RU2674618C1 - Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки - Google Patents

Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки Download PDF

Info

Publication number
RU2674618C1
RU2674618C1 RU2018106215A RU2018106215A RU2674618C1 RU 2674618 C1 RU2674618 C1 RU 2674618C1 RU 2018106215 A RU2018106215 A RU 2018106215A RU 2018106215 A RU2018106215 A RU 2018106215A RU 2674618 C1 RU2674618 C1 RU 2674618C1
Authority
RU
Russia
Prior art keywords
whey
amino acids
concentrate
fertilizer
potassium
Prior art date
Application number
RU2018106215A
Other languages
English (en)
Inventor
Александр Викторович Сазанов
Надежда Викторовна Сырчина
Валерий Анатольевич Козвонин
Дмитрий Валерьевич Петухов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Вятский государственный университет" (ВятГУ)
Priority to RU2018106215A priority Critical patent/RU2674618C1/ru
Application granted granted Critical
Publication of RU2674618C1 publication Critical patent/RU2674618C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G1/00Mixtures of fertilisers belonging individually to different subclasses of C05

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Fertilizers (AREA)

Abstract

Изобретение относится к сельскому хозяйству. Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки, включающих в качестве основы удобрения концентрат молочной сыворотки, содержащий 18÷30% сухих веществ, а именно лактозы, белков, органических кислот и витаминов, в который внесен сбалансированный набор аммиачной селитры, карбамида, дигидрофосфата калия, сульфата калия, сульфата магния, сульфатов меди и цинка, заключающийся в получении концентрата молочной сыворотки путем поэтапного повышения содержания сухих веществ в исходном растворе методами лиофилизации, ультрафильтрации или вымораживания, получении свободных аминокислот и пептидов путем ферментативного гидролиза белков, содержащихся в концентрате, и фильтровании полученной композиции до состояния прозрачного и устойчивого при хранении раствора. Изобретение позволяет получить продукт с высокой эффективностью при использовании в низких дозировках, стабильный при хранении, не содержащий тяжелых металлов, пригодный для корневой и внекорневой подкормки растений, а также для предпосевной обработки семян методом опрыскивания или замачивания, а также обеспечить возможность утилизации молочной сыворотки.

Description

Настоящее изобретение относится к области сельского хозяйства, в частности к способам производства комплексных органоминеральных удобрений на основе молочной сыворотки, содержащих сбалансированный набор основных элементов минерального питания растений азофоска (NPK), мезоэлементов, таких как сера, кальций, магний (S, Са, Mg), микроэлементов, таких как цинк, медь (Zn, Cu) и биологически активных веществ, в включая стимуляторы роста удобрений (янтарная кислота, аминокислоты, пептиды, ферменты соли молочной кислоты, витамины, сахара). Изобретение может быть использовано для промышленного производства комплексных органоминеральных удобрений, пригодных для корневой и внекорневой подкормки растений.
Источником широкого спектра стимуляторов роста является гидролизат молочной сыворотки, содержащий аминокислоты, пептиды, витамины, ферменты, сахара, органические кислоты и др. Выраженное стимулирующее действие на развитие растений оказывает содержащаяся в молочной сыворотке янтарная кислота [Г.Н. Чупахина, А.Ю. Романчук. Возможный механизм стимулирования ростовых процессов янтарной кислотой. Теоретические и прикладные аспекты биологии. Калининград, 1999, с. 46-51].
В последние годы появилось большое количество исследований, обосновывающих эффективность использования в качестве компонентов удобрений аминокислот. Включение аминокислот в состав внекорневых подкормок рассматривается как одно из наиболее перспективных направлений оптимизации минерального питания растений и повышения их устойчивости к действию неблагоприятных факторов внешней среды. Кроме экзогенных аминокислот растения способны усваивать такие сложные органические соединения, как витамины, сахара, органические кислоты, ферменты, антибиотики и др. Относительно дешевым и доступным источником широкого спектра биологически активных веществ, пригодных для использования в качестве удобрений, является молочная сыворотка -основной отход, образующийся при переработке молока в такие продукты, как творог, сыр, казеин. Ресурсы этого отхода в нашей стране превышают 5 млн. т. в год.
Молочная сыворотка в среднем содержит около 6% сухих веществ, в том числе (%) лактозы - 4,5; белков и небелковых азотистых веществ - 0,8; молочной кислоты - 0,14; жиров - 0,06; минеральных веществ - 0,6. В сыворотку переходит основная часть водорастворимых витаминов молока. Органические компоненты молочной сыворотки могут не только подвергаться процессам микробиологической деструкции, но и оказывать стимулирующее влияние на развитие высших растений.
Несмотря на ценный химический состав, проблема переработки молочной сыворотки до настоящего времени далека от решения. По разным оценкам от 60 до 97% этого отхода сливается в канализацию. Основными причинами отсутствия интереса к переработке сыворотки являются быстрая микробиологическая порча; низкое содержание растворенных веществ; сложный химический состав; ограниченный рынок продуктов переработки; незначительная прибыль по сравнению с затратами на переработку отхода. Отказ от переработки сыворотки приводит не только к потере ценного сырья, но и к масштабному загрязнению окружающей среды.
Перспективным направлением переработки молочной сыворотки может стать использование этого отхода для производства органоминеральных удобрений.
Из существующего уровня техники известен способ производства биологического органического удобрения, включающий ферментацию композиции из сыворотки и богатого целлюлозой материала-носителя при различных значених рН [патент ЕР 1694614 В1, опубл. 14.03.2012. Bulletin 2012/11].
Недостатками данного технического решения являются длительность осуществления процесса ферментации; низкая концентрация элементов питания в готовом удобрении; высокое содержание балластных веществ; непригодность удобрения для использования в виде раствора.
Известен способ получения регулятора роста растений с использованием молочной сыворотки [патент RU 2409952С1, заявка №2009125238/21, 01.07.2009, МПК A01N 65/00, А01Р 21/00, опубл. 27.01.2011, Бюл. №3]. Способ включает ферментацию растительного экстракта эхинацеи пурпурной при температуре 30-45°С с добавлением молочной сыворотки при массовом соотношении 1:1-1:2,5. После ферментации проводят термоденатурацию балластных белков и их отделение от препарата центрифугированием. Затем препарат стерилизуют автоклавированием.
Недостатком данного способа является высокая себестоимость сырьевых компонентов и низкая стабильность готовой формы при хранении после вскрытия упаковки, поскольку продукт пригоден для хранения только в стерильном виде. Готовый продукт, получаемый по указанной технологии, не содержит минеральных компонентов - источников основных элементов питания растений и может быть использован только в качестве регулятора роста.
Известен способ получения жидких комплексных удобрений с микроэлементами в хелатной форме [патент RU 2510626, заявка №2012144199/13, 16.10.2012, МПК С05В 7/00, опубл. 10.04.2014, Бюл. №10]. Способ включает нейтрализацию экстракционной фосфорной кислоты азотсодержащим реагентом, отделение осадка нерастворимых примесей из полученного раствора, введение раствора солей микроэлементов в присутствии комплексообразователя, причем в качестве азотсодержащего реагента используют карбамид в виде водного раствора, взятого в мольном отношении карбамид : Н3РО4, равном (1,5-2,5): 1.
Недостатком данного способа является отсутствие в готовом удобрении стимуляторов роста растений, оказывающих положительное влияние на развитие и усвоение элементов минерального питания.
Наиболее близким к заявленному техническому решению является способ получения комплексного органоминерального удобрения, включающего микроэлементы: медь, кобальт и цинк, а также макроэлементы: азот, фосфор, калий и воду в связанной форме, мезоэлементы: кальций, магний и кремний, биологически активные вещества: глутаминовую и аспарагиновую кислоты, эпибрассинолид, железо, марганец, бор, молибден и йод [патент RU 2567453, заявка №2014148374/13, 01.12.2014, МПК C05D 9/02, C05G 3/00, опубл. 10.11.2015, Бюл. №31]. Все компоненты взяты при определенном соотношении. В качестве минеральных удобрений для предлагаемого удобрения использованы нитрат кальция, нитрат калия, нитрат магния, монокалий фосфат, силикат калия. В качестве источников микроэлементов применены брексилы Fe, Mn, Cu, Zn, азотнокислый Со, молибион, борную кислоту, йодистый калий. Эти удобрения полностью растворимы в воде, не содержат тяжелых металлов, вредных примесей для растений. Соединения элементов в используемых удобрениях находятся в легкодоступной форме для растений, особенно высокой доступностью обладают соединения в составе брексилов, в которых микроэлементы находятся в хелатной форме, что улучшает поглощение и перемещение элементов по растению. Изобретение позволяет повысить качество и ценность органоминерального удобрения для овощных культур.
Недостатками данного технического решения являются относительно высокая стоимость препарата; неустойчивость входящего в состав композиции эпибрассинолида на свету, что обуславливает необходимость хранения удобрения в темноте; ограниченный перечень биологически активных компонентов, включаемых в состав композиции.
Из уровня техники способов производства жидких органоминеральных удобрений на основе молочной сыворотки, содержащих сбалансированный набор основных элементов минерального питания растений (NPK), мезоэлементов (S, Са, Mg), микроэлементов (Zn, Cu и др.) и биологически активных веществ (включая стимуляторы роста) не выявлено.
Задачей, на решение которой направлено заявляемое изобретение является способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки, содержащих сбалансированный набор основных элементов минерального питания растений (NPK), мезоэлементов (S, Са, Mg), микроэлементов (Zn, Cu и др.) и биологически активных веществ (включая стимуляторы роста).
Данная задача решается за счет того, что заявленный способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки, содержащих сбалансированный набор основных элементов минерального питания растений (NPK), мезоэлементов (S, Са, Mg), микроэлементов (Zn, Cu и др.) и биологически активных веществ (включая стимуляторы роста) включает следующие технологические операции:
1. Повышение содержания сухих веществ в исходной молочной сыворотке до 18÷25% методами лиофилизации, ультрафильтрации или вымораживания (получение концентрата молочной сыворотки);
2. Ферментативный гидролиз белковых компонентов концентрата молочной сыворотки до свободных аминокислот и пептидов (получение гидролизата молочной сыворотки);
3. Растворение в полученном гидролизате минеральных солей: аммиачная селитра, дигидрофосфат калия, сульфат калия, сульфат магния, сульфаты микроэлементов (Cu, Zn, Со, Мо и др.). Массы и перечень растворяемых солей рассчитываются исходя из содержания действующих веществ (азота, фосфора, калия) в минеральных компонентах, вносимых в состав комплексного удобрения и необходимого содержания действующих веществ в готовой формуле комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки. Содержание действующих веществ в минеральных компонентах должно соответствовать ГОСТам на данные минеральные вещества. В сбалансированном по основным элементам минерального питания удобрении содержание N:Р:K (азот/фосфор/калий) составляет (%, масс.) 6,5:6,5:6,5. Благодаря высокой концентрации солей достигался эффект консервации органической матрицы удобрения и обеспечивалась стабильность удобрения при хранении.
4. Фильтрация полученной композиции с целью получения прозрачного и устойчивого при хранении раствора.
Ниже представлен детальный технологический процесс получения комплексного органоминерального удобрения.
Творожная сыворотка, образующая при переработке молока, направляется в сборник-накопитель, в котором возможно хранение этого отхода в течение суток.
Из сборника-накопителя творожная сыворотка с помощью центробежного насоса перекачивается в бак, оборудованный погружным холодильником, в котором происходит ее частичное замораживание. После того, как замерзнет 75-90% сыворотки, незамерзшая часть - концентрат (от 10 до 25% от массы замороженной сыворотки) сливается или перекачивается насосом в отдельную емкость (сборник концентрата) для дальнейшей переработки. Содержание сухих веществ в концентрате составляет от 20 до 30%. После удаления концентрата, погружной холодильник отключается, при этом происходит оттаивание замороженной фракции. Первая часть размороженной сыворотки (сыворотка-передел), содержащая до 5% сухих веществ направляется на повторное замораживание с целью получения концентрата, а оставшаяся часть (отход), содержащая менее 0,5% сухих веществ может быть направлена на очистку методом фильтрации или сброшена в канализацию.
Концентрат молочной сыворотки перекачивается насосом из сборника концентрата в бак-реактор, оборудованный змеевиком для подогрева и мешалкой. После подогрева концентрата до 35-40°С в бак-реактор ручным способом загружаются протеолитические ферменты, с помощью которых осуществляется гидролиз белковых компонентов концентрата до аминокислот и пептидов. В качестве ферментов могут быть использованы химитрипсин, трипсин, а также смеси протеолитических ферментов. В результате гидролиза концентрата получается гидролиза, содержащий полный набор аминокислот, входящих в состав белков молочной сыворотки.
Готовый гидролизат перекачивается насосом в бак-смеситель, оборудованный мешалкой. В бак-смеситель последовательно загружаются минеральные компоненты, необходимые для производства удобрения нужного состава (в соответствии с рецептурой). Загруженные в бак смеситель соли, перемешиваются мешалкой до полного растворения в гидролизате молочной сыворотки. Полученная композиция перекачивается насосом в узел фильтрации. Полученный фильтрат направляется на разлив в потребительскую тару.
Выполненные исследования показали, что органоминеральные удобрения на основе молочной сыворотки не подвергаются микробиологической порче и могут хранить в обычной таре при температуре 20-25°С в течение 6 месяцев и более. Готовая форма удобрения на протяжении всего срока хранения имеет характерный запах свежей молочной сыворотки.
В качестве минеральных компонентов для получения органоминеральных удобрений на основе молочной сыворотки используются следующие компоненты:
1. Сульфат калия (K2SO4) - источник калия и серы;
2. Дигидрофосфат калия (КH2PO4) - источник калия и фосфора;
3. Нитрат аммония (NH4NO3) - источник азота;
4. Карбамид (N2H4CO) - источник азота;
5. Сульфат магния (MgSO4) - источник магния и серы;
6. Сульфаты меди и цинка (CuSO4, ZnSO4) - источники микроэлементов (Cu, Zn)
Формулы органоминеральных удобрений для разных сроков внесения.
I. Комплексное удобрение для летнего внесения с микроэлементами (магний, цинк, медь) и аминокислотами
Содержание основных действующих веществ (%):
1. Азот (N)-6,2;
2. Фосфор (P2O5)-6,2;
3. Калий (К2O)-6,2;
4. Магний (Mg2O)- 1,2;
5. Цинк (ZnO) - 0,07;
6. Медь (CuO) - 0,08;
7. Комплекс аминокислот - 5%.
Для получения 100 кг удобрения в бак-смеситель последовательно загружаются 100 кг гидролизованного концентрата молочной сыворотки, 37 кг нитрата аммония; 15 кг сульфата магния гептагидрата; 24,5 кг сульфата калия; 31 кг дигидрофосфата калия; 0,5 кг сульфата цинка гептагидрата; 0,5 кг сульфата меди пентагидрата. Перемешивание смеси ведут до полного растворения всех солей. После растворения компонентов раствор направляется на фильтрацию и разлив в потребительскую тару.
П. Комплексное удобрение для весеннего внесения с микроэлементами (магний, цинк, медь) и аминокислотами
Содержание основных действующих веществ (%):
1. Азот (N)- 10,1;
2. Фосфор (P2O5)-4,0;
3. Калий (К2О)-4,0;
4. Магний (Mg2O)- 1,2;
5. Цинк (ZnO)-0,06;
6. Медь (CuO) - 0,07;
7. Комплекс аминокислот - 4,6%.
Для получения 100 кг удобрения в бак-смеситель последовательно загружаются 100 кг гидролизованного концентрата молочной сыворотки, 62,5 кг нитрата аммония; 15 кг сульфата магния гептагидрата; 14,5 кг сульфата калия; 23 кг дигидрофосфата калия; 0,5 кг сульфата цинка гептагидрата; 0,5 кг сульфата меди пентагидрата. Перемешивание смеси ведут до полного растворения всех солей. После растворения компонентов раствор направляется на фильтрацию и разлив в потребительскую тару.
III. Комплексное безнитратное удобрение для листовой подкормки (Foliar feeding) с микроэлементами (магний, цинк, медь) и аминокислотами
Содержание основных действующих веществ (%):
1. Азот (N)-7,0;
2. Фосфор (P2O5) - 7,0;
3. Калий (К2О)-7,0;
4. Магний (Mg2O) - 1,2;
5. Цинк (ZnO)-0,06;
6. Медь (CuO) - 0,06;
7. Комплекс аминокислот - 4,7%.
Для получения 100 кг удобрения в бак-смеситель последовательно загружаются 100 кг гидролизованного концентрата молочной сыворотки, 32,5 кг карбамида; 15 кг сульфата магния гептагидрата; 28,0 кг сульфата калия; 36 кг дигидрофосфата калия; 0,46 кг сульфата цинка гептагидрата; 0,41 кг сульфата меди пентагидрата. Перемешивание смеси ведут до полного растворения всех солей. После растворения компонентов раствор направляется на фильтрацию и разлив в потребительскую тару.
IV. Комплексное безнитратное удобрение для летнего и весеннего внесения с аминокислотами
Содержание основных действующих веществ (%):
1. Азот (N)-7,2;
2. Фосфор (P2O5) - 7,2;
3. Калий (К2O)-7,2;
4. Комплекс аминокислот - 5%.
Для получения 100 кг удобрения в бак-смеситель последовательно загружаются 100 кг гидролизованного концентрата молочной сыворотки, 29,5 кг нитрата аммония; 25,0 кг сульфата калия; 33,2 кг дигидрофосфата калия. Перемешивание смеси ведут до полного растворения всех солей. После растворения компонентов раствор направляется на фильтрацию и разлив в потребительскую тару.
Техническим результатом предлагаемого изобретения является получение нового продукта с высокой эффективностью при использовании в низких дозировках, стабильного при хранении, не содержащего тяжелых металлов, пригодного для корневой и внекорневой подкормки растений, а также для предпосевной обработки семян методом опрыскивания или замачивания, обеспечение возможности утилизации молочной сыворотки.
Поставленный технический результат достигается тем, что для производства комплексных органоминеральных удобрений в качестве основы удобрения используется концентрат молочной сыворотки, содержащий 18 30% сухих веществ (лактоза, белки, органические кислоты и витамины), в который внесен сбалансированный набор основных элементов минерального питания растений (аммиачная селитра, карбамид, дигидрофосфата калия, сульфат калия), мезоэлементов (сульфат магния), микроэлементов (сульфаты меди и цинка), при этом получение концентрата молочной сыворотки осуществляется путем поэтапного повышения содержания сухих веществ в исходном растворе методами лиофилизации, ультрафильтрации или вымораживания, получение свободных аминокислот и пептидов осуществляется путем ферментативного гидролиза белков, содержащихся в концентрате, полученная композиция фильтруется до состояния прозрачного и устойчивого при хранении раствора.
Для изучения влияния удобрения на прорастание семян и развитие проростков использовался метод биотестирования.
Биотестирование удобрения выполнялось методом проростков. Тест-культурами служили семена ячменя (сорт «Родник Прикамья») и редиса (сорт «САКСА РС»), Проращивание семян тест-культур выполнялось на субстрате, в качестве которого использовалась искусственно приготовленная почва (artificial soil), приготовленная согласно ГОСТ Р ИСО 22030-2009 Качество почвы. Биологические методы. Хроническая фитотоксичность в отношении высших растений. М: Стандартинформ, 2010.
Влажная поверхность субстрата накрывалась фильтровальной бумагой, на которую раскладывались семена тест-культур. Проращивание проводилось при температуре 20°С в течение 7 дней.
Варианты эксперимента:
1. Контроль (проращивание семян на субстрате без добавок);
2. Субстрат с добавкой 1,5 мл удобрения на 1 кг субстрата;
3. Субстрат с добавкой 0,5 мл удобрения на 1 кг субстрата;
4. Субстрат с добавкой 0,1 мл удобрения на 1 кг субстрата.
Тестирование проводилось по таким показателям, как способность прорастания (за 7 суток), энергия прорастания (за 3 суток), дружность прорастания (доля семян проросших за первые сутки прорастания), скорость прорастания (сумма средних чисел семян, прорастающих ежедневно), интенсивность начального роста проростков. Экспериментальные исследования выполнялись в трех повторностях. Полученные результаты подвергались статистической обработке в программе ((Microsoft Excel».
В результате эксперимента установлено, что внесение удобрения в грунт приводит к выраженному стимулированию прорастания семян и активизации развития проростков как двудольных, так и однодольных тест-культур по сравнению с контролем. Так по сравнению с контролем дружность прорастания ячменя увеличивается на 42%, редиса - не 34%; средняя масса проростков ячменя увеличивается на 80%, редиса - на 31,6%.
Стимулирующее влияние удобрения на прорастание семян и развитие проростков может быть объяснено комплексным воздействием сбалансированной композиции минеральных компонентов и таких биологически активных веществ, как аминокислоты, витамины, сахара, соли органических кислот, источником которых является молочная сыворотка.

Claims (1)

  1. Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки, включающих в качестве основы удобрения концентрат молочной сыворотки, содержащий 18÷30% сухих веществ, а именно лактозы, белков, органических кислот и витаминов, в который внесен сбалансированный набор аммиачной селитры, карбамида, дигидрофосфата калия, сульфата калия, сульфата магния, сульфатов меди и цинка, заключающийся в получении концентрата молочной сыворотки путем поэтапного повышения содержания сухих веществ в исходном растворе методами лиофилизации, ультрафильтрации или вымораживания, получении свободных аминокислот и пептидов путем ферментативного гидролиза белков, содержащихся в концентрате, и фильтровании полученной композиции до состояния прозрачного и устойчивого при хранении раствора.
RU2018106215A 2018-02-19 2018-02-19 Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки RU2674618C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018106215A RU2674618C1 (ru) 2018-02-19 2018-02-19 Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018106215A RU2674618C1 (ru) 2018-02-19 2018-02-19 Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки

Publications (1)

Publication Number Publication Date
RU2674618C1 true RU2674618C1 (ru) 2018-12-11

Family

ID=64753277

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018106215A RU2674618C1 (ru) 2018-02-19 2018-02-19 Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки

Country Status (1)

Country Link
RU (1) RU2674618C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757604C1 (ru) * 2021-03-09 2021-10-19 Акционерное Общество "Биоамид" (АО "Биоамид") Органоминеральное удобрение и способы его применения для сельскохозяйственных культур

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613222A (zh) * 2009-07-17 2009-12-30 郑州大学 一种烟梗有机肥及其制造、使用方法
RU2409952C1 (ru) * 2009-07-01 2011-01-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Способ получения регулятора роста растений
EP1694614B1 (en) * 2003-11-20 2012-03-14 Bestland AG Method for the production of biological fertilizer containing whey

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1694614B1 (en) * 2003-11-20 2012-03-14 Bestland AG Method for the production of biological fertilizer containing whey
RU2409952C1 (ru) * 2009-07-01 2011-01-27 Федеральное государственное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Способ получения регулятора роста растений
CN101613222A (zh) * 2009-07-17 2009-12-30 郑州大学 一种烟梗有机肥及其制造、使用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757604C1 (ru) * 2021-03-09 2021-10-19 Акционерное Общество "Биоамид" (АО "Биоамид") Органоминеральное удобрение и способы его применения для сельскохозяйственных культур

Similar Documents

Publication Publication Date Title
CN102757292B (zh) 一种水溶性微生物多元固体肥料
US3865568A (en) Method for fabricating a natural fertilizer
CN102746058B (zh) 一种水溶性微生物多元固体肥料的生产方法
CN102731199B (zh) 颗粒缓释钙肥及其制备方法
WO2013109153A1 (en) Microbial organic fertilizers and methods of producing thereof
CN108947633A (zh) 一种促生根液体肥料及其制备方法与应用
CN110015932A (zh) 一种含氨基酸螯合中微量元素的多元复合肥及其制备方法
UA127417C2 (uk) Комбіноване добриво, що містить магнію-амонію фосфат і поліглутамінову кислоту
RU2674618C1 (ru) Способ производства комплексных органоминеральных удобрений с аминокислотами на основе молочной сыворотки
RU2370956C1 (ru) Средство для предпосевной обработки семян сельскохозяйственных культур
RU2360893C1 (ru) Биоорганическое удобрение
CN100364933C (zh) 花生硼钼配施专用肥及制法
RU2637126C1 (ru) Способ получения комплексной органоминеральной добавки на основе гумата калия, способ получения комплексного органоминерального удобрения на основе гумата калия и птичьего помета, способ обогащения корма для животных комплексной органоминеральной добавкой на основе гумата калия, способ выпаивания с использованием комплексной органоминеральной добавки на основе гумата калия
CN102584462A (zh) 以天然胶乳凝固分离的胶清浆液为原料制备的植物营养液及方法
RU2520144C1 (ru) Способ получения жидкого гуминового удобрения
CN108546204A (zh) 一种含γ-聚谷氨酸与核苷酸的有机-无机复混肥料母粒及其制备方法与应用
WO2014122669A1 (en) A total foliar product for agriculture / horticulture / tissue culture and hydroponic cultivation
RU2268868C2 (ru) Жидкое комплексное удобрение и способ его получения
CN105993479A (zh) 一种以沼液为肥源的茄子种植方法
BG4333U1 (bg) Средство за листно и почвено подхранване на растенията
RU2691693C1 (ru) Способ получения жидкого гуминового удобрения
CN112279713A (zh) 一种玫瑰花用有机液体肥料及其制备方法
CN105693428A (zh) 一种改善土壤种植环境的肥料辅助剂
JP2000512987A (ja) 植物の病気の治療方法
CN110105144A (zh) 添加木质素磺酸盐合成腐殖酸铵的液肥及制备方法和应用