RU2667344C1 - Волоконно-оптический термометр - Google Patents

Волоконно-оптический термометр Download PDF

Info

Publication number
RU2667344C1
RU2667344C1 RU2017139653A RU2017139653A RU2667344C1 RU 2667344 C1 RU2667344 C1 RU 2667344C1 RU 2017139653 A RU2017139653 A RU 2017139653A RU 2017139653 A RU2017139653 A RU 2017139653A RU 2667344 C1 RU2667344 C1 RU 2667344C1
Authority
RU
Russia
Prior art keywords
fiber
optic
bragg
sensor
distribution system
Prior art date
Application number
RU2017139653A
Other languages
English (en)
Inventor
Олег Геннадьевич Морозов
Ильнур Ильдарович Нуреев
Вадим Игоревич Артемьев
Артём Анатольевич Кузнецов
Геннадий Александрович Морозов
Айрат Жавдатович Сахабутдинов
Рустам Шаукатович Мисбахов
Вадим Владимирович Пуртов
Сергей Владимирович Феофилактов
Владимир Александрович Иваненко
Владимир Николаевич Алексеев
Алсу Ильнуровна Галимова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ)
Priority to RU2017139653A priority Critical patent/RU2667344C1/ru
Application granted granted Critical
Publication of RU2667344C1 publication Critical patent/RU2667344C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво- и пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях. Волоконно-оптический термометр содержит оптический разветвитель, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы и с каждым волоконно-оптическим датчиком, а в каждом волоконно-оптическом датчике перед записанной на торце волоконного световода первой волоконной решеткой Брэгга записана вторая волоконная решетка Брэгга по меньшей мере с двумя фазовыми сдвигами. В волоконно-оптическом термометре в каждом волоконно-оптическом датчике первая волоконная решетка Брэгга может быть записана либо как продолжение второй волоконной решетки Брэгга, тогда конструкция датчика имеет вид щупа, либо на расстоянии от второй волоконной решетки Брэгга, позволяющем свернуть петлю и уложить первую волоконную решетку Брэгга в непосредственном контакте со второй, закрепив их на наконечнике произвольной плоской или объемной формы, тогда конструкция датчика имеет кольцевой вид. Технический результат - повышение чувствительности измерений. 4 з.п. ф-лы. 5 ил.

Description

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво- и пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях.
Известен волоконно-оптический термометр, включающий в себя волоконно-оптический датчик температуры с расположенным на его конце термочувствительным элементом из арсенида галлия (патент США US 2006/0251147 А1 «Контроль и мониторинг изменения температуры», опубликован 09.11.2006) и регистрирующую систему.
Измерение температуры выполняется при контакте термочувствительного элемента с поверхностью объекта. Конструктивным недостатком такого термометра является сложная технология изготовления датчика, применение многомодовых волокон, что ограничивает диапазон измерений по дальности расположения датчиков и точность измерения. Кроме того, низкая чувствительность измерений определяется детектированием информационных сигналов в области постоянного тока, характеризующегося высоким уровнем собственных шумов фотоприемника, и отсутствием прямой адресности датчика.
Наиболее близким к предлагаемому техническому решению является волоконно-оптический термометр (патент РФ RU 2491523 С1, «Волоконно-оптический термометр», опубликован 27.08.2013) с помощью которого решается техническая задача повышения точности измерения, упрощения конструкции датчика, механического упрочнения при возможности изготовления датчика с длиной линии связи до 30 километров.
Поставленная задача решается тем, что волоконно-оптический термометр состоит из источника света, микроконтроллера, светораспределительной системы, оптического фильтра, волоконно-оптического переключателя, по меньшей мере, двух фотоприемников, по меньшей мере, одного волоконно-оптического датчика в виде щупа, при этом волоконно-оптический переключатель соединен с одной стороны с волоконно-оптическими щупами посредством волоконного световода, с другой - со светораспределительной системой, источник света соединен со светораспределительной системой посредством волоконного световода, светораспределительная система выполнена таким образом, что имеется разветвление на опорный и измерительный канал, при этом измерительный канал выполнен таким образом, что между светораспределительной системой и фотоприемником имеется оптический фильтр, соединенный с ними посредством волоконного световода, опорный канал выполнен в виде фотоприемника, соединенного со светораспределительной системой напрямую посредством волоконного световода, фотоприемники соединены с микроконтроллером посредством электрических проводов.
В частности, светораспределительная система может быть выполнена в виде, по меньшей мере, одного волоконно-оптического циркулятора и разветвителя; фильтра, выполненного в виде волоконной решетки Брэгга или длиннопериодной решетки, и, по меньшей мере, одного волоконно-оптического переключателя, соединенных посредством волоконного световода; волоконо-оптические компоненты могут быть одномодовыми; волоконно-оптический щуп может быть выполнен в виде волоконно-оптической решетки Брэгга, записанной на стандартном волоконном световоде типа SMF-28 или высокогерманатном световоде с полиимидным покрытием.
Недостатком указанного волоконно-оптического термометра является низкая чувствительность, обусловленная детектированием информационного сигнала температуры по постоянному току, как определение соотношения мощностей сигналов на выходе двух фотоприемников, зависящего от спектрального положения отраженного от датчика света по сравнению с положением оптического фильтра, не смотря на то, что измерение проводится дифференциально, что в целом позволяет повысить точность измерения температуры, за счет устранения влияния нестабильностей источника света и внешних факторов, воздействующих одинаково на опорный и измерительный канал. Кроме того, в данном техническом решении по-прежнему отсутствует прямая адресность датчика - волоконной решетки Брэгга, записанной вблизи торца волоконно-оптического щупа. Присутствует лишь косвенная адресность по условному положению оптического переключателя, который в свою очередь ограничивает процесс измерения только последовательными измерениями (опрос волоконно-оптических щупов с определенной ограниченной скоростью).
Техническая проблема заключается в недостаточной чувствительности измерений.
Решаемая техническая задача (технический результат) предлагаемого волоконно-оптического термометра заключается в повышении чувствительности измерений.
Решаемая техническая задача (технический результат) в волоконно-оптическом термометре, содержащем источник света, светораспределительную систему, N волоконно-оптических датчиков, где N натуральное число и N≥1, причем каждый волоконно-оптический датчик выполнен так, что содержит волоконный световод на торце которого записана первая волоконная решетка Брэгга, оптический фильтр, первый фотоприемник, второй фотоприемник и микроконтроллер, при этом источник света соединен со светораспределительной системой посредством волоконного световода, светораспределительная система выполнена таким образом, что имеет три выхода на опорный и измерительный каналы, и канал для подключения волоконно-оптических датчиков, при этом измерительный канал выполнен таким образом, что между первым выходом светораспределительной системы и первым фотоприемником имеется оптический фильтр, соединенный с ними посредством волоконного световода, опорный канал выполнен в виде второго фотоприемника, соединенного со вторым выходом светораспределительной системы напрямую посредством волоконного световода, выходы первого и второго фотоприемника соединены с первым и вторым входами микроконтроллера соответственно посредством электрических проводов, достигается тем, что в него введен оптический разветвитель, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы и с каждым волоконно-оптическим датчиком, а в каждом волоконно-оптическом датчике перед записанной на торце волоконного световода первой волоконной решеткой Брэгга, записана вторая волоконная решетка Брэгга, по меньшей мере, с двумя фазовыми сдвигами.
В частности, в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга может быть записана непосредственно как продолжение первой волоконной решетки Брэгга, а конструкция самого датчика имеет вид щупа.
В частности, в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга может быть записана на расстоянии от первой волоконной решетки Брэгга, которое позволяет свернуть петлю с радиусом, большим минимально возможного для используемого типа волокна, и уложить первую волоконную решетку Брэгга в непосредственном контакте со второй, закрепив их на наконечнике произвольной плоской или объемной формы, а сама конструкция волоконно-оптического датчика будет иметь кольцевой вид.
В частности, в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга может содержать, по меньшей мере, два фазовых π-сдвига, симметрично расположенных относительно ее центральной длины волны, которая совпадает с центральной длиной волны первой волоконной решетки Брэгга во всем диапазоне измеряемых температур, и разнесенных на величину Δλ, не превышающую ее ширину спектра. При этом разнос фазовых сдвигов Δλi≠Δλj, где i и j - номера волоконно-оптических датчиков, i, j∈N, где N - множество волоконно-оптических датчиков термометра, при этом разность Δλi-Δλj не равна и не кратна в целом и частном Δλi и Δλj.
На фиг. 1 изображена структурная схема волоконно-оптического термометра, на фиг. 2 - конструкция волоконно-оптического датчика в виде щупа, на фиг. 3 - конструкция волоконно-оптического датчика в виде кольцевого наконечника, на фиг. 4 - спектр второй волоконной решетки Брэгга с двумя фазовыми π-сдвигами, на фиг. 5 представлен алгоритм работы микроконтроллера.
Волоконно-оптический термометр (фиг. 1, фиг. 2, фиг. 3) содержит источник света 1, светораспределительную систему 2, N волоконно-оптических датчиков 31-3N, где N натуральное число и может принимать значения, например, 1, 2, 3, 4, 5 и т.д., причем каждый волоконно-оптический датчик 31-3N выполнен так, что содержит волоконный световод 4 (фиг. 2, фиг. 3) на торце которого записана первая волоконная решетка Брэгга 5 (фиг. 2, фиг. 3), оптический фильтр 6, первый фотоприемник 7, второй фотоприемник 8 и микроконтроллер 9, при этом источник света 1 соединен со светораспределительной системой 2 посредством волоконного световода, светораспределительная система 2 выполнена таким образом, что имеет три выхода на опорный и измерительный каналы, и канал для подключения волоконно-оптических датчиков 31-3N, при этом измерительный канал выполнен таким образом, что между первым выходом светораспределительной системы 2 и первым фотоприемником 7 имеется оптический фильтр 6, соединенный с ними посредством волоконного световода, опорный канал выполнен в виде второго фотоприемника 8, соединенного со вторым выходом светораспределительной системы 2 напрямую посредством волоконного световода, выходы первого и второго фотоприемника 7 и 8 соединены с первым и вторым входами микроконтроллера 9 соответственно посредством электрических проводов. Волоконно-оптический термометр содержит оптический разветвитель 10, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы 2 и с каждым волоконно-оптическим датчиком 31-3N, а в каждом волоконно-оптическом датчике 31-3N перед записанной на торце волоконного световода первой волоконной решеткой Брэгга 5 (фиг. 2, фиг. 3), записана вторая волоконная решетка Брэгга 11 (фиг. 2, фиг. 3), по меньшей мере, с двумя фазовыми сдвигами 12 (фиг. 2).
В частности, в каждом волоконно-оптическом датчике 31-3N вторая волоконная решетка Брэгга 11 может быть записана непосредственно как продолжение первой волоконной решетки Брэгга 5, а конструкция самого датчика имеет вид щупа (фиг. 2).
В частности, в каждом волоконно-оптическом датчике 31-3N вторая волоконная решетка Брэгга 11 может быть записана на расстоянии от первой волоконной решетки Брэгга 5, которое позволяет свернуть петлю 13 с радиусом, большим минимально возможного для используемого типа волокна, и уложить первую волоконную решетку Брэгга 5 в непосредственном контакте со второй 11, закрепив их на наконечнике произвольной плоской или объемной формы, а сама конструкция волоконно-оптического датчика будет иметь кольцевой вид (фиг. 3).
В частности, в каждом волоконно-оптическом датчике 31-3N вторая волоконная решетка Брэгга 11 может содержать, по меньшей мере, два фазовых π-сдвига 12, симметрично расположенных относительно ее центральной длины волны, которая совпадает с центральной длиной волны первой волоконной решетки Брэгга во всем диапазоне измеряемых температур, и разнесенных на величину Δλ, не превышающую ее ширину спектра (фиг. 4). При этом разнос фазовых сдвигов 12 Δλi≠Δλj, где i и j - номера волоконно-оптических датчиков 31-3N, i, j∈N, где N - множество волоконно-оптических датчиков термометра 31-3N, при этом разность Δλi-Δλj не равна и не кратна в целом и частном Δλi и Δλj (фиг. 4). Подключают компоненты схемы согласно фиг. 1, подключают источник света 1, первый фотоприемник 7, второй фотоприемник 8, и микроконтроллер 9 к источникам питания (система электропитания на фиг. 1 не показана), производят запись программы обработки сигнала согласно алгоритму, представленному на фиг. 5 в микроконтроллер 9.
Рассмотрим работу волоконно-оптического термометра (фиг. 1 - фиг. 5). Свет от источника 1 (фиг. 1) проходит в светораспределительную систему 2, направляется на волоконно-оптические датчики 31-3N через оптический разветвитель 10.
В каждом волоконно-оптическом датчике 31-3N во второй волоконной решетке Брэгга 11 в окнах прозрачности из полного спектра света вырезаются два узкополосных участка с разносом Δλ, причем разнос фазовых сдвигов 12 Δλi≠Δλj, где i и j - номера волоконно-оптических датчиков 31-3N, j∈N, где N - множество оптических датчиков 31-3N, при этом разность Δλi-Δλj, не равна и не кратна в целом и частном Δλi и Δλj, которые отражаются от первой волоконной решетки Брэгга 5 в волоконно-оптических датчиках 31-3N, и возвращаются через те же окна прозрачности второй волоконной решетки Брэгга 11, формируя двухчастотное излучение света. Так как центральная длина волны второй волоконной решетки Брэгга 11 совпадает с центральной длиной волны первой волоконной решетки Брэгга 5 во всем диапазоне измеряемых температур разнос Δλ и величина амплитуд двухчастотного излучения света остаются постоянными, меняется лишь их спектральное положение относительно оптического фильтра 6. Отразившись от каждого волоконно-оптического датчика 31-3N две составляющие света возвращаются через оптический разветвитель 10 в светораспределительную систему 2, где обе разделяются на две части, одна из которых направляется на второй фотоприемник 8 непосредственно, другая направляется на первый фотоприемник 7 через оптический фильтр 6, где они ослабляются, каждая в соответствии с ее спектральным положением относительно характеристики пропускания оптического фильтра 6. Таким образом, на выходе второго фотоприемника 8 формируются огибающая биений двух частотных составляющих равной амплитуды с частотой, соответствующей разносу Δλ, а на выходе первого фотоприемника 7 формируются огибающая биений двух частотных составляющих разной амплитуды, зависящих от спектрального положения отраженного от датчиков света, также с частотой, соответствующей разносу Δλ. Микроконтроллер 9 принимает сигналы с первого и второго фотоприемника 7 и 8 и обрабатывает их по алгоритму, представленному на фиг. 5.
Волоконно-оптический термометр может быть создан на следующих элементах, рассчитанных на работу на длине волны 1550 нм:
- источник света 1 SLD-1550-3 - лазерный диод фирмы «Superlum»;
- светораспределительная система 2, выполненная в виде оптического разветвителя, оптический разветвитель 10 - оптический разветвитель ТЕЛЕКОМ-ТЕСТ фирмы ООО «Производственно-торговая компания СОКОЛ»;
- светораспределительная система 2, выполненная в виде циркуля-тора - циркулятор 3PIOC-1550 фирмы «Flyin»;
- первая волоконная решетка Брэгга 5, оптический фильтр 6 - волоконная решетка Брэгга записанная в НЦВО «Фотоника» (Москва), или НИИ ПРЭФЖС КНИТУ-КАИ (Казань), или Инверсия-Файбер (Новосибирск), или Инверсия-Сенсор (Пермь) и т.д., либо покупные датчики этих фирм и фирмы FiberSensing;
- первый фотоприемник 7, второй фотоприемник 8 - высокоскоростные волоконно-оптические InGaAs/InP микроволновые широкополосные PIN фотоприемники (приемные модули) НПФ «ДиЛаз», например, ДФДМШ-40-16;
- микроконтроллер 9 - микропроцессорный контроллер на базе чипов фирм Atmel, Microchip и т.д.;
- вторая волоконная решетка Брэгга 11 - волоконная решетка Брэгга по меньшей мере, с двумя фазовыми сдвигами 12 записанная в НИИ ПРЭФЖС КНИТУ-КАИ (Казань);
При реализации волоконно-оптического термометра все указанные блоки генерации, приема и обработки сигналов могут быть выполнены на едином кристалле или в интегральном исполнении.
По сравнению с прототипом, предложенный волоконно-оптический термометр позволяет повысить чувствительность измерений за счет обработки сигнала на частоте биений компонент двухчастотного сигнала, равной разностной частоте между ними, что существенно сужает полосу пропускания приемной части устройства (с единиц ГГц до единиц МГц) и соответственно повышает отношение сигнал/шум измерений.
Дополнительным преимуществом предложенного волоконно-оптического термометра по сравнению с прототипом является то, что устранение из схемы волоконно-оптического переключателя, при котором была возможна лишь косвенная адресность, позволяет проводить опрос волоконно-оптических датчиков с неограниченной скоростью.
Испытания опытного образца волоконно-оптического термометра были проведены на оптических датчиках, изготовленных в НИИ ПРЭФЖС КНИ-ТУ-КАИ (Казань), откалиброваны на оптических анализаторах спектра ANDO там же, количество волоконно-оптических датчиков составляет 256. Исследования показали, что использование предложенного волоконно-оптического термометра, позволяет повысить чувствительность измерений в 3-6 раза, при этом погрешность измерения температуры составляет ±0,3°С в диапазоне 240°С. Погрешность измерения определялась в основном погрешностью АЦП микроконтроллера, а также неточностью изготовления второй волоконной решетки Брэгга с двумя фазовыми сдвигами.
Все это позволяет говорить о достижении решения поставленной технической задачи - повышении чувствительности измерений.

Claims (5)

1. Волоконно-оптический термометр, содержащий источник света, светораспределительную систему, N волоконно-оптических датчиков, где N натуральное число и N≥1, причем каждый волоконно-оптический датчик выполнен так, что содержит волоконный световод, на торце которого записана первая волоконная решетка Брэгга, оптический фильтр, первый фотоприемник, второй фотоприемник и микроконтроллер, при этом источник света соединен со светораспределительной системой посредством волоконного световода, светораспределительная система выполнена таким образом, что имеет три выхода на опорный и измерительный каналы и канал для подключения волоконно-оптических датчиков, при этом измерительный канал выполнен таким образом, что между первым выходом светораспределительной системы и первым фотоприемником имеется оптический фильтр, соединенный с ними посредством волоконного световода, опорный канал выполнен в виде второго фотоприемника, соединенного со вторым выходом светораспределительной системы напрямую посредством волоконного световода, выходы первого и второго фотоприемника соединены с первым и вторым входами микроконтроллера соответственно посредством электрических проводов, отличающийся тем, что в него введен оптический разветвитель, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы и с каждым волоконно-оптическим датчиком, а в каждом волоконно-оптическом датчике перед записанной на торце волоконного световода первой волоконной решеткой Брэгга записана вторая волоконная решетка Брэгга по меньшей мере с двумя фазовыми сдвигами.
2. Волоконно-оптический термометр по п. 1, отличающийся тем, что в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга записана непосредственно как продолжение первой волоконной решетки Брэгга, а конструкция самого датчика имеет вид щупа.
3. Волоконно-оптический термометр по п. 1, отличающийся тем, что в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга записана на расстоянии от первой волоконной решетки Брэгга, которое позволяет свернуть петлю с радиусом, большим минимально возможного для используемого типа волокна, и уложить первую волоконную решетку Брэгга в непосредственном контакте со второй, закрепив их на наконечнике произвольной плоской или объемной формы, а сама конструкция волоконно-оптического датчика будет иметь кольцевой вид.
4. Волоконно-оптический термометр по п. 1, отличающийся тем, что в каждом волоконно-оптическом датчике вторая волоконная решетка Брэгга выполнена так, что содержит по меньшей мере два фазовых π-сдвига, симметрично расположенных относительно ее центральной длины волны, которая совпадает с центральной длиной волны первой волоконной решетки Брэгга во всем диапазоне измеряемых температур, и разнесенных на величину Δλ, не превышающую ее ширину спектра.
5. Волоконно-оптический термометр по п. 4, отличающийся тем, что в волоконно-оптических датчиках для второй волоконной решетки Брэгга разнос фазовых сдвигов Δλi≠Δλj, где i и j - номера волоконно-оптических датчиков, i, j∈N, где N - множество волоконно-оптических датчиков термометра, при этом разность Δλi-Δλj не равна и не кратна в целом и частном Δλi и Δλj.
RU2017139653A 2017-11-14 2017-11-14 Волоконно-оптический термометр RU2667344C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017139653A RU2667344C1 (ru) 2017-11-14 2017-11-14 Волоконно-оптический термометр

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017139653A RU2667344C1 (ru) 2017-11-14 2017-11-14 Волоконно-оптический термометр

Publications (1)

Publication Number Publication Date
RU2667344C1 true RU2667344C1 (ru) 2018-09-18

Family

ID=63580284

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017139653A RU2667344C1 (ru) 2017-11-14 2017-11-14 Волоконно-оптический термометр

Country Status (1)

Country Link
RU (1) RU2667344C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785015C1 (ru) * 2021-12-16 2022-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Система определения центральной длины волны волоконно-оптических датчиков

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU102256U1 (ru) * 2010-09-06 2011-02-20 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУ ВПО ПГУТИ) Устройство для измерения параметров физических полей
RU2527308C1 (ru) * 2012-12-27 2014-08-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Волоконно-оптический измеритель температуры
EP2259037B1 (en) * 2009-06-05 2016-10-12 The Board Of Trustees Of The Leland Stanford Junior University Fiber bragg grating devices utilizing slow light

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2259037B1 (en) * 2009-06-05 2016-10-12 The Board Of Trustees Of The Leland Stanford Junior University Fiber bragg grating devices utilizing slow light
RU102256U1 (ru) * 2010-09-06 2011-02-20 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУ ВПО ПГУТИ) Устройство для измерения параметров физических полей
RU2527308C1 (ru) * 2012-12-27 2014-08-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Волоконно-оптический измеритель температуры

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785015C1 (ru) * 2021-12-16 2022-12-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Система определения центральной длины волны волоконно-оптических датчиков

Similar Documents

Publication Publication Date Title
CA2288746C (en) Distributed sensing system
US4928005A (en) Multiple-point temperature sensor using optic fibers
EP1007902B1 (en) Self-calibrating optical fiber pressure, strain and temperature sensors
CN104864911B (zh) 基于光纤法珀腔与光纤光栅双参量联合测量的高速解调装置及方法
CN107024236B (zh) F-p/fbg光纤传感器解调系统
US7324714B1 (en) Multicore fiber curvature sensor
US20110249973A1 (en) Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
US9939294B2 (en) Demodulation system for 3D-matrix multi-channel fiber optic sensing
RU102256U1 (ru) Устройство для измерения параметров физических полей
CN106066203B (zh) 基于超短光纤光栅阵列的分布式高灵敏振动探测系统及方法
CN103674497A (zh) 窄线宽激光器线宽高精度测量系统
US20180143067A1 (en) Fiber optic acoustic wave detection system
US8379217B2 (en) System and method for optical sensor interrogation
CN105806789B (zh) 一种光纤白光干涉差分谱仪
RU2608394C1 (ru) Устройство для измерения параметров физических полей
CN107356412B (zh) 一种基于稀土掺杂光纤折射率的测量系统的测量方法
RU2512616C2 (ru) Способ измерения параметров физических полей и устройство для его осуществления
RU2667344C1 (ru) Волоконно-оптический термометр
RU170835U1 (ru) Устройство для измерения величины износа и температуры изделия при трении
RU179264U1 (ru) Волоконно-оптический термометр
Misbakhov Combined raman DTS and address FBG sensor system for distributed and point temperature and strain compensation measurements
RU92180U1 (ru) Устройство для измерения параметров физических полей
RU161644U1 (ru) Устройство для измерения параметров физических полей
RU180903U1 (ru) Волоконно-оптический термометр
RU2495380C2 (ru) Способ измерения параметров физических полей