RU2671360C2 - Способ запуска ступени предриформинга - Google Patents

Способ запуска ступени предриформинга Download PDF

Info

Publication number
RU2671360C2
RU2671360C2 RU2015153248A RU2015153248A RU2671360C2 RU 2671360 C2 RU2671360 C2 RU 2671360C2 RU 2015153248 A RU2015153248 A RU 2015153248A RU 2015153248 A RU2015153248 A RU 2015153248A RU 2671360 C2 RU2671360 C2 RU 2671360C2
Authority
RU
Russia
Prior art keywords
reforming
stage
hydrogen
stream
reactor
Prior art date
Application number
RU2015153248A
Other languages
English (en)
Other versions
RU2015153248A (ru
RU2015153248A3 (ru
Inventor
Вероника ГРОНЕМАНН
Йёрг ОТТ
Тайс ОЛЬХАФЕР
Пауль КРИМЛОВСКИ
Original Assignee
Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплутасьон Де Просед Жорж Клод
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплутасьон Де Просед Жорж Клод filed Critical Л'Эр Ликид, Сосьете Аноним Пур Л'Этюд Э Л'Эксплутасьон Де Просед Жорж Клод
Publication of RU2015153248A publication Critical patent/RU2015153248A/ru
Publication of RU2015153248A3 publication Critical patent/RU2015153248A3/ru
Application granted granted Critical
Publication of RU2671360C2 publication Critical patent/RU2671360C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Изобретение относится к способу запуска ступени предриформинга, а также к интегрированной установке риформинга, выполненной с возможностью осуществления этого способа. Способ запуска ступени предриформинга включает подачу активирующего потока, содержащего метанол и воду, к ступени предриформинга, конвертацию активирующего потока при взаимодействии с катализатором ступени предриформинга, выгрузку второго газового потока из ступени предриформинга и подачу его к главной ступени риформинга, выгрузку третьего газового потока из главной ступени риформинга и частичную рециркуляцию этого потока к ступени предриформинга. Интегрированная установка риформинга содержит по меньшей мере один реактор предриформинга, главный реактор риформинга, реактор десульфурации, устройство отделения водорода ниже по потоку от главного реактора риформинга, дозирующее устройство и трубопроводы для подачи активирующего потока к реактору предриформинга. Предложенный способ позволяет облегчить запуск интегрированной установки риформинга и может выполняться без дорогого и редко используемого оборудования и только с эксплуатационными материалами, которые хранятся легко и с небольшими рисками. 2 н. и 5 з.п. ф-лы, 1 ил.

Description

Область изобретения
Это изобретение относится к способу запуска ступени предриформинга, прежде всего ступени предриформинга, в интегрированной установке риформинга, в которой углеводородный сырьевой поток, прежде всего природный газ, конвертируется в продукт риформинга, содержащий оксиды углерода, водород и углеводороды. Перед проведением способа запуска, содержащийся в ступени предриформинга катализатор находится в окисленном или пассивированном состоянии. По сравнению со способами запуска для ступеней предриформинга, известными из уровня техники, в способе согласно изобретению используются более легкие в обращении эксплуатационные материалы. Кроме того, используются меньшие по размеру агрегаты, посредством чего снижаются инвестиционные затраты.
В еще одном аспекте изобретение, кроме того, относится к интегрированной установке риформинга, содержащей по меньшей мере один реактор предриформинга, главный реактор риформинга ниже по потоку от реактора предриформинга, реактор десульфурации выше по потоку от реактора предриформинга и устройство отделения водорода ниже по потоку от главного реактора риформинга, которая выполнена с возможностью осуществления способа запуска согласно изобретению.
Уровень техники
Углеводороды могут быть каталитически конвертированы с паром с получением синтез-газа, то есть смеси водорода (Н2) и монооксида углерода (СО). Как разъяснено в «Ullmann’s Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release and 6th edition 2003, ключевое слово "Gas Production"», так называемый паровой риформинг является наиболее часто используемым способ производства синтез-газа, который затем может быть конвертирован в другие важные основные химические вещества, такие как метанол или аммиак. Хотя можно конвертировать разные углеводороды, такие как керосин, сжиженный газ или нефтезаводские газы, паровой риформинг метансодержащего природного газа (паровой риформинг метана, SMR) является преобладающим. Он протекает сильно эндотермически. Поэтому он проводится в печи для риформинга, в которой расположены параллельно множество содержащих катализатор труб риформинга, в которых происходит реакция парового риформинга. Наружные стены печи риформинга, а также ее свод и низ облицованы или покрыты несколькими слоями огнеупорного материала, который выдерживает температуры до 1200°C. Трубы риформинга обогреваются, главным образом, посредством горелок, которые смонтированы на верхней стороне или нижней стороне или боковых стенах печи риформинга и напрямую обогревают пространство между трубами риформинга. Теплопередача к трубам риформинга осуществляется посредством теплового излучения и конвективной теплопередачи от горячих топочных газов.
После предварительного нагрева посредством теплообменника или огневого нагревателя до приблизительно 500°C, углеводородно-паровая смесь поступает в трубы риформинга после окончательного нагревания до 500-800°C и конвертируется здесь на катализаторе риформинга с получением монооксида углерода и водорода. Широко используются катализаторы риформинга на основе никеля. В то время как высшие углеводороды полностью конвертируются в монооксид углерода и водород, в случае метана обычно происходит частичная конверсия. Состав получаемого газа определяется равновесием реакции; по этой причине, кроме монооксида углерода и водорода, получаемый газ также содержит диоксид углерода, неконвертированный метан и пар.
Другим часто используемым способом риформинга является так называемый автотермический риформинг (ATR), который представляет собой комбинацию парового риформинга и частичного окисления для оптимизации эффективности. В принципе, в качестве сырья может быть использован любой углеводород или смесь углеводородов. В ATR паровой риформинг и частичное окисление комбинируются друг с другом так, что преимущество окисления (обеспечение тепловой энергией) оптимально дополняет преимущество парового риформинга (более высокий выход водорода). Это достигается точным особо высоким требованиям, поскольку они должны поддерживать как паровой риформинг посредством обратимой реакции вода-газ, так и частичное окисление. Частичное окисление осуществляется путем управляемого сжигания части сырья в горелке, расположенной на входе в автотермический риформер, посредством чего также обеспечивается энергия, требуемая для последующего парового риформинга.
Оба способа риформинга, то есть паровой риформинг и автотермический риформинг, могут быть также использованы совместно (комбинированный риформинг).
Для энергетической оптимизации и/или для сырья с высшими углеводородами, выше по потоку от вышеописанных способов риформинга может быть предусмотрен так называемый предриформер для предварительного крекинга сырья. Под предриформингом, главным образом, понимают использование низкотемпературной ступени риформинга, которая расположена выше по потоку от обычного главного риформера, например парового риформера, который работает с природным газом. В отличие от реакции парового риформинга, во время предриформинга равновесие реакции устанавливается при значительно более низких температурах. Главной особенностью предриформинга является необратимая, полная конверсия высших углеводородов в сырьевую смесь с получением метана и частично компонентов синтез-газа. Благодаря более низкой по сравнению с паровым риформингом температуре, главным продуктом предриформинга является метан наряду с неконвертированньш паром. Остальными газовыми компонентами являются водород, диоксид углерода, следы монооксида углерода и инертные компоненты, которые уже присутствовали в сырье. Поскольку практически все высшие углеводороды, которые присутствуют в природном газе, используемом как сырье, конвертируются в метан и компоненты синтез-газа, риск образования отложений кокса в главном риформере, которые в отношении работы главного риформера представляют собой особо критический момент, значительно снижается. Это позволяет увеличить отношение пар/углерод (S/C) и повысить тепловую нагрузку труб риформинга, что приводит к обычно меньшему потреблению энергии и к уменьшению размеров используемого оборудования. В дополнение, некоторое количество водорода уже вырабатывается в предриформере посредством конверсии, и следы каталитических ядов, остающиеся в сырьевой смеси, адсорбируются или абсорбируются на катализаторе предриформинга. Это приводит к тому, что катализатор риформинга, находящийся в главном риформере, работает в оптимальных условиях, прежде всего, на его входе.
Выше по потоку от ступени предриформинга в большинстве случаев предусмотрена ступень десульфурации для удаления соединений серы, которые действуют как каталитический яд для катализатора, содержащегося в расположенном ниже по потоку риформере. Десульфурация может осуществляться исключительно адсорбцией, например на адсорбентах на основе оксида цинка. Для некоторых применений предпочтительной является гидрирующая десульфурация, в которой сера, связанная в органических и неорганических соединениях серы, высвобождается в присутствии подходящего катализатора посредством водорода в форме сероводорода и затем связывается с адсорбентами, как описано выше. По этой причине эти способы десульфурации часто используются совместно.
Поскольку предриформинг является паровым риформингом при низких температурах, то требуются специальные катализаторы для обеспечения достаточно высоких скоростей реакции. Обычно это достигается посредством имеющихся на рынке катализаторов, которые имеют высокое содержание никеля. Поскольку эти катализаторы в активном состоянии являются пирофорными, то есть самовоспламеняющимися в воздухе, они поставляются в окисленном, пассивированном состоянии, и в этом состоянии загружаются в предриформер. Поэтому во время запуска ступени предриформинга способами, описанными согласно уровню техники, катализатор предриформинга должен быть переведен в восстановленное, активное состояние путем обработки подходящим восстанавливающим агентом, главным образом водородом, прежде чем в ступень предриформинга будут поданы сырьевые материалы.
Нерассмотренная немецкая заявка DE 1545440 А описывает производство устойчивого к сере катализатора риформинга и его активацию водородом. В данном случае является недостатком то, что требуемый для этой цели водород должен подаваться к ступени предриформинга от независимого источника водорода, поскольку свойственный процессу водород во время запуска еще не доступен. Подходящие возможности включают в себя поставку водорода посредством трубопровода или хранение водорода в резервуарах высокого давления. В обоих случаях целесообразно рециркулировать неконвертированный водород к катализатору предриформинга с помощью циркуляционного компрессора. Альтернативно, водород для запуска может вырабатываться посредством отдельной установки риформинга, например, миниатюрной конструкции. Однако во всех этих случаях неудовлетворительным является то, что внешний водород, требуемый для запуска, или должен поставляться, храниться, или вырабатываться с высокими затратами, причем требуемое для этого техническое оборудование необходимо только для запуска ступени предриформинга с новой каталитической упаковкой, что при типичных условиях работы осуществляется с интервалом в несколько лет. Дополнительно, транспортировка и хранение водорода в сжатом состоянии влечет за собой значительную потенциальную опасность.
Кроме того, уже было описано согласно уровню техники использование метанола в связи с запуском установок риформинга. Например, европейская патентная заявка ЕР 0936182 А2 описывает способ запуска автотермического риформера, в котором смесь вода/метанол предварительно нагревается и затем загружается в реактор метанизации, в котором метанол расщепляется на водород, оксиды углерода и небольшие количества метана. Полученный крекинг-газ затем загружается в автотермический риформер, где он служит для нагревания и, в то же время, для активации находящегося в автотермическом риформере катализатора. Недостатком является то, что документ ЕР 0936182 А2 не раскрывает осуществимую техническую идею по запуску ступени предриформинга, прежде всего ступени предриформинга в интегрированном способе риформинга.
Описание изобретения
Следовательно, цель настоящего изобретения заключается в представлении способа запуска ступени предриформинга, прежде всего ступени предриформинга, в интегрированной установке риформинга, который может выполняться без дорогого и редко используемого оборудования и только с эксплуатационными материалами, которые хранятся легко и с небольшими рисками.
Согласно изобретению, как заявлено в п. 1 формулы изобретения, вышеупомянутая цель достигнута, главным образом, способом запуска ступени предриформинга в интегрированной установке риформинга, которая содержит ступень предриформинга и по меньшей мере одну главную ступень риформинга ниже по потоку от ступени предриформинга, причем ступень предриформинга заполняется слоем гранулированного, активного для предриформинга никельсодержащего катализатора, который перед запуском находится в окисленном или пассивированном состоянии, содержащим следующие шаги способа:
(а) подача первого газового потока (активирующий поток), содержащего метанол и воду, к ступени предриформинга, и конвертирование потока активации в ступени предриформинга с находящимся там катализатором в условиях активации,
(б) выгрузка второго газового потока, содержащего водород, воду и оксиды углерода, из ступени предриформинга, и подача второго газового потока к главной ступени риформинга,
(в) выгрузка третьего газового потока, содержащего водород, воду и оксиды углерода, из главной ступени риформинга, причем третий газовый поток, по меньшей мере, частично рециркулируется к ступени предриформинга.
В другом, особо предпочтительном аспекте способ запуска согласно изобретению дополнительно содержит следующие шаги способа:
(г) подача, по меньшей мере, части третьего газового потока к ступени отделения водорода,
(д) выгрузка четвертого, богатого водородом газового потока из ступени отделения водорода, и подача четвертого газового потока к ступени десульфурации,
(е) контактирование четвертого, богатого водородом потока с сырьевым потоком, содержащим углеводороды и серосодержащие компоненты, который подается к ступени десульфурации, конвертирование богатого водородом потока с сырьевым потоком, содержащим серосодержащие компоненты, в условиях десульфурации, и выгрузка десульфурированного углеводородного сырьевого потока,
(ж) подача десульфурированного углеводородного сырьевого потока к ступени предриформинга, как только содержащийся в ступени предриформинга катализатор будет в восстановленном или активированном состоянии.
Под условиями активации понимаются условия реакции, которые пригодны для перевода активного для предриформинга никельсодержащего катализатора из окисленного или пассивированного состояния в восстановленное или активированное состояние путем воздействия на него газовым потоком, содержащим метанол и пар. Эти условия реакции известны специалисту из уровня техники, например, из описания патента GB 1465269 А. Прежде всего, эти условия реакции должны быть такими, что на катализаторе предриформинга, все еще находящемся в окисленном, пассивированном состоянии, сначала происходит, по меньшей мере, частичная конверсия метанола с водой в оксиды углерода и водород, и образующийся водород переводит часть поверхности все еще окисленного или пассивированного катализатора в металлическое, восстановленное или активированное состояние. Поскольку на нем конверсия дополнительного метанола с паром происходит быстрее, то дальнейшая активация будет сама ускоряться до тех пор, когда вся поверхность катализатора предриформинга будет в восстановленном, активированном состоянии.
Под условиями десульфурации понимаются условия реакции, которые пригодны для выполнения перевода серосодержащего углеводородного сырьевого потока в десульфурированный углеводородный сырьевой поток, причем содержание серы должно быть уменьшено ниже предельного значения, приемлемого для используемого катализатора риформинга. Эти условия реакции известны специалисту сами по себе и описаны, например, в Ullmann’s Encyclopedia of Industrial Chemistry, Sixth Ed., 1998 Electronic Release, ключевое слово "Gas Production", глава "2.2.2. Catalysts, Catalyst Poisons, Desulfurization".
Необходимые приспособления вышеупомянутых условий к соответствующим эксплуатационным требования, например составу активирующего потока, серосодержащего углеводородного сырьевого потока или содержанию никеля в используемом катализаторе, будут выполнены специалистом на основании рутинных экспериментов.
Другие предпочтительные аспекты способа запуска согласно изобретению содержатся в зависимых п.п. 2-6 формулы изобретения.
Изобретение также относится к интегрированной установке риформинга, которая выполнена с возможностью осуществления способа запуска согласно изобретению и которая содержит по меньшей мере один реактор предриформинга, главный реактор риформинга ниже по потоку от реактора предриформинга, реактор десульфурации выше по потоку от реактора предриформинга и устройство для отделения водорода ниже по потоку от главного реактора риформинга. Она отличается дозирующим устройством и трубопроводами для подачи газообразного активирующего потока, содержащего метанол и воду, к реактору предриформинга.
Изобретение основано на установлении того, что можно осуществлять активацию катализатора предриформинга, присутствующего в окисленном или пассивированном состоянии, посредством вспомогательного вещества метанола, который может храниться простым образом с экономией пространства и низкой степенью риска. Однако из-за содержания серы нельзя выполнить активацию катализатора предриформинга прямой загрузкой катализатора предриформинга углеводородным сырьевым потоком, например природным газом, пропуская ступень десульфурации. Это привело бы к отравлению катализатора предриформинга серосодержащими компонентами.
Как разъяснено выше, будет происходить самоускорение реакции активации при осуществлении активации катализатора предриформинга газовой смесью, содержащей метанол и пар. Что является особо предпочтительным, это отсутствие в метаноле каталитических ядов, например серосодержащих компонентов. Преимущественно, при реакции риформинга метанола не образуются не имеющие отношения к процессу соединения, кроме водорода и оксидов углерода, которые могут быть легко проведены через последующие расположенные ниже по потоку технологические ступени. Водород, произведенный путем реформинга метанола, может быть даже использован для запуска ступени десульфурации после ступени отделения водорода.
Посредством этого существенно облегчается запуск интегрированной установки реформинга.
Предпочтительные аспекты изобретения
Предпочтительно, интегрированная установка риформинга, которая включает в себя ступень предриформинга, подлежащую запуску в эксплуатацию способом согласно изобретению, содержит в качестве главной ступени риформинга ступень парового риформинга (паровой риформер) или ступень автотермического риформинга (ATR). Обе технологии риформинга является технически проверенными, и могут быть использованы индивидуально или в комбинации друг с другом (комбинированный риформинг).
Предпочтительный аспект способа согласно изобретению обеспечивает, что содержащий углеводороды и серосодержащие компоненты сырьевой поток, который подается к ступени десульфурации, включает в себя природный газ, который содержит подлежащие удалению серосодержащие компоненты.
В особо предпочтительном варианте осуществления способа согласно изобретению главная ступень риформинга содержит ступень автотермического риформинга, причем газовый поток, выгружаемый из ступени предриформинга после парового риформинга после парового риформинга содержащегося в нем метанола, который подается к главной ступени риформинга и содержит водород, воду и оксиды углерода, используется для зажигания горелки ступени автотермического риформинга, после того как завершена активация содержащегося в ступени предриформинга катализатора. Удивительным образом было установлено, что газовая смесь, полученная паровым риформингом метанола, весьма полезна для зажигания горелки ступени автотермического риформинга из-за его низкого времени задержки зажигания. Таким образом, дополнительные преимущества способа запуска согласно изобретению получаются в интегрированной установке реформинга, когда она оснащена автотермическим риформером.
Особо выгодно перегревать газовый поток, выгружаемый из ступени предриформинга после парового риформинга в ней метанола, посредством теплообменника или горелки, прежде чем он загружается в главную ступень риформинга. Посредством этого содержащийся в главной ступени риформинга катализатор может быть особо простым образом нагрет до его рабочей температуры.
Приведенные в качестве примера варианты осуществления и численные примеры
Дополнительные усовершенствования, преимущества и возможные применения изобретения могут быть также взяты из следующего описания приведенных в качестве примера вариантов осуществления и численных примеров, а также рисунка. Все описанные и/или проиллюстрированные признаки образуют изобретение сами по себе или в любой комбинации, независимо от их включения в пункты формулы изобретения или их обратные ссылки.
На чертеже схематически показан способ согласно особо предпочтительному варианту осуществления, в котором главная ступень риформинга включает в себя автотермический риформер (ATR), а сырьевой поток, содержащий углеводороды серосодержащие компоненты, является серосодержащим природным газом.
Что не показано на фигуре, так это дополнительное оборудование и арматура, необходимые для выполнения способа, такие как закрывающие элементы, клапаны, транспортировочные элементы, такие как насосы, компрессоры или воздуходувки, конденсатные горшки, испарители, например, для метанола. Кроме того, в нижеследующем описании приведенного в качестве примера варианта осуществления не будут обсуждаться подготовительные шаги, выполняемые перед способом запуска, такие как, например, инертизация оборудования, заполнение реакторов требуемыми катализаторами. Специалист сможет выбрать и использовать подходящее дополнительное оборудование и арматуру или необходимые подготовительные шаги на основании своего экспертного знания.
На показанной на фиг. 1 блок-схеме технологический пар подается через трубопровод 1. Заранее переведенный в парообразное состояние метанол подается в него через трубопровод 2 и смешивается в паром. Альтернативно, метанол и перегретый пар могут быть добавлены в трубопровод 5. Метанол может также дозироваться в жидкой форме и, например, распыляться в перегретую смесь газ/пар.
Отношение смеси пар/метанол, предпочтительно, находится в диапазоне от 2 до 20 моль/моль, типично равно 10 моль/моль. По трубопроводу 3 смесь метанол/пар подается к теплообменнику 4. После выхода из теплообменника 4, предварительно нагретая смесь метанол/пар по трубопроводу 5 направляется к печи 6 (перегревателю), а котором она дополнительно нагревается до температуры активации катализатора предриформинга, которая типично лежит между 300 и 400°C, предпочтительно при 360°C, посредством расположенного в печи комплекта теплообменников. По трубопроводу 7 нагретая смесь метанол/пар подается к реактору 8 предриформинга, где посредством парового риформинга метанола на первоначально еще окисленном или пассивированном катализаторе предриформинга вырабатывается водород, который начинает активацию имеющегося на рынке катализатора предриформинга на основе никеля. Связанные с поверхностью катализатора оксиды превращаются в пар. Отходящий газ активации катализатора, который содержит по существу пар, неконвертированный водород, оксиды углерода, а также следы неконвертированного метанола и метана, полученного гидрированием оксидов углерода, снова подается к печи 6 по трубопроводу 9 и дополнительно в ней нагревается. По трубопроводу 10 дополнительно нагретый отходящий газ активации подается к горелке автотермического риформера 11. Температура отходящего газа активации на входе в ATR обычно равна примерно 650°C. Отходящий газ активации отдает свое тепло автотермическому риформеру 11 и содержащемуся в нем слою катализатора и, таким образом, нагревает его до рабочей температуры. Благодаря содержащемуся в нем водороду и связанному с этим малому времени задержки зажигания, отходящий газ активации, кроме того, служит для зажигания горелки ATR после достижения ATR рабочей температуры, которая находится в диапазоне от 650°C до 1000°C, причем для этой цели по трубопроводу 22 подается кислород. Происходит самовозгорание входящих в горелку ATR газов.
Отходящий газ активации, выходящий из автотермического реактора 11, подается к теплообменнику 13 по трубопроводу 12, к теплообменнику 4 по трубопроводу 14 и к теплообменнику 16 по трубопроводу 15. При нормальной работе установки риформинга тепловая энергия, возвращенная в теплообменниках 13 и 16, используется для выработки пара (на фиг. 1 не показано). В ходе способа запуска согласно изобретению, теплообменник 13 вырабатывает пар низкого давления охлаждением от 650°C до примерно 400°C. Теплообменник 16 охлаждает газовый поток, подаваемый по трубопроводу 15, до температур, благоприятных для отделения водорода, например, до приблизительно 40°C.
По трубопроводу 17 часть отходящего газа активации выгружается и по обратному трубопроводу 17а, показанному на фиг. 1 штриховой линией, рециркулируется к реактору 8 предриформинга после факультативного нагревания (на фиг. 1 не показано). При необходимости, по трубопроводу 2 к реактору 8 предриформинга после нагревания может быть направлен дополнительный метанольный пар. Остающаяся в отходящем газе активации доля водорода посредством этого снова используется для активации катализатора предриформинга.
По трубопроводу 18 другая часть отходящего газа активации подается к ступени 19 отделения водорода. Она сконструирована как установка адсорбции при переменном давлении, однако также возможно использование других подходящих способов отделения, например, мембранного отделения. В качестве продукта ступени 19 отделения водорода получается обогащенный оксидами углерода и метаном и, возможно, азотом поток отходящего газа, который по трубопроводу 21 и трубопроводу 28 подается к реактору 23 гидрирования, который представляет собой первую часть ступени десульфурации.
Альтернативно, богатый водородом газовый поток также может быть добавлен по трубопроводу 21 выше по потоку от печи 6 и смешан с холодным природным газом, причем перегрев газовой смеси происходит затем в печи 6. Продуктовый водород, возможно, может быть уже удален через трубопровод 21а.
При нормальной работе установки риформинга серосодержащие органические и неорганические компоненты, содержащиеся в природном газе, конвертируются в сероводород в реакторе 23 гидрирования и затем отделяются в адсорбере 25, который представляет собой вторую часть ступени десульфурации, на подходящем адсорбенте, например оксиде цинка.
Богатый водородом газовый поток, который покидает ступень десульфурации по трубопроводу 26, рециркулируется по трубопроводам 3, 5 и 7 к реактору 8 предриформинга, где его доля водорода может быть использована для дальнейшей активации катализатора предриформинга.
Активация катализатора в реакторе предриформинга определяется путем непрерывного или периодического измерения концентрации водорода на выходе из реактора. Как только содержащийся в реакторе 8 предриформинга катализатор был полностью активирован, началась подача природного газа, и в ступени десульфурации имеется в распоряжении водород для десульфурации природного газа, по трубопроводу 22 может быть подан кислород, и может быть зажжена горелка автотермического реактора 11. Теперь по трубопроводам 27 и 28 серосодержащий природный газ подается к ступени десульфурации и последующим шагам способа риформинга. Непосредственно после зажигания ATR, добавление метанола может быть уменьшено и отключено. В работу включаются теплообменники 13 и 16, служащие для выработки пара. Таким образом, достигается нормальная работа способа риформинга.
Промышленная применимость
Данным изобретением предлагается способ запуска ступени предриформинга, прежде всего ступени предриформинга в интегрированной установке риформинга, который может выполняться без дорогостоящего и лишь редко используемого оборудования для выработки и транспортировки водорода, требуемого для активации катализатора предриформинга. Используемый в качестве вспомогательного вещества метанол доступен на рынке по низкой цене, и может храниться с низкой степенью риска. При его конверсии по время активации катализатора предриформинга не получаются продукты, инородные для процесса, а только соединения, обработка которых в любом случае обеспечивается способом риформинга.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ
[1] трубопровод
[2] трубопровод
[3] трубопровод
[4] теплообменник
[5] трубопровод
[6] печь (перегреватель)
[7] трубопровод
[8] реактор предриформинга (предриформер)
[9] трубопровод
[10] трубопровод
[11] автотермический риформер (ATR)
[12] трубопровод
[13] теплообменник
[14] трубопровод
[15] трубопровод
[16] теплообменник
[17] трубопровод
[17а] трубопровод
[18] трубопровод
[19] ступень отделения водорода
[20] трубопровод
[21] трубопровод
[21а] трубопровод
[22] трубопровод
[23] реактор гидрирования (ступень десульфурации)
[24] трубопровод
[25] адсорбер (ступень десульфурации)
[26] трубопровод
[27] трубопровод
[28] трубопровод

Claims (14)

1. Способ запуска ступени предриформинга в интегрированной установке риформинга, содержащей ступень предриформинга и по меньшей мере одну главную ступень риформинга ниже по потоку от ступени предриформинга, причем ступень предриформинга заполнена слоем гранулированного, активного для предриформинга никельсодержащего катализатора, который перед запуском находится в окисленном или пассивированном состоянии, содержащий следующие шаги способа:
(а) подача первого газового потока (активирующий поток), содержащего метанол и воду, к ступени предриформинга и конвертирование потока активации в ступени предриформинга с находящимся там катализатором в условиях активации,
(б) выгрузка второго газового потока, содержащего водород, воду и оксиды углерода, из ступени предриформинга и подача второго газового потока к главной ступени риформинга,
(в) выгрузка третьего газового потока, содержащего водород, воду и оксиды углерода, из главной ступени риформинга, причем третий газовый поток, по меньшей мере, частично рециркулируют к ступени предриформинга.
2. Способ по п. 1, отличающийся тем, что содержатся следующие дальнейшие шаги способа:
(г) подача, по меньшей мере, части третьего газового потока к ступени отделения водорода, расположенной ниже по потоку от главной ступени риформинга,
(д) выгрузка четвертого богатого водородом газового потока из ступени отделения водорода и подача четвертого газового потока к ступени десульфурации, расположенной выше по потоку от ступени предриформинга,
(е) контактирование четвертого богатого водородом потока с сырьевым потоком, содержащим углеводороды и серосодержащие компоненты, который подают к ступени десульфурации, конвертирование богатого водородом потока с сырьевым потоком, содержащим серосодержащие компоненты, в условиях десульфурации и выгрузка десульфурированного углеводородного сырьевого потока,
(ж) подача десульфурированного углеводородного сырьевого потока к ступени предриформинга, как только содержащийся в ступени предриформинга катализатор будет в восстановленном или активированном состоянии.
3. Способ по п. 1 или 2, причем главная ступень риформинга содержит ступень парового риформинга (паровой риформер) или ступень автотермического риформинга (ATR) или обе ступени.
4. Способ по п. 2, отличающийся тем, что содержащий углеводороды и серосодержащие компоненты сырьевой поток включает в себя природный газ.
5. Способ по пп. 1, 2, отличающийся тем, что главная ступень риформинга содержит ступень автотермического риформинга, и что второй газовый поток, содержащий водород, воду и оксиды углерода, используют для зажигания горелки ступени автотермического риформинга, после того, как прекращена активация содержащегося в ступени предриформинга катализатора.
6. Способ по пп. 1, 2, отличающийся тем, что второй газовый поток, содержащий водород, воду и оксиды углерода, перегревают перед входом в главную ступень риформинга для нагревания находящегося в главной ступени риформинга катализатора до его рабочей температуры.
7. Интегрированная установка риформинга, выполненная с возможностью осуществления способа запуска согласно пп. 1-6, содержащая по меньшей мере один реактор предриформинга, главный реактор риформинга ниже по потоку от реактора предриформинга, реактор десульфурации выше по потоку от реактора предриформинга и устройство отделения водорода ниже по потоку от главного реактора риформинга, отличающаяся дозирующим устройством и трубопроводами для подачи газообразного активирующего потока, содержащего метанол и воду, к реактору предриформинга.
RU2015153248A 2013-05-13 2014-05-05 Способ запуска ступени предриформинга RU2671360C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013104893.5A DE102013104893A1 (de) 2013-05-13 2013-05-13 Verfahren zur Inbetriebnahme einer Vorreformierungsstufe
DE102013104893.5 2013-05-13
PCT/EP2014/059050 WO2014184022A1 (en) 2013-05-13 2014-05-05 Method for starting up a prereforming stage

Publications (3)

Publication Number Publication Date
RU2015153248A RU2015153248A (ru) 2017-06-19
RU2015153248A3 RU2015153248A3 (ru) 2018-03-20
RU2671360C2 true RU2671360C2 (ru) 2018-10-30

Family

ID=50733024

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015153248A RU2671360C2 (ru) 2013-05-13 2014-05-05 Способ запуска ступени предриформинга

Country Status (9)

Country Link
US (1) US10259708B2 (ru)
EP (1) EP2996984B1 (ru)
CN (1) CN105408242B (ru)
BR (1) BR112015028259B1 (ru)
CA (1) CA2911617C (ru)
DE (1) DE102013104893A1 (ru)
DK (1) DK2996984T3 (ru)
RU (1) RU2671360C2 (ru)
WO (1) WO2014184022A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294102B2 (en) 2016-12-15 2019-05-21 Praxair Technology, Inc. Method of catalyst reduction in a hydrogen plant
CN110542561B (zh) * 2019-08-29 2021-08-13 武汉理工大学 废气-燃料催化重整与催化剂再生的天然气发动机试验系统及控制方法
EP3838841B1 (en) * 2019-12-19 2023-11-01 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Process for start-up of an autothermal reformer
BR102021007738A2 (pt) 2021-04-22 2022-11-01 Petróleo Brasileiro S.A. - Petrobras Método de manutenção da atividade de catalisadores de pré-reforma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
EP0921585A2 (de) * 1997-12-05 1999-06-09 dbb fuel cell engines GmbH Vorrichtung und Verfahren zur Wasserdampfreformierung eines Kohlenwasserstoffs
EP0936182A2 (en) * 1998-02-13 1999-08-18 Haldor Topsoe A/S Method of soot-free start-up of autothermal reformers
US20020006968A1 (en) * 1998-08-13 2002-01-17 Abbott Peter Edward James Steam reforming
WO2013061040A2 (en) * 2011-10-26 2013-05-02 Compactgtl Limited Gas-to-liquid technology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444099A (en) 1965-12-23 1969-05-13 Exxon Research Engineering Co Equilibration and steam-reforming catalysts
GB1465269A (en) 1974-05-21 1977-02-23 Davy Powergas Ltd Catalytic process
US6759016B2 (en) * 2000-11-30 2004-07-06 Ballard Power Systems Inc. Compact multiple tube steam reformer
CN1856441A (zh) * 2003-04-01 2006-11-01 赫多特普索化工设备公司 一种制备富氢流的方法
KR100637340B1 (ko) * 2004-04-09 2006-10-23 김현영 고온 개질기
US7429373B2 (en) * 2005-06-24 2008-09-30 Air Products And Chemicals, Inc. Process for autothermal generation of hydrogen
US8216323B2 (en) * 2005-06-30 2012-07-10 General Electric Company System and method for hydrogen production
EP2103569B1 (en) * 2008-03-17 2015-04-15 Air Products and Chemicals, Inc. Steam-hydrocarbon reforming method with limited steam export
GB201018152D0 (en) * 2010-10-27 2010-12-08 Johnson Matthey Plc Catalyst preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595833A (en) * 1994-02-19 1997-01-21 Rolls-Royce Plc Solid oxide fuel cell stack
EP0921585A2 (de) * 1997-12-05 1999-06-09 dbb fuel cell engines GmbH Vorrichtung und Verfahren zur Wasserdampfreformierung eines Kohlenwasserstoffs
EP0936182A2 (en) * 1998-02-13 1999-08-18 Haldor Topsoe A/S Method of soot-free start-up of autothermal reformers
US20020006968A1 (en) * 1998-08-13 2002-01-17 Abbott Peter Edward James Steam reforming
WO2013061040A2 (en) * 2011-10-26 2013-05-02 Compactgtl Limited Gas-to-liquid technology

Also Published As

Publication number Publication date
CA2911617C (en) 2021-12-14
EP2996984B1 (en) 2018-10-10
RU2015153248A (ru) 2017-06-19
CA2911617A1 (en) 2014-11-20
BR112015028259B1 (pt) 2022-08-30
DK2996984T3 (en) 2019-01-21
US10259708B2 (en) 2019-04-16
CN105408242A (zh) 2016-03-16
BR112015028259A2 (pt) 2017-07-25
US20160115021A1 (en) 2016-04-28
CN105408242B (zh) 2018-04-24
DE102013104893A1 (de) 2014-11-13
WO2014184022A1 (en) 2014-11-20
RU2015153248A3 (ru) 2018-03-20
EP2996984A1 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
US7695708B2 (en) Catalytic steam reforming with recycle
US20110085967A1 (en) Hydrogen product method and apparatus
EA006718B1 (ru) Реформинг природного газа в синтез-газ с использованием окисления водорода в пар
ES2433231T3 (es) Proceso de reformado combinado para la producción de metanol
RU2671360C2 (ru) Способ запуска ступени предриформинга
KR101753425B1 (ko) 스팀 메탄 개질기를 갖는 수소 플랜트로의 원료로서 사용하기 위한 처리된 탄화수소 함유 스트림을 생성하기 위한 방법 및 장치
JP2000185904A (ja) 高級炭化水素を含む炭化水素供給材料の自熱式改質方法
US20230294985A1 (en) Low carbon hydrogen fuel
JP6980795B2 (ja) 燃焼のための酸素および燃料の予熱と組み合わせてプレ−リフォーマーを使用する強化された廃熱回収
EA036747B1 (ru) Способ получения синтез-газа
US20130097929A1 (en) Process for Producing Hydrogen
RU2572832C2 (ru) Способ ввода в эксплуатацию автотермических реакторов риформинга
CN111217331A (zh) 通过蒸汽重整和co转化生产氢气的方法
CA2938779C (en) Process for producing synthesis gas by catalytic steam reforming of hydrocarbon feedstock
US9643843B2 (en) Method for producing synthesis gas
CA2909915C (en) Method for prereforming hydrocarbons
BG112796A (bg) Получаване на сингаз за производство на водород, чрез паров реформинг на въглеводороди с прилагане на процес на пълно горене на поток горивни газове в автотермичен реформинг
Overwater et al. Considerations for design of steam reforming hydrogen plants