RU2668887C1 - Способ динамического гашения колебаний технического объекта и устройство для его реализации - Google Patents
Способ динамического гашения колебаний технического объекта и устройство для его реализации Download PDFInfo
- Publication number
- RU2668887C1 RU2668887C1 RU2017120619A RU2017120619A RU2668887C1 RU 2668887 C1 RU2668887 C1 RU 2668887C1 RU 2017120619 A RU2017120619 A RU 2017120619A RU 2017120619 A RU2017120619 A RU 2017120619A RU 2668887 C1 RU2668887 C1 RU 2668887C1
- Authority
- RU
- Russia
- Prior art keywords
- lever
- intermediate body
- technical object
- mass
- oscillations
- Prior art date
Links
- 238000013016 damping Methods 0.000 title claims abstract description 24
- 230000010355 oscillation Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 12
- 238000009434 installation Methods 0.000 claims abstract 2
- 238000012545 processing Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract 1
- 230000033001 locomotion Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
- F16F15/04—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
- F16F7/10—Vibration-dampers; Shock-absorbers using inertia effect
- F16F7/104—Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Группа изобретений относится к области машиностроения. Регистрируют колебания основания, промежуточного тела и технического объекта с помощью датчиков. Гасят колебания посредством сервопривода и установки на промежуточном теле пилона с рычагом. Один конец рычага соединяют упругим элементом с промежуточным телом и пилоном с техническим объектом. На другой конец рычага устанавливают массу, соединенную упругими элементами с промежуточным телом и техническим объектом. Устройство содержит датчики регистрации колебаний. Сервопривод и дополнительная масса с рычагом установлены на конце рычага. Достигается улучшение управления динамическим состоянием защиты объекта. 2 н.п. ф-лы, 1 ил.
Description
Изобретение относится к области динамики машин, оборудования и аппаратуры, работающих в условиях интенсивного динамического нагружения. Известны многие способы и средства защиты объектов от силовых и кинематических возмущений, что связано с введением или формированием специальных устройств в виде амортизаторов, демпферов, рессор и специальных устройств с использованием рабочих сред и электромагнитных эффектов.
Динамические гасители колебаний представляют собой достаточно автономную область виброзащитных устройств, полезные функции которых реализуется в том, что внешние силы, действующие на объект, уравновешиваются инерционными силами, возникающими при воздействиях элементов.
Известно изобретение RU 157103 U1, МПК F16F 15/00, опубликовано 20.11.2015, патент на полезную модель "Динамический гаситель колебаний". Полезная модель относится к динамическим гасителям в структуре которых используются рычажные связи, обеспечивающие не только взаимодействие элементов, но и размещение на звеньях механизмов дополнительных масс. Динамический гаситель имеет пневмо-механическую упругую систему, состоящую из рабочей и демпферной камер, обеспечивающих возможность самоперестройки при переходе из режима низкочастотных воздействий к восприятию внешнего возмущения в области высоких частот. Недостатком данного изобретения является отсутствие возможностей влиять на настройку системы к реализациям режимов динамического гашения на основе использования дополнительных масс, которые жестко закреплены на концах звеньев.
Известно изобретение RU 133232 U1, МПК F16F 7/10, опубликовано 10.10.2013, патент на полезную модель "Устройство для гашения колебаний". Устройство для гашения колебаний представляет по своей сути рычажный динамический гаситель колебаний. Эффект динамического гашения колебаний обеспечивается дополнительной массой, закрепленной на рычаге второго рода. Точка вращения рычага опирается на вибрирующую поверхность, что создает необходимое уменьшение колебаний объекта при кинематическом возмущении в области частот динамического гашения. Основной недостаток устройств заключается в узости частотного диапазона динамического гашения колебаний и запирании устройства на высоких частотах.
Известно устройство для гашения колебаний на техническом объекте при действии вибраций основания, представленное авторским свидетельством на изобретение SU 540081 A1, МПК F16F 5/00, опубликовано 25.12.1976 "Двухкаскадное устройство для гашения вибраций". Устройство представляет управляемую систему, в которой технический объект защищается от вибраций упругой пружиной постоянной жесткости и активным элементом в виде гидроцилиндра, золотник которого управляется на основе сигнала, поступающего от датчика динамического состояния объекта. Основной недостаток изобретения заключается в необходимости обеспечения высоких требований к условиям эксплуатации электрогидравлического блока, находящегося под действием внешних возмущений.
Известно изобретение RU 2475658 C2, МПК F16F 7/10, опубликовано 20.02.2013, "Способ регулирования жесткости виброзащитной системы и устройство для его осуществления". Способ предлагает реализацию режима динамического гашения колебаний объекта защиты со стороны опорной поверхности с помощью присоединяемого дополнительного твердого тела, на котором установлены два вращающихся в разные стороны рычага. Каждый рычаг приводится во вращения вокруг своей оси с помощью электродвигателя. Дисбаланс на вращающемся рычаге может менять свое расстояние от оси вращения, что обеспечивается соответствующей системой управления. Недостаток системы заключается в сложности обслуживания и зависимости от параметров подаваемой электроэнергии; изменение скорости вращения двигателя приводит к выходу из режима динамического гашения колебаний. Существенным недостатком является возможность сбоя разности фаз во вращающихся рычажных механизмах.
В качестве прототипа выбирается вышеприведенный способ регулирования и устройство для его осуществления в силу наличия в нем определенных достоинств, которые могут быть развиты, а использованный подход улучшен.
Предлагаемое изобретение предназначено для решения задач управления динамическим состоянием защиты технического объекта. Такого рода задачи характерны для вибрационной защиты прецизионного оборудования, приборов и аппаратуры.
Задача решается следующим образом.
Способ динамического гашения колебаний технического объекта, включающий гашение колебаний, с помощью системы упругих элементов и масс. Регистрируют колебания основания, промежуточного тела и технического объекта с помощью датчиков. Полученную информацию передают в блок управления, после обработки информации проводят гашения колебаний, используя сервопривод и установку на промежуточное тело пилон (опора) с рычагом, один конец рычага соединяют упругим элементом с промежуточным телом и пилоном с техническим объектом. Другой конец рычага устанавливают массу, которую соединяют упругими элементами с промежуточным телом и техническим объектом. На самом конце рычага устанавливают сервопривод с дополнительной массой и рычагом.
Устройство для осуществления способа динамического гашения колебаний технического объекта, состоит из промежуточного тела, дополнительных масс и упругих элементов. На техническом объекте, промежуточном теле и основании устанавливаются датчики регистрации колебаний. На промежуточном теле также имеется пилон (опора) с рычагом, один конец рычага соединен упругим элементом с промежуточным телом и с помощью пилона с техническим объектом. На другом конце рычага имеется масса, соединенная упругим элементом с техническим объектом и промежуточным телом, причем на самом конце рычага установлены сервопривод и дополнительная масса с рычагом.
На фиг. 1 показана схема динамического гашения колебаний технического объекта.
На фиг. 1 обозначены: технический объект 8 в виде твердого тела массой m2 опирается через систему упругих элементов 2, 5, 13, 16 с жесткостями k1, k2, k4 и k3 соответственно на основание 1. Для связи промежуточного тела 3 с рычагом 6 используется пилон (опора) 4. При этом технический объект 8 также соединен пилоном 7 с рычагом 6. Упругий элемент 5 в точке O2 опирается на рычаг 6. Рычаг 6 имеет две точки контактов с пилонами 7 и 4 соответственно в тт. O2, O1. На конце рычага 6 размещается масса 14 (m0); на продолжении рычага 6 расположена также дополнительная масса 17 массой m00, которая может перемещаться относительно т. А рычага 6 с помощью устройства изменения длины плеча сервопривода 15. Управление виброзащитной системой осуществляется блоком управления 11. Блок управления 11 получает информацию о состоянии технического объекта 8, промежуточного тела и основания через датчики 9, 18, 20. Сбор информации и питание сервопривода 15 осуществляется коммуникациями 10, 12, 19, 21.
Способ управления динамическим состоянием технического объекта реализуется при возникновении вибраций основания 1. При вибрациях основания 1 колебания передаются через упругий элемент 2 жесткостью k1 на промежуточное тело 3 массой m1. Промежуточное тело через пружину 5 жесткость k2 в точке O2 передает динамическое усилие техническому объекту защиты 8 через пилон 7. Одновременно на промежуточном теле 3 в точке O1 установлен пилон 4 с рычагом 6.
Промежуточное тело 3 передает колебание через упругий элемент 16 жесткостью k3 масса 14 массой m0, установленному на конце рычага 6 (точка А). От рычага 6 динамические усилия через упругий элемент 13 жесткостью k4 и пилон 7 создают воздействия, определяющие динамическое состояние технического объекта 8. Дополнительным фактором, влияющим на распределении сил, является дополнительная масса 17 массой m00.
В целом технический объект с присоединенными элементами образует механическую колебательную систему с двумя степенями свободы, в которой кинематическое внешнее воздействие вызывает движение элементов системы, которые связаны между собой и при определенных условиях обеспечивают параметры движения по отдельным точкам в режимах динамического гашения колебаний.
Такой режим обеспечивает система управления перемещением дополнительной массы m00. Необходимый режим работы достигает в режиме самонастройки на основе использования информации от датчиков динамического состояния технического объекта и датчиков изменения вибраций основания и промежуточного тела.
В приложении дано теоретическое обоснование реализации и эффективности работы предлагаемого способа динамического гашения колебаний технического объекта и устройство для его реализации.
ПРИЛОЖЕНИЕ
Теоретическое обоснование
На Рис. 1 рассматривается механическая колебательная система с двумя степенями свободы как расчетная схема виброзащитной системы, состоящей из объекта защиты массой m2, промежуточного инерционного устройства с массой m1. Объекта защиты m2 и промежуточное устройство m1 соединяются между собой с помощью рычага, который имеет вращательные кинематические пары с пилонами, установленными соответственно на объекте защиты и промежуточной массе m1, как показано на Рис. 1.
Объект защиты упруго опирается на промежуточное устройство m1 и рычаг (m0) с помощью упругих элементов с жесткостями k2, k3, k4. Промежуточное устройство m1 подпружинено по отношению к основанию упругим элементом с жесткостью k1. Движение системы описывается в координатах y1, y2, y'0. Плечи рычажного механизма обозначены как l1, l2, l0 (l1=АВ, l2=ВА1, l0=А1А2). Устройство виброзащитной системы предполагает наличие двух сосредоточенных масс mо и m00. Первая масса используется для предварительной настройки в предполагаемом диапазоне внешних воздействий со стороны основания или опорной поверхности. Вторая масса m00 имеет возможность изменять свое положение относительно точки A1 путем изменения длины плеча l0, что достигается с помощью сервопривода, управляемого специальной системой, реализующей алгоритм обработки информации о динамическом состоянии элементов рассматриваемой системы.
По-существу, установление настроечной массы m00, является введением в систему дополнительной инерционной связи. Ниже представлены детали системы на основе методов структурного математического моделирования [1÷3].
1. Введение дополнительной инерционной связи т0о изменяет выражения для кинетической энергии системы
С учетом особенностей сложения переносного и относительных движений получим для координаты соотношение:
Таким образом выражение для кинетической энергии системы опеределяется:
Выражение для потенциальной энергии в данном случае:
Таблица 1
2. Запишем передаточные функции системы при введении дополнительной массы m00
- характеристическое частотное уравнение при введенной дополнительной массе m00.
3. Система с дополнительной массой m00 при кинематическом возмущении z(f) имеет режимы динамического гашения колебаний по координатам , соответственно
Передаточная функция межпарциальной связи имеет вид:
При i=0, i0=0 выражение (28) приводится к виду
На Рис. 2 приведены амплитудно-частотные характеристики для модельной задачи.
Амплитудно-частотных характеристик (АЧХ) представляют собой отношение амплитуды колебаний на объекте защиты m2 (координата y2) к внешнему воздействию в виде смешения или амплитуда вибраций основания z(t). Если отношение амплитуд колебаний меньше единицы, то наблюдается снижение внешних возмущений. Кривая 2 соответствует условию .
Такая кривая отражает частные свойства системы, т.(1) соответствует частоте собственных колебаний для этого случая. Линия уровня виброзащиты (кривая 0) отражает ограничения на параметры снижения амплитуды колебаний объекта. Пересечение кривой 0 и АЧХ определяет диапазон частот, при котором возможно снижения действия вибраций. Вырожденный случай очевидно нерационален для работы оборудования.
Режим динамического гашения колебаний для случая, представляемого кривой 1, реализуется на частоте, соответствующей т.(10) на оси абсцисс. Система эффективно работает в режиме уменьшения колебаний на объекте правее т.(10). Если ориентироваться на предельные нормы снижения вибрации до 0.3 (кривые 0), то режим эффективной виброзащиты начинается с т.(11). Кривая 1 построена при значении настроечного параметра m00=2 кг. Если настроечный параметр m00=10 кг (кривая 3), то частота динамического гашения определяется положением т.(9) на оси абсцисс. В этом случае частота динамического гашения находится между частотами собственных колебаний (тт.(2) и (4)). Частотный диапазон эффективной защиты начинается с т.(3), которая продолжается до т.(3'), затем режим приемлемого рабочего состояния начинается с т.(6). Точка т.(6) находится значительно левее, чем т.(10). Таким образом величина m00 как настроечный параметр существенным образом увеличивает диапазон частот эффективной защиты.
Промежуточное значение настроечного параметра дают соответствующие коррекции величины частотного диапазона эффективной защиты. Важным обстоятельством является то факт, что увеличение m00 или эквивалентное увеличение передаточного отношения i0, приводят к формированию частотного диапазона, в рамках которого будет соблюдаться условие поддержания коэффициента снижения амплитуды внешних воздействий.
Система управления обеспечивает поднастройку параметров динамического состояния в расширенном частотном диапазоне за счет сдвига частот динамического гашения колебаний в сторону более низких значений частот.
При построении алгоритма управления динамическим состоянием частота динамического гашения по координате y2 (то есть положение объекта) является предварительным ориентиром, поскольку диапазон эффективной защиты будет зависеть от крутизны наклона линий АЧХ. В качестве рабочего диапазона выбирается частота, определяемая положением точки пересечения АЧХ при соответствующем значении m00 и линии уровня уменьшения амплитуд колебаний. На Рис. 2 приведены данные характеризующие свойства системы при промежуточных значениях m00, информация о параметрах системы приводится в подрисуночной надписи.
Использованная литература
1. Елисеев С.В., Резник Ю.Н., Хоменко А.П. и др. Динамический синтез в обобщенных задачах виброзащиты и виброизоляции технических объектов. Иркутск: ИГУ, 2008. 523 с.
2. Елисеев С.В., Резник Ю.И., Хоменко А.П. Мехатронные подходы в динамике механических колебательных систем. - Новосибирск: Наука, 2011. - 384 с.
3. Елисеев С.В., Артюнин А.И. Прикладная теория колебаний в задачах динамики линейных механических систем. Новосибирск: Наука, 2016. 459 с.
Claims (2)
1. Способ динамического гашения колебаний технического объекта, включающий гашение колебаний, используя систему упругих элементов и масс, отличающийся тем, что регистрируют колебания основания, промежуточного тела и технического объекта с помощью датчиков и передают информацию в блок управления, после обработки информации проводят гашения колебаний, используя сервопривод и установку на промежуточное тело пилона (опоры) с рычагом, причем один конец рычага соединяют упругим элементом с промежуточным телом и пилоном с техническим объектом, на другой конец рычага устанавливают массу, которую соединяют упругими элементами с промежуточным телом и техническим объектом, кроме того, на самом конце рычага устанавливают сервопривод с дополнительной массой и рычагом.
2. Устройство для осуществления способа динамического гашения колебаний технического объекта, состоящее из промежуточного тела, массы, дополнительной массы и упругих элементов, отличающееся тем, что на техническом объекте, промежуточном теле и основании устанавливают датчики регистрации колебаний, а на промежуточном теле установлен пилон (опора) с рычагом, на одном конце рычаг соединен упругим элементом с промежуточным телом и с помощью пилона - с техническим объектом, на другом конце рычага имеется масса, соединенная с помощью упругих элементов с техническим объектом и промежуточным телом, причем на самом конце рычага установлены сервопривод и дополнительная масса с рычагом.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120619A RU2668887C1 (ru) | 2017-06-13 | 2017-06-13 | Способ динамического гашения колебаний технического объекта и устройство для его реализации |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120619A RU2668887C1 (ru) | 2017-06-13 | 2017-06-13 | Способ динамического гашения колебаний технического объекта и устройство для его реализации |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2668887C1 true RU2668887C1 (ru) | 2018-10-04 |
Family
ID=63798451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017120619A RU2668887C1 (ru) | 2017-06-13 | 2017-06-13 | Способ динамического гашения колебаний технического объекта и устройство для его реализации |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2668887C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4793653A (en) * | 1986-12-29 | 1988-12-27 | Ikeda Bussan Co., Ltd. | Reclining device for automotive seat |
RU2282075C1 (ru) * | 2005-03-14 | 2006-08-20 | Олег Савельевич Кочетов | Пружинный виброизолятор с сухим трением |
JP2007247733A (ja) * | 2006-03-15 | 2007-09-27 | Takanori Sato | ダンパーセット |
RU2595733C2 (ru) * | 2014-11-13 | 2016-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" ФГБОУ ВО ИрГУПС | Способ настройки режимов работы виброзащитной системы и устройство для его осуществления |
-
2017
- 2017-06-13 RU RU2017120619A patent/RU2668887C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4793653A (en) * | 1986-12-29 | 1988-12-27 | Ikeda Bussan Co., Ltd. | Reclining device for automotive seat |
RU2282075C1 (ru) * | 2005-03-14 | 2006-08-20 | Олег Савельевич Кочетов | Пружинный виброизолятор с сухим трением |
JP2007247733A (ja) * | 2006-03-15 | 2007-09-27 | Takanori Sato | ダンパーセット |
RU2595733C2 (ru) * | 2014-11-13 | 2016-08-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет путей сообщения" ФГБОУ ВО ИрГУПС | Способ настройки режимов работы виброзащитной системы и устройство для его осуществления |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5456341A (en) | Method and apparatus for actively adjusting and controlling a resonant mass-spring system | |
Zilletti | Feedback control unit with an inerter proof-mass electrodynamic actuator | |
US8914154B2 (en) | Active tuned vibration absorber | |
JP6643339B2 (ja) | 垂直バネ機構を有する適応性のある振り子ダンパ | |
CN203834722U (zh) | 自供电式半主动调谐质量阻尼器 | |
CN105926796A (zh) | 压电阻尼智能调谐减振控制装置 | |
US7707787B2 (en) | Damping device and method for setting natural frequency of damping body in the damping device | |
RU2595733C2 (ru) | Способ настройки режимов работы виброзащитной системы и устройство для его осуществления | |
GB2623270A (en) | Shock-based damping systems and mechanisms for vibration damping in downhole applications | |
CN206376390U (zh) | 一种三维多频调谐质量阻尼器减震控制装置 | |
CN113565912B (zh) | 一种共振频率自适应快速可调的动力吸振结构及方法 | |
Ha et al. | Low-energy structures embedded with smart dampers | |
RU2668887C1 (ru) | Способ динамического гашения колебаний технического объекта и устройство для его реализации | |
EP2032872B1 (en) | Arrangement for damping oscillations in an oscillating mass in a paper/board machine environment | |
CN202338591U (zh) | 星载变阻尼减振装置 | |
Long et al. | Design of smart machinery installations to reduce transmitted vibrations by adaptive modification of internal forces | |
JP2001349094A (ja) | 同調振り子式制振装置 | |
CN108566032B (zh) | 一种电机减震装置 | |
Preumont et al. | Hybrid mass damper: a tutorial example | |
Jalili | Semi-Active Suspension Systems | |
GB2480785A (en) | An active tuned vibration absorber | |
RU2604250C2 (ru) | Способ и устройство для динамического гашения колебаний | |
KR102142154B1 (ko) | 제진장치 | |
CN108194573A (zh) | 一种多工况自适应隔振系统及其控制方法 | |
RU2689901C2 (ru) | Устройство управления вибрационным полем технологической машины |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200614 |