RU2670981C1 - Полимерные продукты, содержащие циклопропановые группы - Google Patents

Полимерные продукты, содержащие циклопропановые группы Download PDF

Info

Publication number
RU2670981C1
RU2670981C1 RU2017132052A RU2017132052A RU2670981C1 RU 2670981 C1 RU2670981 C1 RU 2670981C1 RU 2017132052 A RU2017132052 A RU 2017132052A RU 2017132052 A RU2017132052 A RU 2017132052A RU 2670981 C1 RU2670981 C1 RU 2670981C1
Authority
RU
Russia
Prior art keywords
polybutadiene
diazomethane
catalyst
macromolecules
interaction
Prior art date
Application number
RU2017132052A
Other languages
English (en)
Inventor
Андрей Борисович Глазырин
Марат Ибрагимович Абдуллин
Элена Рифовна Атнабаева
Римма Марсельевна Султанова
Владимир Анатольевич Докичев
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" (БашГУ)
Федеральное Государственное Бюджетное Научное Учреждение Уфимский Федеральный Исследовательский Центр Российской Академии Наук (Уфиц Ран)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" (БашГУ), Федеральное Государственное Бюджетное Научное Учреждение Уфимский Федеральный Исследовательский Центр Российской Академии Наук (Уфиц Ран) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" (БашГУ)
Priority to RU2017132052A priority Critical patent/RU2670981C1/ru
Application granted granted Critical
Publication of RU2670981C1 publication Critical patent/RU2670981C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • C08C19/06Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к получению полимеров, содержащих в составе макромолекул незамещенные циклопропановые группы. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):,имеющих соотношение звеньев (+b):(c+d)=60-90:10-40, заключается во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен:диазометан:катализатор, равном 1:3,0:0,0025-0,01. Способ отличается тем, что получение диазометана и его взаимодействие с 1,2-полибутадиеном производят в одном реакционном объеме (in situ). Технический результат – упрощение технологии при сохранении возможности целенаправленно модифицировать циклопропановыми группами исходный полимер в широком диапазоне молекулярных масс. 2 з.п. ф-лы, 1 табл., 8 пр.

Description

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):
Figure 00000001
Данные полимерные продукты представляют сополимеры, содержащие циклопропановые группы в боковых звеньях (b) макромолекул, а также двойные углерод-углеродные связи в боковых звеньях (а) и в основной цепи (с) и (d) [соотношение звеньев (a+b):(c+d)=60-90:10-40].
Полимерные продукты (1) характеризуются высоким комплексом физико-механических свойств и могут найти применение в качестве герметиков, модификаторов в составе различных композиций термопластов и эластомеров.
Циклопропанированные полимерные продукты (1) могут быть получены химической модификацией 1,2-полибутадиенов определенного состава и строения, содержащих в составе макромолекул звенья 1,2- и 1,4-полимеризации 1,3-бутадиена, которые синтезируют в промышленности полимеризацией 1,3-бутадиена на комплексных катализаторах (патент РФ №2072362, патент РФ №2177008, заявка РФ №2005104832, патент США №4182813).
Способ получения полимеров формулы (1) основан на взаимодействии ненасыщенных связей 1,2-полибутадиена с карбеном, генерируемым in sity при каталитическом разложении диазометана, в среде органического растворителя с образованием полимерного продукта, содержащего циклопропановые группы в боковых звеньях:
Figure 00000002
Известен способ (патент РФ №2443674, кл. С07С 61/04, C08F 8/02, опубл. 27.02.2012, патент РФ №2447055, кл. С07С 61/04, C08F 8/02, опубл. 10.04.2012) получения полимеров, заключающийся во взаимодействии 1,2-полибутадиена с метилдиазоацетатом в присутствии катализатора - ацетата родия(II) - Rh2(OAc)4 и трифлата меди(II) - Cu(OTf)2, при мольном соотношении 1,2-полибутадиен:алкилдиазоацетат:катализатор 1:0,5-1:0,01. Реакцию проводят в органическом растворителе (метиленхлорид) при температуре 40°C с получением продукта, содержащего алкоксикарбонилзамещенные циклопропановые группы в основной и боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме. Суммарное содержание функционализированных звеньев в полимере составляет 28-36 мол.% (на медном катализаторе) и 36-50 мол.% (на родиевом катализаторе).
Данный метод позволяет получать полимерные продукты, содержащие в составе макромолекул метоксикарбонилзамещенные циклопропановые звенья. Однако в известном способе не указана возможность селективного получения циклопропанированных полимеров, содержащих незамещенные циклопропановые группы в боковой цепи.
Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения полимеров, содержащих циклопропановые группы [Глазырин, А.Б. Производные синдиотактического 1,2-полибутадиена, содержащие циклопропановые группы / А.Б. Глазырин, М.И. Абдуллин, В.А. Докичев, P.M. Султанова, P.P. Муслухов, Э.Р. Газизова (Атнабаева) // Высокомолекулярные соединения. Серия Б. - 2014. - Т. 56. - №6. - С. 535-542], основанный на взаимодействии 1,2-полибутадиена синдиотактического строения со степенью кристалличности 25%, среднечисловой молекулярной массой Mn 65000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 84 и 16 мол.% с диазосоединением в среде органического растворителя (метиленхлорид) в присутствии катализатора - ацетата палладия Pd(OAc)2 и ацетилацетоната палладия Pd(acac)2, при определенном мольном соотношении 1,2-полибутадиен: диазосоединение: катализатор, взаимодействие ведут до прекращения газовыделения. При этом в качестве диазосоединения используют диазометан, взаимодействие проводят при мольном соотношении 1,2-полибутадиен:диазосоединение:катализатор, равном 1,0:1,0:0,01, при температуре 0-5°C с получением продукта, содержащего незамещенные циклопропановые группы в боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме при температуре. Суммарное содержание функционализированных звеньев в полимере составляет 11-47 мол.%. Однако данный способ имеет ряд недостатков:
• рассмотренный метод позволяет получать полимерные продукты лишь с достаточно низкой степенью функционализации полимера - не более 47%;
• существенным недостатком данного метода является использование в качестве реагента раствора диазометана в диэтиловом эфире, обладающего чрезвычайно высокой взрыво- и пожароопасностью, что требует соблюдения специальных мер техники безопасности и создает серьезные проблемы, особенно при попытках масштабирования данного процесса;
• использование достаточно сложных каталитических систем, которые должны быть предварительно получены по специальным методикам [Джемилев У.М., Поподько К Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96].
Кроме того, для получения полимерных продуктов (1) предлагается использовать только 1,2-полибутадиен синдиотактического строения, имеющий определенную молекулярную массу и состав. Это ограничивает возможности данного метода получением полимеров с молекулярной массой в пределах Mn=65-66⋅103 и узким набором свойств.
Таким образом, в наиболее близком аналоге не указана возможность получения полимеров формулы (1), имеющих иной состав, молекулярную массу, характеризующихся не только синдиотактическим, но и атактическим строением макромолекул, т.е. обладающих более широким набором свойств.
Задачей данного изобретения является способ получения полимерных продуктов, содержащих в макромолекулах незамещенные циклопропановые группы, имеющих высокую степень функционализации (превращение ненасыщенных звеньев в циклопропановые группы) и различную молекулярную массу, которая может быть целенаправленно изменена в широком интервале значений (в зависимости от требований к полимерному продукту) путем удобного и безопасного метода прямого каталитического циклопропанирования исходного полидиена с использованием доступного катализатора.
Указанная задача достигается путем взаимодействия 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен:диазометан:катализатор, равном 1:3,0:0,0025-0,01, отличающимся тем, что
• получение диазометана реакцией N-метил-N-нитрозомочевины с водным раствором щелочи и последующее его взаимодействие с 1,2-полибутадиеном производят в одном реакционном объеме (in situ);
• в качестве катализатора используют доступный хлорид палладия PdCl2;
• в качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-75 и 25-40 мол.% или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 80-90 и 10-20 мол.%.
Заявляемый способ позволяет получать полимерные продукты формулы (1) со степенью функционализации (содержанием циклопропановых групп) до 83% и молекулярной массой от 900 до 80000.
При реализации предлагаемого способа использовали промышленные образцы 1,2-полибутадиена производства ОАО «Ефремовский завод СК», а также полимер марки JSR RB-830 производства «Japan Synthetic Rubber Со.» (Япония). 1,2-полибутадиен очищали переосаждением в системе хлороформ-этанол, далее полимер дважды промывали спиртом и сушили под вакуумом при 60°C до постоянной массы.
В качестве катализатора применяли хлорид палладия [химическая формула - PdCl2] фирмы ("Acros").
Диазометан получали по известной методике (Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96).
Данное изобретение иллюстрируется следующими примерами.
Пример 1.
К 2,00 г (37 ммоль) 1,2-полибутадиена добавляли 40 мл метиленхлорида и перемешивали до полного растворения. К полученному раствору полимера добавляли 0,066 г (0,37 ммоль) катализатора (PdCl2) в 10 мл метиленхлорида, а также расчетное количество 40%-ного раствора гидроксида калия и диэтилового эфира. Использовали 1,2-полибутадиен синдиотактического строения со среднечисловой молекулярной массой Mn=75000, содержанием звеньев 1,2- и 1,4-полимеризации 90 и 10 мол.%, соответственно, степенью синдиотактичности 90%.
К полученной массе при перемешивании при 0-5°C с помощью шнекового дозатора медленно дозировали расчетное количество N-метил-N-нитрозомочевины, необходимое для получения 111 ммоль диазометана. Мольное соотношение 1,2-ПБ:диазометан:катализатор составляло 1:3:0,01. Реакцию проводили до прекращения выделения газа при температуре 0-5°C в течение 2 часов. После окончания синтеза полимер высаждали из реакционной массы этанолом, очищали переосаждением в системе хлороформ - этанол и сушили в вакууме при температуре 40-50°C.
Полученный полимер формулы (1) имеет степень функционализации (содержание циклопропановых групп) 81%:
Figure 00000003
Примеры 2-8. Все операции проводили в соответствии с примером 1. Результаты экспериментов приведены в табл. 1.
Из данных табл. 1 следует, что предложенный в изобретении способ позволяет синтезировать полимерные продукты формулы (1):
• характеризующиеся степенью функционализации до 83%;
• имеющие различную молекулярную массу (Mn) от 900 до 80000 а.е.м.;
Кроме того, данным методом могут быть получены модифицированные полимеры с различным пространственным строением (конфигурацией) макромолекул: с атактическим или синдиотактическим расположением циклопропановых групп.
Таким образом, предлагаемый метод дает возможность целенаправленного получения циклопропанированных полимерных продуктов (1) с заданной степенью функционализации, молекулярной массой, пространственным расположением циклопропановых групп, в зависимости от требований, предъявляемых к полимеру.
Выбранные пределы показателей процесса:
- использование удобного и безопасного одностадийного метода прямого каталитического циклопропанирования исходного полидиена, позволяющего исключить предварительное получение и транспортирование токсичного, пожаро- и взрывоопасного диазометана, что позволяет получать соответствующие циклопропанированные полимеры в значительных количествах и применить данную технологию в промышленном производстве;
- в качестве катализатора используется хлорид палладия, который является промышленно доступным реагентом и обеспечивает селективное протекание реакции циклопропанирования 1,2-полибутадиенов диазометаном, в отличие от ацетилацетоната палладия (прототип), который получают по специальной технологии и который является существенно более дорогим реагентом;
- использование в качестве катализатора хлорида палладия позволяет получать полимерные продукты с высокой степенью функционализации полимера (до 83%), т.е. достигается практически исчерпывающая функционализация С=С-связей в звеньях 1,2-полимеризации полимера, тогда как при использовании ацетилацетоната палладия (прототип) степень функционализации полимера существенно (в ~2 раза) ниже;
- использование в качестве катализатора хлорида палладия позволяет получать циклопропанированные полимерные продукты как на основе синдиотактического, так и атактактического 1,2-полибутадиена, причем могут быть использованы 1.2-полибутадиены с различной молекулярной массой (от 800 до 75000), тогда как применение ацетилацетоната палладия (прототип) предполагает получение циклопропанированных полимеров только на основе синдиотактического 1,2-полибутадиена, причем только с высокой молекулярной массой (65000);
- мольное соотношение реагентов, при котором достигается наиболее высокая степень функционализации полимера - 1,2-ПБ:диазометан:катализатор, составляет 1:3,0:0,0025-0,01. При уменьшении количества катализатора (менее 0,0025 мол.) образуются полимерные продукты с низкой степенью функционализации. При увеличении количества катализатора (более 0,01 мол.) степень функционализации изменяется незначительно, но это приводит к большому расходу катализатора.
- реакцию проводят при температуре 0-5°C, при которой не образуются нежелательные побочные продукты реакции и обеспечивается наиболее высокая степень функционализации полимера.
Таким образом, использование предлагаемого метода позволяет получать на основе 1,2-полибутадиенов полимерные продукты (1) с различной молекулярной массой и строением макромолекул, содержащие незамещенные циклопропановые группы с существенно более высокой по сравнению с прототипом степенью функционализации, а значит и с более широким набором свойств, что расширяет возможности практического использования синтезированных полимерных продуктов.
Figure 00000004

Claims (5)

1. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):
Figure 00000005
имеющих соотношение звеньев (a+b):(c+d)=60-90:10-40, заключающийся во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен:диазометан:катализатор, равном 1:3,0:0,0025-0,01, отличающийся тем, что получение диазометана и его взаимодействие с 1,2-полибутадиеном производят в одном реакционном объеме (in situ).
2. Способ по п. 1, отличающийся тем, что в качестве катализатора используют хлорид палладия PdCl2.
3. Способ по п. 1, отличающийся тем, что в качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Мn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-75 и 25-40 мол.% или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Мn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 80-90 и 10-20 мол.%.
RU2017132052A 2017-09-12 2017-09-12 Полимерные продукты, содержащие циклопропановые группы RU2670981C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017132052A RU2670981C1 (ru) 2017-09-12 2017-09-12 Полимерные продукты, содержащие циклопропановые группы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017132052A RU2670981C1 (ru) 2017-09-12 2017-09-12 Полимерные продукты, содержащие циклопропановые группы

Publications (1)

Publication Number Publication Date
RU2670981C1 true RU2670981C1 (ru) 2018-10-29

Family

ID=64103077

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017132052A RU2670981C1 (ru) 2017-09-12 2017-09-12 Полимерные продукты, содержащие циклопропановые группы

Country Status (1)

Country Link
RU (1) RU2670981C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443674C1 (ru) * 2010-11-17 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" ГОУ ВПО БашГУ Способ получения полимеров, содержащих циклопропановые группы
RU2571431C1 (ru) * 2014-11-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы
RU2623274C2 (ru) * 2014-12-30 2017-06-23 Публичное акционерное общество "СИБУР Холдинг" Способ эпоксидирования бутадиен-стирольного каучука
RU2016107276A (ru) * 2016-02-29 2017-09-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" Способ получения полимерных продуктов, содержащих циклопропановые группы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443674C1 (ru) * 2010-11-17 2012-02-27 Государственное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" ГОУ ВПО БашГУ Способ получения полимеров, содержащих циклопропановые группы
RU2571431C1 (ru) * 2014-11-21 2015-12-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Башкирский государственный университет" Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы
RU2623274C2 (ru) * 2014-12-30 2017-06-23 Публичное акционерное общество "СИБУР Холдинг" Способ эпоксидирования бутадиен-стирольного каучука
RU2016107276A (ru) * 2016-02-29 2017-09-04 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" Способ получения полимерных продуктов, содержащих циклопропановые группы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе, М., "Химия", 1999, с.647, с. 188. *

Similar Documents

Publication Publication Date Title
Zhao et al. Metal-catalysed radical carbonylation reactions
Hinner et al. Homogeneous vinyl ester-based synthesis of different cellulose derivatives in 1-ethyl-3-methyl-imidazolium acetate
RU2732326C2 (ru) Способ получения фуран-2,5-дикарбоновой кислоты
JP5521165B2 (ja) ヒドロキシスチレンダイマー誘導体、その製造方法、連鎖移動剤およびラジカル重合性モノマーの重合方法
Schüßler et al. Application of a cross-linked Pd–chitosan catalyst in liquid-phase-hydrogenation using molecular hydrogen
RU2670981C1 (ru) Полимерные продукты, содержащие циклопропановые группы
RU2631504C2 (ru) Способ получения полимерных продуктов, содержащих циклопропановые группы
RU2571431C1 (ru) Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы
Markó et al. Remarkable deprotection of THP and THF ethers catalysed by cerium ammonium nitrate (CAN) under neutral conditions
Spitzer et al. Polymer-supported synthesis as a tool for improving chemoselectivity: Pauson-Khand reaction
CN106946668B (zh) 一种苯酚加氢制备环己酮的方法
Glazyrin et al. Synthesis and properties of cyclopropane derivatives of polybutadienes
Wang et al. Diazoacetates as terminating agents in living ring-opening metathesis polymerization: synthesis of chain-end-functionalized polymers
CN110746305A (zh) 一种多取代二苯甲酰苯衍生物及其合成方法
RU2443674C1 (ru) Способ получения полимеров, содержащих циклопропановые группы
WO2019123055A1 (en) Valorization of syngas via formaldehyde – hydroformylation of formaldehyde using heterogenized organometallic complexes of group viii metals
RU2447055C1 (ru) Способ получения полимеров, содержащих циклопропановые группы
Cho et al. A Zinc Enolate of Amide: Preparation and Application in Reformatsky-Like Reaction Leading to β-Hydroxy Amides.
CN109796426A (zh) 一种利用碱性沸石分子筛催化肉桂酸脱羧偶联反应的方法
WO2015082842A1 (fr) Procédé de fabrication d'oligomères téléchéliques fonctionnalisés
Wang et al. Metal-free reductive acyldifluoroalkylation of alkenes through cooperative NHC and organophotocatalysis
Reddy et al. An efficient biomimetic cleavage of aziridines with nucleophiles catalyzed by β-cyclodextrin in water
RU2445306C1 (ru) Способ получения полимеров, содержащих циклопропановые группы
Glazyrin et al. Derivatives of syndiotactic cyclopropane-containing 1, 2-polybutadiene
IL214717A (en) A process for making the Loelcanon sites

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200913