RU2512616C2 - Способ измерения параметров физических полей и устройство для его осуществления - Google Patents

Способ измерения параметров физических полей и устройство для его осуществления Download PDF

Info

Publication number
RU2512616C2
RU2512616C2 RU2012124698/28A RU2012124698A RU2512616C2 RU 2512616 C2 RU2512616 C2 RU 2512616C2 RU 2012124698/28 A RU2012124698/28 A RU 2012124698/28A RU 2012124698 A RU2012124698 A RU 2012124698A RU 2512616 C2 RU2512616 C2 RU 2512616C2
Authority
RU
Russia
Prior art keywords
optical sensor
parameter
physical field
frequency
signals
Prior art date
Application number
RU2012124698/28A
Other languages
English (en)
Other versions
RU2012124698A (ru
Inventor
Павел Евгеньевич Денисенко
Владимир Геннадьевич Куприянов
Олег Геннадьевич Морозов
Геннадий Александрович Морозов
Тагир Султанович Садеев
Арсен Марсович Салихов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ)
Priority to RU2012124698/28A priority Critical patent/RU2512616C2/ru
Publication of RU2012124698A publication Critical patent/RU2012124698A/ru
Application granted granted Critical
Publication of RU2512616C2 publication Critical patent/RU2512616C2/ru

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков. Согласно заявленному предложению для определения параметра физического поля находят разность между амплитудами огибающих. По зависимости от разности амплитуд огибающих определяют обобщенную расстройку полосы пропускания оптического датчика от средней частоты первой и второй сгенерированных пар сигналов, которая однозначно связана с параметром измеряемого физического поля. Для осуществления данного способа предложено устройство, содержащее последовательно соединенные источник лазерного излучения, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический датчик и фотоприемник, а также контроллер определения параметра физического поля. В устройство также введены два избирательных фильтра и два амплитудных детектора. При этом источник лазерного излучения выполнен четырехчастотным, а выход фотоприемника через первый избирательный фильтр и первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, который выполнен как контроллер определения температуры, и параллельно через второй избирательный фильтр и второй амплитудный детектор к его второму входу. Технический результат: повышение точности измерений. 2 н. и 3 з.п. ф-лы, 2 ил.

Description

Изобретение относится к технике оптических измерений, в частности к способам и устройствам для измерения параметров физических полей (температура) с помощью оптических датчиков, включая датчики в интегральном и волоконно-оптическом исполнении (интерферометры Фабри-Перо, решетки Брэгга, датчики на тонкопленочных фильтрах и т.д.), у которых существует зависимость смещения по частоте их спектральной, как правило, полосовой резонансной характеристики, в зависимости от параметров приложенных физических полей.
Известен способ измерения параметров физических полей (см. электронный ресурс http://www.forc-photonics.ru, «Волоконно-оптический зондовый термометр», файл termometr_final.pdf, ООО ИП «НЦВО-Фотоника», 14.10.2008), заключающийся в том, что генерируют широкополосное излучение, передают его к оптическому датчику по оптической среде, принимают излучение, преобразованное в датчике, и определяют параметры физического поля, прецизионно регистрируя спектральное смещение резонансной длины волны оптического датчика.
Устройство для реализации описанного выше способа содержит последовательно соединенные широкополосный лазерный излучатель, оптический разветвитель-циркулятор, волоконно-оптический кабель, оптический датчик, блок спектрального анализа принятого излучения и фотоприемный блок, соединенный с входом блока определения параметра физического поля, в котором производится математическая обработка спектрального смещения, по которому с учетом калибровки определяют параметр физического поля, в данном случае температуру. Известны аналогичные устройства для измерения параметров и других физических полей.
Недостатком указанного способа и устройства является необходимость использования сложного дорогостоящего блока спектрального анализа принятого излучения и фотоприемного блока для регистрации спектрального смещения, как правило, это оптические анализаторы спектра. Оптоэлектронная раздельная обработка сигналов также представляется сложной и требует наличия либо перестраиваемых лазерных излучателей, либо сложных систем спектральной фильтрациии, либо нескольких фотоприемников, либо, как вариант, системы матричных ПЗС-приемников. Все это приводит к появлению дополнительных источников погрешностей измерения параметров физических полей и снижению их точности в целом.
Прототипом изобретения является способ (см. Патент США №7463832 B2 «Способ и система компенсации тепловых смещений для оптических сетей», 398/196 МПК8 H04J 13/02, 09.08.2005), заключающийся в том, что генерируют пары сигналов заранее установленной близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, передают сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают пропущенную через него пару сигналов, передаваемую по второй оптической среде, и определяют параметр физического поля, сравнивая разности амплитуд между сигналами пары, принятой после прохождения через оптический датчик, или сравнивая их амплитуды с амплитудами сигналов в сгенерированной паре, переданной к приемному устройству по третьей оптической среде.
Устройство для реализации описанного выше способа, выбранное в качестве прототипа, содержит последовательно соединенные двухчастотный лазерный излучатель, оптический разветвитель, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический кабель и первый фотоприемник, второй фотоприемник, соединенный через третий волоконно-оптический кабель со вторым выходом оптического разветвителя, а также блок сравнения амплитуд каждого из сигналов сгенерированной двухчастотным лазерным излучателем пары и пары, принятой после прохождения оптического датчика, соединенный с контроллером определения параметра физического поля, в данном случае температуры, при этом выходы фотоприемников соединены с входами блока сравнения амплитуд.
Недостатком прототипа способа и устройства является необходимость использования сложной оптической системы для раздельного спектрального приема отдельных компонент пар сигналов, требующей, как правило, наличия узкополосных интерференционных фильтров, в свою очередь, обладающих температурной зависимостью спектральных характеристик. Оптоэлектронная раздельная обработка компонент также представляется сложной и представляет собой обработку абсолютных амплитудных значений принятых сигналов, подверженную воздействию шумов и помех различной природы. Все это приводит к появлению дополнительных источников погрешностей измерения параметров физических полей и снижению их точности в целом.
Решаемая техническая задача заключается в повышении точности измерений, упрощении и удешевлении устройств измерения параметров физических полей, где параметром физического поля является температура.
Решаемая техническая задача в способе измерения параметров физических полей, заключающемся в том, что генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном параметре физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, передают сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают прошедшую через оптический датчик пару сигналов, передаваемую по второй оптической среде, и определяют параметр физического поля, достигается тем, что дополнительно генерируют вторую пару сигналов со средней частотой, соответствующей второй определенной частоте полосы пропускания оптического датчика при том же заданном параметре физического поля, где параметром физического поля является температура, и второй разностной частотой, не равной первой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, так что средняя частота обеих пар соответствует центральной частоте полосы пропускания оптического датчика, а разность между средними частотами пар равна его полуширине, передают вторую сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают прошедшую через оптический датчик вторую пару сигналов, передаваемую по второй оптической среде, выделяют биения пар сигналов на первой и второй разностной частотах и амплитуды их огибающих, а для определения параметра физического поля находят разность между амплитудами огибающих, по зависимости от разности амплитуд огибающих определяют обобщенную расстройку полосы пропускания оптического датчика от средней частоты первой и второй сгенерированных пар сигналов, которая однозначно связана с параметром измеряемого физического поля.
Решаемая техническая задача в устройстве для измерения параметров физических полей, содержащем последовательно соединенные источник лазерного излучения, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический датчик и фотоприемник, а также контроллер определения параметра физического поля, достигается тем, что в него введены два избирательных фильтра и два амплитудных детектора, при этом источник лазерного излучения выполнен четырехчастотным, а выход фотоприемника через первый избирательный фильтр и первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, который выполнен как контроллер определения температуры, и параллельно через второй избирательный фильтр и второй амплитудный детектор к его второму входу.
В некоторых случаях устройство может быть выполнено с использованием оптического датчика на основе волоконной решетки Брэгга.
Устройство может быть выполнено с использованием оптического датчика на основе волоконной решетки Брэгга.
Устройство может быть выполнено с использованием оптического датчика на основе интерферометра Фабри-Перо.
Устройство может быть выполнено с использованием оптического датчика на основе тонкопленочного фильтра.
На фиг.1 изображена структурная схема устройства.
На фиг.2 изображена зависимость амплитуд огибающих биений сигналов первой и второй пары, прошедших через оптический датчик, и их разности от обобщенной расстройки полосы пропускания оптического датчика для случая подачи на него четырех сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля. Первая пара сигналов сформирована из первого и второго сигналов, вторая - из третьего и четвертого. При этом разностные частоты пар Ω1 и Ω2 не одинаковы, а разность между средними частотами первой и второй пар равна полуширине полосы пропускания оптического датчика. Зависимости даны в предположении, что оптический датчик имеет треугольную спектральную характеристику, например треугольная решетка Брэгга.
Устройство для измерения параметров физических полей (фиг.1, 2) содержит последовательно соединенные источник лазерного излучения 1, первый волоконно-оптический кабель 2, оптический датчик 3, второй волоконно-оптический кабель 4 и фотоприемник 5, а также контроллер определения параметра физического поля 6. В него введены два избирательных фильтра 7-8 и два амплитудных детектора 9-10, при этом источник лазерного излучения 1 выполнен четырехчастотным, а выход фотоприемника 5 через первый избирательный фильтр 7 и первый амплитудный детектор 9 подключен к первому входу контроллера определения параметра физического поля 6 и параллельно через второй избирательный фильтр 8 и второй амплитудный детектор 10 к его второму входу.
Устройство может быть выполнено с использованием оптического датчика 3 на основе волоконной решетки Брэгга.
Устройство может быть выполнено с использованием оптического датчика 3 на основе интерферометра Фабри-Перо.
Устройство может быть выполнено с использованием оптического датчика 3 на основе тонкопленочного фильтра.
На фиг.2 изображена зависимость амплитуд огибающих биений сигналов первой и второй пары, прошедших через оптический датчик 3, и их разности от обобщенной расстройки полосы пропускания оптического датчика 3 для случая подачи на него от источника лазерного излучения 1 четырех сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля. Первая пара сигналов сформирована из первого и второго сигналов, вторая - из третьего и четвертого. При этом разностные частоты пар Ω1 и Ω2 не одинаковы, а разность между средними частотами первой и второй пар равна полуширине полосы пропускания оптического датчика 3. Зависимости даны в предположении, что оптический датчик имеет треугольную спектральную характеристику, например треугольная решетка Брэгга.
Рассмотрим осуществление способа и работу устройства для его реализации.
Для измерения параметров физических полей с помощью источника лазерного излучения 1 одновременно генерируют четыре сигнала одинаковой амплитуды со средней частотой, соответствующей центральной частоте полосы пропускания оптического датчика 3 при заданном значении параметра физического поля. Первая пара сигналов сформирована из первого и второго сигналов, вторая - из третьего и четвертого. При этом разностные частоты пар Ω1 и Ω2 не одинаковы, а разность между средними частотами первой и второй пар равна полуширине полосы пропускания оптического датчика 3.
Затем передают сгенерированные пары сигналов к оптическому датчику 3 по первой оптической среде, в качестве которой выбран первый волоконно-оптический кабель 2.
В сгенерированных парах сигналов, проходящих через оптический датчик 3, происходит изменение амплитуд отдельных составляющих в зависимости от направления и величины частотного смещения его полосы пропускания, вызванного приложенным физическим полем и однозначно определяемого параметром данного поля.
Далее с помощью фотоприемника 5 принимают прошедшие через оптический датчик 3 пары сигналов, передаваемые от оптического датчика 3 к фотоприемнику 5 по второй оптической среде, в качестве которой выбран второй волоконно-оптический кабель 4.
На выходе фотоприемника 5 образуются сигналы, соответствующие биениям сигналов первой и второй пар, которые выделяются соответственно первым 7, настроенным на частоту Ω1, и вторым 8, настроенным на частоту Ω2, избирательными фильтрами. Далее в первом 9 и втором 10 амплитудных детекторах соответственно определяется амплитуда огибающих первой UΩ1 и второй UΩ2 пар.
Измерение разности амплитуд огибающих биений между сигналами первой и второй пары UΩ1-UΩ2, прошедших через оптический датчик 3, производят в контроллере определения параметра физического поля 6.
По полученным значениям и заложенным в контроллере определения параметра физического поля 6 зависимости разности между амплитудами огибающих биений сигналов первой и второй пар UΩ1-UΩ2, прошедших через оптический датчик 3, от обобщенной расстройки полосы пропускания оптического датчика 3 (фиг.2) и зависимости направления и величины частотного смещения полосы пропускания оптического датчика 3 от температуры однозначно определяют измеряемый параметр физического поля. Заложенная в контроллере определения параметра физического поля 6 зависимость направления и величины частотного смещения полосы пропускания оптического датчика 3 от температуры определяется формулой:
Δ λ = 2 n Λ ( { 1 ( n 2 2 ) [ P 12 ν ( P 11 + P 12 ) ] } ε + [ α + 1 n d n d T ] Δ T )
Figure 00000001
,
где ΔT - изменение температуры, ε - приложенное механическое напряжение (в данном случае равно нулю), Pij - коэффициенты Поккельса для упруго-оптического тензора, ν - коэффициент Пуассона, α - коэффициент теплового расширения кварцевого стекла, n - эффективный показатель преломления основной моды (С.А. Васильев, О.И. Медведков, И.Г. Королев, Е.М. Дианов. Фотоиндуцированные волоконные решетки показателя преломления и их применения. Фотон-Экспресс-Наука, 6, стр.163-183, 2004).
На фиг.2 изображена зависимость разности между амплитудами огибающих биений сигналов первой и второй пар UΩ1-UΩ2, прошедших через оптический датчик 3, от обобщенной расстройки его полосы пропускания для случая подачи на него от источника лазерного излучения 1 четырех сигналов одинаковой амплитуды со средней частотой, соответствующей центральной частоте его полосы пропускания при заданном значении параметра физического поля. Первая пара сигналов сформирована из первого и второго сигналов, вторая - из третьего и четвертого. При этом разностные частоты пар Ω1 и Ω2 не одинаковы, а разность между средними частотами первой и третьей пар равна полуширине полосы пропускания оптического датчика 3. В этом случае обеспечиваются оптимальные по чувствительности и крутизне измерительного преобразования параметры устройства.
При заданном (калибровочном) параметре физического поля средняя частота сгенерированных четырех сигналов будет соответствовать расстройке «0», средняя частота первой пары будет расположена с расстройкой «-1», средняя частота второй пары с расстройкой «+1». Их амплитуды будут равны, а разностные частоты пар будут не одинаковы и равны для первой пары Ω1, а второй - Ω2 (фиг.2). При частотном смещении полосы пропускания оптического датчика 3 в зависимости от изменений параметра физического поля положение компонент сгенерированной пары сигналов относительно полосы пропускания будет меняться, будут меняться амплитуды огибающих биений пар и будут меняться разности между амплитудами огибающих биений первой и второй пар, прошедших через оптический датчик 3 в соответствии с представленной зависимостью UΩ1-UΩ2 (фиг.2).
При известной зависимости величины расстройки полосы пропускания оптического датчика от значения параметра приложенного физического поля (например, для волоконно-оптической решетки Брэгга - типичные значения расстройки в зависимости от температуры ~0.01 нм/K и от относительного удлинения световода ~103 ΔL/L (нм) (С.А. Васильев, О.И. Медведков, И.Г. Королев, Е.М. Дианов. Фотоиндуцированные волоконные решетки показателя преломления и их применения. Фотон-Экспресс-Наука, 6, стр.163-183, 2004)) определяют значение параметра приложенного физического поля.
Таким образом, по полученной разности между амплитудами огибающих биений первой и второй пар UΩ1-UΩ2, прошедших через оптический датчик 3 в соответствии с представленной зависимостью, определяют обобщенную расстройку полосы пропускания оптического датчика 3 и далее по зависимости обобщенной расстройки полосы пропускания оптического датчика 3 от параметра приложенного физического поля в контроллере определения параметра физического поля 6 однозначно определяют параметр измеряемого физического поля.
Устройство может быть реализовано с использованием различных типов оптических датчиков 3, конкретный вид которых определяется в зависимости от решаемых задач и характера приложенного физического поля. Это могут быть волоконная решетка Брэгга, интерферометр Фабри-Перо, тонкопленочный фильтр. Зависимости даны в предположении, что оптический датчик имеет треугольную спектральную характеристику, например треугольная решетка Брэгга. При использовании спектральных характеристик оптических датчиков с нелинейной формой вид результирующей характеристики UΩ1-UΩ2 также будет иметь нелинейные участки, однако на однозначности определения физического параметра это не скажется.
Устройство для измерения параметров физических полей может быть реализовано на следующих элементах, рассчитанных на работу на длине волны 1300 нм (возможны и другие длины волн):
- источник лазерного излучения 1 - два двухчастотных лазерных диода IDL10S-1300 НИИ «Полюс» или лазерных диода ДМПО131-22 ООО НПФ «Дилаз», одночастотный лазерный диод и модуляторы на основе интерферометра Маха-Цендера 500-х-13 компании Laser2000;
- волоконно-оптические кабели 2, 4 - эталонные шнуры или кабели ТЕЛЕКОМ-ТЕСТ фирмы ООО «Производственно-торговая компания СОКОЛ»;
- оптический датчик 3 - волоконная решетка Брэгга, интерферометр Фабри-Перо, тонкопленочные фильтры ООО ИП «НЦВО-Фотоника»;
- фотоприемник 5 - высокоскоростные волоконно-оптические InGaAs/InP микроволновые широкополосные PIN фотоприемники (приемные модули) НПФ «ДиЛаз», например ДФДМШ-40-16;
- контроллер 6 - микропроцессорный контроллер на базе чипов фирм Atmel, Microchip и т.д.;
- избирательные фильтры 7-8 - фирмы Agilent;
- амплитудные детекторы 9-10 - сдвоенный амплитудный детектор AD8302-a (Analog Devices).
При реализации способа для построения датчика параметров физических полей все указанные блоки генерации, приема и обработки сигналов могут быть выполнены на едином кристалле или в интегральном исполнении.
По сравнению с прототипом для измерения параметров физических полей с помощью оптических датчиков, включая датчики в интегральном и волоконно-оптическом исполнении, у которых существует зависимость смещения по частоте их спектральной характеристики в зависимости от параметров приложенных физических полей, предложенное устройство с четырехчастотным зондированием оптического датчика и измерением параметра физического поля по разности между амплитудами огибающих биений пар сигналов, прошедших через оптический датчик, не требует:
во-первых, применения для анализа оптических сигналов избирательных элементов, которые обладают собственной зависимостью от изменений измеряемых физических полей;
во-вторых, применения сложных дорогостоящих оптических систем определения спектрального смещения или выделения отдельных спектральных компонент для их дальнейшего сравнения, что значительно снижает стоимость устройств.
Испытания опытного устройства измерения параметров физических полей были проведены на оптических датчиках, выполненных на волоконных решетках Брэгга, изготовленных в ООО «Инверсия-Файбер» (Новосибирск), откалиброваны на оптических анализаторах спектра EXFO в лаборатории КНИТУ-КАИ им. А.Н. Туполева (Казань) и показали, что использование способа четырехчастотного зондирования оптического датчика с измерением параметра по разности амплитуд огибающих биений пар сигналов позволило достичь погрешности измерения температуры 0,01°C в диапазоне ±60°C. При этом погрешность измерения определялась в основном погрешностью АЦП контроллера определения температуры.
Все это позволяет говорить о достижении решения поставленной технической задачи - упрощении, повышении точности и удешевлении устройств измерения параметров физических полей.

Claims (5)

1. Способ измерения параметров физических полей, заключающийся в том, что генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном параметре физического поля, и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, передают сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают прошедшую через оптический датчик пару сигналов, передаваемую по второй оптической среде, и определяют параметр физического поля, отличающийся тем, что одновременно с генерацией первой пары сигналов дополнительно генерируют вторую пару сигналов со средней частотой, соответствующей второй определенной частоте полосы пропускания оптического датчика при том же заданном параметре физического поля, где параметром физического поля является температура, и второй разностной частотой, не равной первой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания, так что средняя частота обеих пар соответствует центральной частоте полосы пропускания оптического датчика, а разность между средними частотами пар равна его полуширине, передают вторую сгенерированную пару сигналов к оптическому датчику по первой оптической среде, принимают прошедшую через оптический датчик вторую пару сигналов, передаваемую по второй оптической среде, выделяют биения пар сигналов на первой и второй разностной частотах и амплитуды их огибающих, а для определения параметра физического поля находят разность между амплитудами огибающих, по зависимости от разности амплитуд огибающих определяют обобщенную расстройку полосы пропускания оптического датчика от средней частоты первой и второй сгенерированных пар сигналов, которая однозначно связана с параметром измеряемого физического поля.
2. Устройство для измерения параметров физических полей, содержащее последовательно соединенные источник лазерного излучения, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический датчик и фотоприемник, а также контроллер определения параметра физического поля, отличающееся тем, что в него введены два избирательных фильтра и два амплитудных детектора, при этом источник лазерного излучения выполнен четырехчастотным, а выход фотоприемника через первый избирательный фильтр и первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, который выполнен как контроллер определения температуры, и параллельно через второй избирательный фильтр и второй амплитудный детектор к его второму входу.
3. Устройство по п.2, отличающееся тем, что оптический датчик выполнен на основе волоконной решетки Брэгга.
4. Устройство по п.2, отличающееся тем, что оптический датчик выполнен на основе интерферометра Фабри-Перо.
5. Устройство по п.2, отличающееся тем, что оптический датчик выполнен на основе тонкопленочного фильтра.
RU2012124698/28A 2012-06-14 2012-06-14 Способ измерения параметров физических полей и устройство для его осуществления RU2512616C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012124698/28A RU2512616C2 (ru) 2012-06-14 2012-06-14 Способ измерения параметров физических полей и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012124698/28A RU2512616C2 (ru) 2012-06-14 2012-06-14 Способ измерения параметров физических полей и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2012124698A RU2012124698A (ru) 2013-12-20
RU2512616C2 true RU2512616C2 (ru) 2014-04-10

Family

ID=49784614

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012124698/28A RU2512616C2 (ru) 2012-06-14 2012-06-14 Способ измерения параметров физических полей и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2512616C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608394C1 (ru) * 2015-07-02 2017-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Устройство для измерения параметров физических полей
RU2623710C1 (ru) * 2016-07-27 2017-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Способ определения центральной частоты симметричной оптической структуры (варианты) и устройство для его реализации
RU203603U1 (ru) * 2020-12-15 2021-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Волоконно-оптическое устройство измерения давления

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777010B (zh) * 2023-08-25 2023-12-19 之江实验室 一种模型训练的方法以及任务执行方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035300B2 (en) * 2002-11-05 2006-04-25 Finisar Corporation Calibration of a multi-channel optoelectronic module with integrated temperature control
US7463832B2 (en) * 2005-08-09 2008-12-09 The Boeing Company Thermal drift compensation system and method for optical networks
RU92180U1 (ru) * 2009-10-12 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУВПО ПГУТИ) Устройство для измерения параметров физических полей
US7680160B2 (en) * 2002-02-12 2010-03-16 Finisar Corporation Control circuit for optoelectronic module with integrated temperature control
RU102256U1 (ru) * 2010-09-06 2011-02-20 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУ ВПО ПГУТИ) Устройство для измерения параметров физических полей

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7680160B2 (en) * 2002-02-12 2010-03-16 Finisar Corporation Control circuit for optoelectronic module with integrated temperature control
US7035300B2 (en) * 2002-11-05 2006-04-25 Finisar Corporation Calibration of a multi-channel optoelectronic module with integrated temperature control
US7463832B2 (en) * 2005-08-09 2008-12-09 The Boeing Company Thermal drift compensation system and method for optical networks
RU92180U1 (ru) * 2009-10-12 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУВПО ПГУТИ) Устройство для измерения параметров физических полей
RU102256U1 (ru) * 2010-09-06 2011-02-20 Государственное образовательное учреждение высшего профессионального образования "Поволжский государственный университет телекоммуникаций и информатики" (ГОУ ВПО ПГУТИ) Устройство для измерения параметров физических полей

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608394C1 (ru) * 2015-07-02 2017-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Устройство для измерения параметров физических полей
RU2623710C1 (ru) * 2016-07-27 2017-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Способ определения центральной частоты симметричной оптической структуры (варианты) и устройство для его реализации
RU203603U1 (ru) * 2020-12-15 2021-04-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Волоконно-оптическое устройство измерения давления

Also Published As

Publication number Publication date
RU2012124698A (ru) 2013-12-20

Similar Documents

Publication Publication Date Title
RU102256U1 (ru) Устройство для измерения параметров физических полей
CA2288746C (en) Distributed sensing system
CN104864911B (zh) 基于光纤法珀腔与光纤光栅双参量联合测量的高速解调装置及方法
CN100552520C (zh) 一种复用与解调长周期光纤光栅阵列的方法及设备
CN107872274B (zh) 一种光纤色散系数的测量方法
Huang et al. Demodulation of fiber Bragg grating sensor using cross-correlation algorithm
US10731969B2 (en) In-line fiber sensing, noise cancellation and strain detection
GB2414796A (en) Optical wavelength determination using multiple measurable features
CN103278185B (zh) 基于校准光纤光栅的腔衰荡光纤光栅传感解调装置
CN102003970A (zh) 光纤激光传感器动态信号解调方法
RU2512616C2 (ru) Способ измерения параметров физических полей и устройство для его осуществления
RU2608394C1 (ru) Устройство для измерения параметров физических полей
JP4930126B2 (ja) 物理量測定システム
CN111854812A (zh) 一种基于光子灯笼光纤的传感解调系统及传感解调方法
RU92180U1 (ru) Устройство для измерения параметров физических полей
CN104729750A (zh) 一种基于布里渊散射分布式光纤温度传感器
CN101900575A (zh) 一种基于有源谐振腔和与之级联的无源谐振腔的光传感器
RU161644U1 (ru) Устройство для измерения параметров физических полей
RU2495380C2 (ru) Способ измерения параметров физических полей
Misbakhov Combined raman DTS and address FBG sensor system for distributed and point temperature and strain compensation measurements
CN108204827A (zh) 一种相移光纤光栅解调系统
RU122174U1 (ru) Устройство для измерения параметров физических полей
RU2491511C2 (ru) Способ измерения параметров физических полей
RU2721739C1 (ru) Волоконно-оптическая система измерения мгновенных частот множества СВЧ-сигналов
RU2623710C1 (ru) Способ определения центральной частоты симметричной оптической структуры (варианты) и устройство для его реализации

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180615