump assembly for an aircraft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2329387C2 (ru) * 2006-05-10 2008-07-20 Открытое акционерное общество "СТАР" Система топливопитания газотурбинного двигателя
US9206775B2 (en) * 2012-02-01 2015-12-08 United Technologies Corporation Fuel preheating using electric pump
RU2507406C1 (ru) * 2012-08-14 2014-02-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Система подачи топлива в газотурбинный двигатель с форсажной камерой сгорания

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798893C1 (ru) * 2022-11-07 2023-06-28 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Электропневматическая система управления устройствами перепуска, отбора воздуха газотурбинного двигателя

Also Published As

Publication number Publication date
JP7123150B2 (ja) 2022-08-22
CA3078274A1 (en) 2019-04-11
CN111655993B (zh) 2023-09-15
EP3693577A1 (en) 2020-08-12
WO2019070160A1 (ru) 2019-04-11
US20200325824A1 (en) 2020-10-15
JP2020536196A (ja) 2020-12-10
CN111655993A (zh) 2020-09-11
CA3078274C (en) 2022-11-29
EP3693577A4 (en) 2021-06-30
US20210254552A9 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US10934930B2 (en) Auxiliary power unit with variable speed ratio
CN106460662B (zh) 用于辅助涡轮轴发动机的方法及直升机推进系统的构架
US10797628B2 (en) Gas turbine engine and electrical system
EP1726879B1 (en) Reduced-weight fuel system for a gas turbine engine, gas turbine engine including such a system, and method of providing fuel to such a gas turbine engine
CN105593493B (zh) 用于优化双发动机直升机的比耗量的方法
RU2660725C2 (ru) Система и способ экстренного запуска газотурбинного двигателя летательного аппарата
US20240092491A1 (en) Aircraft power plant
US20200362720A1 (en) Electrical energy generating system
RU2674806C1 (ru) Способ создания необходимого давления и расхода топлива в топливной системе газотурбинного двигателя
CN111734530B (zh) 多余度的电气燃油系统及控制方法
US10865728B2 (en) Method of using backflow from common-rail fuel injector
EP4086175B1 (en) Cabin blower system
US20230358174A1 (en) Aircraft fuel pumping system
RU2413856C1 (ru) Система топливоподачи газотурбинного двигателя
RU2358119C1 (ru) Винтовентиляторный авиационный двигатель
CN114715419A (zh) 一种辅助动力装置
POWER 3. iIlil

Legal Events

Date Code Title Description
QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20190903

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180924

Effective date: 20191120

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180924

Effective date: 20210115

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20210325

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20210520

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180924

Effective date: 20210701

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180924

Effective date: 20211018

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20180706

Effective date: 20220426