RU2672188C1 - Способ измерения концентрации аэрозольных частиц в атмосфере - Google Patents

Способ измерения концентрации аэрозольных частиц в атмосфере Download PDF

Info

Publication number
RU2672188C1
RU2672188C1 RU2017146632A RU2017146632A RU2672188C1 RU 2672188 C1 RU2672188 C1 RU 2672188C1 RU 2017146632 A RU2017146632 A RU 2017146632A RU 2017146632 A RU2017146632 A RU 2017146632A RU 2672188 C1 RU2672188 C1 RU 2672188C1
Authority
RU
Russia
Prior art keywords
measurements
particles
atmosphere
degree
linear polarization
Prior art date
Application number
RU2017146632A
Other languages
English (en)
Inventor
Евгений Сергеевич Зубко
Андрей Николаевич Павлов
Олег Григорьевич Константинов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ)
Priority to RU2017146632A priority Critical patent/RU2672188C1/ru
Application granted granted Critical
Publication of RU2672188C1 publication Critical patent/RU2672188C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • G01W1/04Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed giving only separate indications of the variables measured
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к области метеорологии, а более конкретно к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения прозрачности атмосферы при определении аэрозольного загрязнения воздуха. Способ измерения концентрации аэрозольных частиц в атмосфере, включающий регистрацию светового потока, рассеиваемого на этих частицах, отличается тем, что предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью в виде log(P) ∝ log(A), где P- максимальное значение степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля, A - отражательная способность частиц аэрозоля. При этом измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и Земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит, причем синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению, и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты, с помощью которой проводят оценку объемной концентрации частиц пыли в атмосфере. После измерений степени линейной поляризации рассеянного солнечного излучения проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра, после чего оценку объемной концентрации частиц пыли в слоях атмосферы получают как отношение измеренного потока отраженного лидарного излучения к геометрическому альбедо, выведенному из поляриметрических измерений. Технический результат - повышение достоверности результатов измерений аэрозольного загрязнения воздуха и обеспечение возможности оперативного его определения на различных высотах без использования дополнительных сложных технических средств. 4 з.п. ф-лы и 5 ил.

Description

Изобретение относится к области метеорологии, а более конкретно, к способам определения характеристик загрязнения атмосферы, и может использоваться, например, для измерения прозрачности атмосферы при определении аэрозольного загрязнения воздуха.
Известен способ дистанционного оптического зондирования неоднородной атмосферы, при котором осуществляют посылку в атмосферу светового импульса и регистрацию рассеянного в обратном направлении света, преобразованного в электрические сигналы (см.SU №1597815, G01W 1/00,1990). В этом способе осуществляют посылку в атмосферу световых импульсов из точек, разнесенных в пространстве, по трассам, пересекающимся в заданной точке, и по дополнительным трассам, пересекающим эти трассы с образованием областей зондирования, ограниченных отрезками между точками их пересечения, приема сигналов, рассеянных в обратном направлении, определения характеристик неоднородной атмосферы по мощностям сигналов, принятых и накопленных, с использованием расчетных формул, уменьшения областей зондирования и повторения процедуры измерений до задаваемого уровня совпадения двух последовательно полученных результатов определения характеристик атмосферы.
Этот способ обладает недостаточной точностью, поскольку он основан на предположении о существовании связи коэффициента обратного рассеяния и коэффициента ослабления на исследуемой трассе зондирования. Это предположение не выполняется в условиях реальной неоднородной атмосферы.
Известен способ определения прозрачности атмосферы включающий измерения на различных высотах через атмосферу по горизонтальной трассе, яркости объекта наблюдения при изменении расстояния между ним и точкой наблюдения при одном угле визирования на объект, и по отношению полученных значений судят об искомой прозрачности атмосферы (см.SU № 1 314 806, G01N 21/47, 1994). Способ обеспечивает возможность определения характеристик прозрачности атмосферы на различных высотах.
Недостаток этого решения – трудоемкость и неоперативность его реализации.
Известен способ измерения концентрации аэрозольных частиц в атмосфере, включающий регистрацию светового потока, рассеиваемого на этих частицах (см.SU № 486251, G01N 15/00, 1975, и SU №739375, G01N 15/00, 1980).
К недостаткам данного способа следует отнести недостаточную достоверность результатов измерений из-за сильной зависимости процессов рассеяния и поглощения света от размера и оптических характеристик пылинок, сказывающуюся на точности и воспроизводимости измерений. Кроме того способ не обеспечивает возможность оперативного определения оптических характеристик атмосферы на различных высотах без использования сложных технических средств – носителей измерительного оборудования.
Задача, на решение которой направлено заявленное изобретение – повышение достоверности результатов измерений аэрозольного загрязнения воздуха и обеспечение возможности оперативного его определения на различных высотах без использования дополнительных сложных технических средств.
Технический результат - высокая достоверность результатов измерений концентрации аэрозольных частиц в атмосфере и обеспечение возможности оперативного ее определения на различных высотах без использования сложных технических средств.
Для решения поставленной задачи способ измерения концентрации аэрозольных частиц в атмосфере, включающий регистрацию светового потока, рассеиваемого на этих частицах, отличается тем, что предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде
log(Pmax) ∝ log(A),
где Pmax - максимальное значение степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля,
A - отражательная способность частиц аэрозоля, при этом, измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит, причем, синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты, с помощью которой проводят оценку объемной концентрации частиц пыли в атмосфере, для чего, после измерений степени линейной поляризации рассеянного солнечного излучения проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра, после чего, оценку объемной концентрации частиц пыли в слоях атмосферы получают как отношение измеренного потока отраженного лидарного излучения к геометрическому альбедо, выведенному из поляриметрических измерений. Кроме того, калибровочную зависимость формируют методом численного моделирования, для частиц неправильной формы, морфологически сходных с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n, при значениях показателя степени, как минимум, n = 2.5 и 3. Кроме того, измерения проводят на закате до достижения тенью высоты 10-15 км над точкой измерений или на восходе начиная с высоты тени 10-15 км над точкой измерений. Кроме того, в пределах одного слоя атмосферы, последовательно с измерениями степени линейной поляризации рассеянного солнечного излучения и соответствующих им углов между горизонтом и направлением на верхний край солнца проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра. Кроме того, поляриметрические измерения выполняют при отключенном лидаре.
Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».
Совокупность признаков формулы изобретения обеспечивает повышение достоверности результатов измерений концентрации аэрозольных частиц в атмосфере и возможность оперативного их определения на различных высотах без использования сложных технических средств – носителей измерительного оборудования, при этом признаки отличительной части формулы изобретения решают следующие функциональные задачи.
Признаки «…предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде log(Pmax) ∝ log(A),
где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеяного на частицах аэрозоля;
А - отражательная способность частиц аэрозоля», обеспечивают возможность определения отражательной способности частиц аэрозоля.
Признаки «…измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора…» обеспечивают возможность оперативного определения отражательной способности частиц аэрозоля на различных высотах измерениями непосредственно с земли, за счет естественного перемещения солнца относительно земли и, соответствующего перемещения тени, отбрасываемой землей по высоте над точкой установки измерительного прибора (что исключает необходимость использования сложных технических средств – носителей измерительного оборудования).
Признак указывающий, что в качестве измерительного прибора «используют поляриметр» позволяет проводить работу в пассивном режиме, с использованием солнечного света последовательно освещающего разные слои атмосферы и поляризующегося на частицах аэрозоля, находящегося в атмосфере.
Признак указывающий, что поляриметр «в процессе измерений ориентируют в зенит» обеспечивает возможность фиксации максимального значения степени линейной поляризации Pmax, наблюдаемого в диапазоне углов рассеяния θ = 70 – 110°, которому соответствуют значения углов между горизонтом и направлением на верхний край солнца, используемых при измерениях.
Признаки указывающие, что «синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению» позволяют «привязать» измеренные значения степени линейной поляризации солнечного излучения к высоте слоя атмосферы над точкой наблюдения.
Признаки указывающие, что «выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты» обеспечивают получение зависимости отражательной способности частиц аэрозоля от высоты положения соответствующего слоя атмосферы.
Признаки указывающие, что зависимость отражательной способности частиц аэрозоля от высоты используют для «оценки объемной концентрации частиц пыли в атмосфере» обеспечивают оценку объемной концентрации частиц пыли в атмосфере по высоте.
Признаки указывающие, что «после измерений степени линейной поляризации рассеянного солнечного излучения проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра» обеспечивают оценку объемной концентрации частиц пыли в атмосфере по высоте на основе лидарных измерений, поскольку позволяют учесть значения отражательной способности частиц аэрозоля в соответствующем слое атмосферы и исключить влияние лидарного излучения на измерения степени линейной поляризации рассеянного солнечного излучения.
Признаки указывающие, что «оценку объемной концентрации частиц пыли в слоях атмосферы получают как отношение измеренного потока отраженного лидарного излучения к геометрическому альбедо, выведенному из поляриметрических измерений» позволяют получить значения объемной концентрации частиц пыли в слоях атмосферы.
Признаки второго пункта формулы изобретения раскрывают процедуру получения калибровочной зависимости для наиболее распространенной размерности частиц аэрозоля.
Признаки третьего пункта формулы изобретения раскрывают высотные параметры проведения измерений на закате и на восходе солнца.
Признаки четвертого пункта формулы изобретения обеспечивают оценку объемной концентрации частиц пыли в атмосфере по высоте на основе лидарных измерений, поскольку позволяют учесть значения отражательной способности частиц аэрозоля в соответствующем слое атмосферы.
Признаки пятого пункта формулы изобретения позволяют исключить влияние лидарного излучения на измерения степени линейной поляризации рассеянного солнечного излучения.
Сущность изобретения пояснена на чертежах, при этом, на фиг. 1 показаны примеры частиц неправильной формы, представляющих из себя агломераты обломков; на фиг. 2 показаны примеры частиц неправильной формы, представляющих из себя слабо-связанные кластеры обломков; на фиг. 3 показаны диаграммы log(Pmax) – log(A) у данных частиц, усредненных по размеру со степенным законом r–n при значении показателя степени n = 2.5; на фиг. 4 показаны диаграммы log(Pmax) – log(A) у данных частиц, усредненных по размеру со степенным законом r–n при значении показателя степени n = 3; на фиг.5 - схема измерения объемной концентрации частиц пыли в слоях атмосферы, включающая измерения максимума линейной поляризации частиц аэрозоля атмосферной пыли в сумерках и синхронные с ними лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах.
На фиг.5 показаны солнечный свет 1, граница 2 тени, поверхность земли 3, горизонт 4, направление ориентирования 5 (луч зрения) поляриметра 6, направление на верхний край Солнечного диска 7, высота 8 (h) границы тени 2 земли 3, лидар 9, его излучение 10 и отраженное лазерное излучение 11.
Отражательная способность – одна из важнейших характеристик пылевых частиц. Отражательная способность непосредственно влияет на точность оценок объемной концентрации пыли. Основным параметром, измеряемым в пассивном и активном методах дистанционного зондирования, является поток электромагнитного излучения (света), рассеянного частицами пыли в направлении детектора. Данная характеристика допускает двоякую интерпретацию – измеренный поток в равной степени может быть обусловлен рассеиванием света от большого числа слабо-отражающих частиц, так и от малого числа сильно-отражающих частиц. При этом, разница в отражательной способности пылевых частиц, взвешенных в атмосфере, может превышать порядок величины. Такая неопределенность обуславливает соответствующие ошибки измерений объемной концентрации пылевых частиц.
Пассивные методы дистанционного зондирования основаны на изучении характеристик солнечного света, рассеянного частицами пыли. Отличительной особенностью исходного солнечного излучения является отсутствие у него какой бы то ни было поляризации. Однако после взаимодействия с частицами пыли, свет приобретает частичную линейную поляризацию. Состояние поляризации принято описывать с помощью параметра степень линейной поляризации P, при этом, поляризация зависит лишь от рассеивающих свойств частиц, но не от их количества.
Другой важной особенностью степени линейной поляризации является ее зависимость от геометрии наблюдения/облучения, которую можно описать с помощью угла рассеяния θ: дополнительный угол к углу «источник света – частица – детектор». Заметим также, что угол θ лежит в плоскости рассеяния. Объекты различной природы показывают качественно сходные зависимости P от θ. Например, в диапазоне углов θ = 70 – 110°, степень линейной поляризации у многих объектов достигает максимального значения Pmax, хотя амплитуда поляризации и угол рассеяния на котором достигается максимальное значение зависят от природы объекта и его физических и химических свойств. В 1905 г. Николай Умов обнаружил экспериментальным путем обратную корреляцию между максимумом поляризации у объекта (Pmax) и его отражательной способностью A. В литературе этот феномен известен как эффект или закон Умова, согласно которому log(Pmax) линейно изменяется с log(A). Нами обобщен закон Умова на случай малых, субмикронных и микронных частиц (см. цикл работ: (1) Zubko et al., 2017: Reflectance of micron-sized dust particles retrieved with the Umov law. J. Quant. Spectrosc. Radiat. Transfer, 190, 1–6. (2) Zubko et al., 2017: Umov effect in single-scattering dust particles: Effect of irregular shape. Opt. Lett., 42, 1962–1965).
Сразу после заката (незадолго до рассвета), Солнце продолжает освещать воздушное пространство над местом измерений, а следовательно, и аэрозоли его заполняющие. По мере того, как Солнце опускается под горизонт, граница тени смещается выше. Таким образом, измерения в сумерках позволяют стратифицировать поляризацию пылевых частиц по их высоте. Отметим, что при измерениях в дневное время подобная стратификация невозможна, поскольку происходит интеграция сигнала по всему лучу зрения.
Высота 8 верхней границы тени определяется из выражения
h=R(1–cosγ)/cosγ,
где h - высота верхней границы тени;
R ≈ 6371 км - радиус Земли;
γ - угол между горизонтом и направлением на верхний край Солнечного диска.
Важно подчеркнуть, что высота тени h = 10 км соответствует относительно небольшому погружению Солнца под горизонт, γ ≈ 3.2°. Однако, почти весь аэрозоль сосредоточен в этом атмосферном слое. Одновременно, угол рассеяния увеличивается всего лишь до θ ≈ 93.2°, т.е., остается весьма близким к прямому углу, а значит, данная геометрия позволяет проводить надежную оценку Pmax.
Заявленный способ реализуют следующими этапами.
1. Методом численного моделирования изучают эффект Умова у частиц неправильной формы, имеющих морфологию сходную с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n , при значениях показателя степени, как минимум, n = 2.5 и 3. Данная калибровка может быть проведена на основе строгого решения задачи светорассеяния на модельных частицах, воспроизводящих микрофизические свойства частиц пыли их распределение по размеру. В области субмикронных и микронных размеров, распределение пылевых частиц хорошо аппроксимируется степенным законом
r–n, при значениях показателя степени n = 2.5 и 3.
По результатам этого формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью, в виде
log(Pmax) ∝ log(A),
где Pmax - максимальное значение степени линейной поляризации солнечного излучения, рассеянного на частицах аэрозоля;
А - отражательная способность частиц аэрозоля.
2. Поляриметр ориентируют вертикально вверх (в зенит).
3. Измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и земля отбрасывает тень на небосклон над точкой размещения измерительного прибора, начиная с момента заката Солнца до момента достижения границей тени высоты 10–15 км. В утренних сумерках измерения проводят в обратном порядке, начиная с высоты тени 10-15 км над точкой измерений. Полученные значения поляризации принимаются примерно равными максимальному значению поляризации Pmax.
Результатом измерений является высотная зависимость степени линейной поляризации. Причем, синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют, соответствующие им углы между горизонтом 4 и направлением на верхний край солнца 7, по которым, с использованием вышеупомянутого выражения вычисляют высоту 8 верхней границы тени, соответствующую конкретному измерению степени линейной поляризации солнечного излучения, что позволяет выявить зависимость степени линейной поляризации от высоты. Которую, в свою очередь, с использованием калибровочной зависимости между степенью линейной поляризации исходного солнечного излучения на частицах аэрозоля и их отражательной способностью интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты его местоположения в атмосфере. Из поляриметрических измерений выводят геометрическое альбедо, частиц аэрозоля, на соответствующих высотах в атмосфере.
Зная зависимость отражательной способности частиц аэрозоля от высоты его местоположения в атмосфере, проводят оценку объемной концентрации частиц пыли в атмосфере. Для этого используют лидар 9 известной конструкции, который монтируют рядом с поляриметром 6 и ориентируют вдоль направления ориентирования 5 (луча зрения) поляриметра 6.
Далее, последовательно с измерениями степени линейной поляризации рассеянного солнечного излучения проводят высокоточные лидарные измерения, для чего направляют излучение 10 лидара 9 вдоль направления ориентирования 5 поляриметра 6 и фиксируют соответствующие потоки отраженного лазерного излучения 11 от атмосферных аэрозолей на тех же высотах, где перед этим выполняли измерения с помощью поляриметра 6.
Для этого, после краткого отключения поляриметра 6, направляют излучение 10 лидара 9 вдоль направления ориентирования 5 поляриметра 6 и фиксируют соответствующие потоки отраженного лазерного излучения 11 от атмосферных аэрозолей на тех же высотах, где были перед этим выполнены измерения с помощью поляриметра 6 (на практике импульс, испускаемый лидаром, очень короткий; так же как и отклик - это всего лишь доли секунды).
При измерениях в каждом последующем слое атмосферы порядок работы повторяется – вначале проводят поляриметрические измерения, а затем лидарные.
Возможна и несколько отличающаяся схема работы, при которой вначале в непрерывном режиме выполняют только поляриметрические измерения, по всем слоям, по всей контролируемой высоте измерений в атмосфере, после чего выполняют комплекс лидарных измерений по всем слоям, по всей контролируемой высоте измерений в атмосфере.
Способ обеспечивает оценку объемной концентрации частиц пыли в атмосфере по высоте на основе лидарных измерений, поскольку позволяют учесть значения отражательной способности частиц аэрозоля в соответствующем слое атмосферы и исключить влияние лидарного излучения на измерения степени линейной поляризации рассеянного солнечного излучения.
Далее, оценку объемной концентрации частиц пыли в слоях атмосферы получают как отношение измеренного потока отраженного лидарного излучения к геометрическому альбедо, выведенному из поляриметрических измерений.

Claims (8)

1. Способ измерения концентрации аэрозольных частиц в атмосфере, включающий регистрацию светового потока, рассеиваемого на этих частицах, отличается тем, что предварительно, на базе эффекта Умова, формируют калибровочную зависимость между максимальным значением степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля и их отражательной способностью в виде
log(Pmax) ∝ log(A),
где Pmax - максимальное значение степени линейной поляризации солнечного излучения рассеянного на частицах аэрозоля,
A - отражательная способность частиц аэрозоля, при этом измерения проводят в вечерних или утренних сумерках, непрерывно, когда солнца не видно из-за горизонта и Земля отбрасывает тень на атмосферу над точкой размещения измерительного прибора, в качестве которого используют поляриметр, который в процессе измерений ориентируют в зенит, причем синхронно с измерениями степени линейной поляризации солнечного излучения фиксируют углы между горизонтом и направлением на верхний край солнца, по которым вычисляют высоту тени, соответствующую конкретному измерению, и выявляют зависимость степени линейной поляризации рассеянного солнечного излучения от высоты, которую с использованием калибровочной зависимости интерпретируют как зависимость отражательной способности частиц аэрозоля от высоты, с помощью которой проводят оценку объемной концентрации частиц пыли в атмосфере, для чего после измерений степени линейной поляризации рассеянного солнечного излучения проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра, после чего оценку объемной концентрации частиц пыли в слоях атмосферы получают как отношение измеренного потока отраженного лидарного излучения к геометрическому альбедо, выведенному из поляриметрических измерений.
2. Способ по п.1, отличающийся тем, что калибровочную зависимость формируют методом численного моделирования, для частиц неправильной формы, морфологически сходных с атмосферными аэрозолями и усредненных по размеру со степенным законом r–n, при значениях показателя степени как минимум n = 2,5 и 3.
3. Способ по п.1, отличающийся тем, что измерения проводят на закате до достижения тенью высоты 10- 15 км над точкой измерений или на восходе начиная с высоты тени 10- 15 км над точкой измерений.
4. Способ по п.1, отличающийся тем, что в пределах одного слоя атмосферы последовательно с измерениями степени линейной поляризации рассеянного солнечного излучения и соответствующих им углов между горизонтом и направлением на верхний край солнца проводят высокоточные лидарные измерения потока отраженного лазерного излучения от атмосферных аэрозолей на тех же высотах, где были выполнены измерения с помощью поляриметра.
5. Способ по п.1, отличающийся тем, что поляриметрические измерения выполняют при отключенном лидаре.
RU2017146632A 2017-12-28 2017-12-28 Способ измерения концентрации аэрозольных частиц в атмосфере RU2672188C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146632A RU2672188C1 (ru) 2017-12-28 2017-12-28 Способ измерения концентрации аэрозольных частиц в атмосфере

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146632A RU2672188C1 (ru) 2017-12-28 2017-12-28 Способ измерения концентрации аэрозольных частиц в атмосфере

Publications (1)

Publication Number Publication Date
RU2672188C1 true RU2672188C1 (ru) 2018-11-12

Family

ID=64327834

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146632A RU2672188C1 (ru) 2017-12-28 2017-12-28 Способ измерения концентрации аэрозольных частиц в атмосфере

Country Status (1)

Country Link
RU (1) RU2672188C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466917A (zh) * 2020-03-31 2021-10-01 中国矿业大学(北京) 一种煤烟型气溶胶辐射强迫计算新方法
RU2813558C1 (ru) * 2023-07-14 2024-02-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ измерения показателя ослабления оптического излучения аэрозольной средой

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117286C1 (ru) * 1997-06-26 1998-08-10 Московский государственный университет леса Способ оценки загрязнения атмосферы
US20160216198A1 (en) * 2015-01-26 2016-07-28 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Detecting clouds using polarized sunlight

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2117286C1 (ru) * 1997-06-26 1998-08-10 Московский государственный университет леса Способ оценки загрязнения атмосферы
US20160216198A1 (en) * 2015-01-26 2016-07-28 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Detecting clouds using polarized sunlight

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.ZUBKO "UMOV EFFECT IN SINGLE-SCATTERING DUST PARTICLES:EFFECT OF IRREGULAR SHAPE" журнал "OPTICS LETTERS", стр. 1962-1965, 15.05.2017. E.ZUBKO "THE UMOV EFFECT FOR SINGLE IRREGULARLY SHAPED PARTICLES WITH SIZES COMPARABLE WITH WAVELENGTH" журнал "IKARUS", стр. 1-38, 26.08.2012. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113466917A (zh) * 2020-03-31 2021-10-01 中国矿业大学(北京) 一种煤烟型气溶胶辐射强迫计算新方法
CN113466917B (zh) * 2020-03-31 2023-12-15 中国矿业大学(北京) 一种煤烟型气溶胶辐射强迫计算方法
RU2813558C1 (ru) * 2023-07-14 2024-02-13 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ измерения показателя ослабления оптического излучения аэрозольной средой
RU2819108C1 (ru) * 2023-12-28 2024-05-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ мониторинга атмосферы мегаполисов

Similar Documents

Publication Publication Date Title
Lichti et al. The effects of reflecting surface material properties on time-of-flight laser scanner measurements
CN104316443B (zh) 一种基于ccd后向散射的pm 2.5浓度监测方法
WO2018126690A1 (zh) 有限区域内测量粗糙表面反射率的方法及装置
CN108490451B (zh) 一种利用大气消光系数反演斜程能见度的方法
CN110095784A (zh) 一种复杂环境影响下的海洋-低层大气激光传输建模方法
WO2019101247A2 (zh) 激光海面能见度监测仪以及探测海雾的方法
Lanza et al. Calibration of non‐catching precipitation measurement instruments: A review
RU2672188C1 (ru) Способ измерения концентрации аэрозольных частиц в атмосфере
CN106706566B (zh) 一种激光雷达探测大气垂直能见度的计算方法
Dionisi et al. Midlatitude cirrus classification at Rome Tor Vergata through a multichannel Raman–Mie–Rayleigh lidar
RU2674560C1 (ru) Способ измерения оптических характеристик атмосферы
CN114216559A (zh) 一种星上定标机构的部分孔径因子测量方法和装置
Wu et al. 12-year LIDAR observations of tropospheric aerosol over Hefei (31.9 N, 117.2 E), China
CN207730938U (zh) 一种移动式气溶胶激光雷达网络数据质控系统
RU2011133050A (ru) Способ измерения параметров световозвращения
CN214893680U (zh) 一种半积分球式散射仪
RU2541677C2 (ru) Установка для бестрассовой проверки лазерного дальномера
Tahboub et al. Solar beam attenuation experiments-Abu Dhabi
CN101608909A (zh) Led精密进近航道指示器两色光束中心过渡区角度的测量方法
CN105424611A (zh) 大气痕量气体观测载荷地面性能综合测试与验证系统
JPH02300692A (ja) 降水量計量方法
Cairo et al. The RAMNI airborne lidar for cloud and aerosol research
CN103940745B (zh) 空气质量检测装置及其检测方法
RU2780672C1 (ru) Способ определения метеорологической дальности видимости в сложных метеоусловиях
RU2793904C1 (ru) Оптический способ определения микроструктуры дождя

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191229