RU2665223C1 - Способ выявления аномалий физической плотности при акустической визуализации - Google Patents

Способ выявления аномалий физической плотности при акустической визуализации Download PDF

Info

Publication number
RU2665223C1
RU2665223C1 RU2017113162A RU2017113162A RU2665223C1 RU 2665223 C1 RU2665223 C1 RU 2665223C1 RU 2017113162 A RU2017113162 A RU 2017113162A RU 2017113162 A RU2017113162 A RU 2017113162A RU 2665223 C1 RU2665223 C1 RU 2665223C1
Authority
RU
Russia
Prior art keywords
signal
physical density
anomalies
threshold
signal samples
Prior art date
Application number
RU2017113162A
Other languages
English (en)
Inventor
Денис Владимирович Леонов
Николай Сергеевич Кульберг
Виктор Александрович Фин
Александр Игоревич Громов
Original Assignee
Государственное бюджетное учреждение здравоохранения города Москвы "Научно-практический центр медицинской радиологии Департамента здравоохранения города Москвы" (ГБУЗ "НПЦМР ДЗМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное бюджетное учреждение здравоохранения города Москвы "Научно-практический центр медицинской радиологии Департамента здравоохранения города Москвы" (ГБУЗ "НПЦМР ДЗМ") filed Critical Государственное бюджетное учреждение здравоохранения города Москвы "Научно-практический центр медицинской радиологии Департамента здравоохранения города Москвы" (ГБУЗ "НПЦМР ДЗМ")
Priority to RU2017113162A priority Critical patent/RU2665223C1/ru
Application granted granted Critical
Publication of RU2665223C1 publication Critical patent/RU2665223C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Изобретение относится к обнаружению аномалий физической плотности. Техническим результатом является повышение достоверности акустической визуализации. Способ заключается в том, что проводят измерения сигнала в режиме цветового доплеровского картирования, причем на основе полученных значений измеренного сигнала вычисляют модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала; выбирают порог по модулю коэффициента корреляции действительной и мнимой частей отсчетов сигнала; путем сравнения с порогом строят маску, которая принимает ненулевые значения на участках, где модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала превышает некоторый порог; при отображении аномалий физической плотности на экране прибора цветом кодируют энергию доплеровских сигналов, для которых маска принимает ненулевые значения, то есть сигналов, соответствующих упругим колебаниям, исходящим от аномалий физической плотности. 2 н. и 5 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к обработке сигналов в вычислительной системе акустической визуализации при решении задачи обнаружения аномалий физической плотности. Таковыми аномалиями могут быть, например, микрокальцинаты, кальцинаты, камни, возникающие при нефро-, уретролитиазе и др. заболеваниях, связанных с отложением солей, пузырьки, титановые скрепки и пр. объекты, плотность которых различима от окружающих тканей и жидкостей полых органов и каналов. Изобретение может быть использовано, в частности, при разработке режима картирования аномалий физической плотности ультразвукового медицинского диагностического устройства.
Уровень техники
В ультразвуковой медицинской диагностике для обнаружения аномалий физической плотности часто используется В-режим. При этом искомые объекты представляют собой яркие области на экране ультразвукового прибора, за которыми может быть видна акустическая тень. Но точность такого метода обнаружения невелика [1]. Для увеличения точности известно использование режима цветового доплеровского картирования кровотока. При этом на аномалиях физической плотности наблюдается мерцающий артефакт - явление, проявляющееся в быстрой смене окрашенных пикселей в окрестности гиперэхогенного объекта. Согласно статистическим данным применение мерцающего артефакта может повысить вероятность истинного обнаружения кальцинатов на 20-37% [1].
Возможно и дополнительное повышение вероятности обнаружения объекта, если использовать добавочный источник низкочастотных акустических колебаний. Эта методика называется акустической резонансной визуализацией [2, 3] и заключается в возбуждении резонанса объекта под действием сигнала на частоте, близкой к частоте их собственных колебаний. В патенте [2] предлагается дооснастить ультразвуковой медицинский диагностический прибор генератором гармонических колебаний для возбуждения микрокальцинатов в режиме цветового доплеровского картирования. Это приведет к увеличению интенсивности мерцающего артефакта.
Однако режим цветового доплеровского картирования в медицинских устройствах предназначен для картирования кровотока. Мерцающий артефакт является скорее «случайной находкой». Часто он мешает визуализации кровотока. Многие производители ультразвуковых медицинских диагностических приборов стремятся от него избавиться. Поэтому разумным выходом является создание режима, предназначенного для обнаружения аномалий физической плотности [4, 5].
Такой режим предложен в работе [4]. Однако он учитывает только энергетические различия компонент конкрементов, кальцинатов, «белого» шума и кровотока. В результате нашего исследования причин возникновения мерцающего артефакта [5] были выявлены также и статистические различия, учет которых позволит повысить чувствительность метода к сигналам от аномалий физической плотности.
Раскрытие изобретения
Задачей изобретения является повышение информативности акустической визуализации при поиске аномалий физической плотности в исследуемом объекте.
Это достигается тем, что в отличие от известного технического решения в предлагаемом способе обработка сигнала в режиме цветового доплеровского картирования происходит с использованием специализированной маски, учитывающей статистические характеристики сигналов и способствующей обнаружению аномалий физической плотности. При этом на экране ультразвукового прибора цветом выделяются участки, соответствующие расположению аномалий физической плотности. Процедуру выделения участков, соответствующих расположению искомых объектов, называют маскированием. Информативность акустической
визуализации при поиске аномалий физической плотности повышается от того, что помеченные цветом объекты найти для человеческого глаза легче, чем яркие области в серой шкале на черно-белом изображении на экране ультразвукового прибора. В некоторых случаях, например, при обследовании почки, в область обзора неминуемо попадает множество ярких областей, не все из которых являются объектами интереса (почечными камнями), тогда практически невозможно отыскать объект интереса на черно-белом изображении, именно с этим связана низкая вероятность истинного обнаружения почечных камней и кальцинатов на серошкальном изображении [1]. Данное изобретение повысит информативность за счет цветового выделения объектов интереса, и сделает это надежнее ближайшего аналога [4], поскольку использует не только энергетические, но и статистические различия доплеровских сигналов.
Описание чертежей
На фиг. 1 представлен ансамбль комплексных отсчетов в режиме цветового доплеровского картирования, соответствующий компоненте отражения от кровотока; на фиг. 2 - компоненте, характеризуемой гармоническими колебаниями аномалии физической плотности; на фиг. 3 - компоненте, характеризуемой кавитацией; на фиг. 4 - иллюстрация работы режима картирования аномалий физической плотности. Голубым цветом обозначена кавитация, желтым- гармонические колебания.
Осуществление изобретения
На вход подканала цветового доплеровского картирования поступают отсчеты комплексного сигнала, прошедшего этапы предварительной обработки приемного тракта устройства акустической визуализации: усиление, квантование и дискретизация, преобразование Гильберта, когерентное сложение с целью фокусировки на прием и согласованную фильтрацию.
Мы используем следующую модель сигнала, учитывающую влияние компонент, порожденных отражением как от кровотока, так и от аномалий физической плотности, приводящих к появлению мерцающего артефакта:
Figure 00000001
где - это ансамбль, состоящий из N комплексных входных отсчетов, называемый также пачкой. Для получения ансамбля исследуемый объект облучается N раз с некоторым интервалом TPRF. k - номер импульса в пачке.
Ak - комплексная амплитуда сигналов от быстродвижущихся объектов (например, кровотока),
Figure 00000002
- доплеровский сдвиг частоты, обусловленный движением объекта со скоростью νA. На фиг. 1 дано представление сигнала, содержащего только компоненту Ak, на комплексной плоскости;
Bk - комплексная амплитуда сигналов от малоподвижных объектов, которая, как правило, на 20-30 дБ превосходит амплитуду сигналов от кровотока.
Figure 00000003
- доплеровский сдвиг частоты, обусловленный движением тканей и колебаниями датчика. Предполагается, что скорость этого движения νB ≪ νA ;
Ck - амплитуда сигнала от аномалии физической плотности, мощность которого на 0-10 дБ превосходит амплитуду компоненты Bk. Предполагается, что аномалия физической плотности может совершать движения вместе с окружающими ее малоподвижными объектами. Следовательно, ей также соответствует доплеровский сдвиг частоты, равный ωB. Помимо этого, аномалия физической плотности может совершать вынужденные колебания под действием давления сканирующих импульсов, это приводит к дополнительному изменению фазы сигнала, обозначенному здесь ϕk. Для оценки величины этого сдвига мы используем следующую формулу:
Figure 00000004
где R ≪
Figure 00000005
- амплитуда вынужденных колебаний аномалии физической плотности вдоль луча; ωC - частота этих колебаний, обычно она сравнима с частотой повторения импульсов пачки. На фиг. 2 дано представление сигнала, содержащего только компоненту Ck, на комплексной плоскости;
Dk - комплексное приращение амплитуды, вызванное влиянием кавитации, представляющее собой шумоподобный сигнал значительной мощности. Амплитуда этого сигнала обычно несколько больше, чем компонента Ck, этим он отличается от прочих помех, возникающих в приемном тракте прибора. Предполагается, что Dk меняется от импульса к импульсу непредсказуемым образом. На фиг. 3 дано представление сигнала, содержащего только компоненту Dk, на комплексной плоскости;
Ek - комплексная компонента, характеризующая тепловой шум и шумы квантования и дискретизации в тракте приема и первичной обработки сигнала. Ее амплитуда на 10-15 дБ меньше амплитуды сигнала Ak;
ϕ0 - начальная фаза последовательности.
На входе подканала цветового доплеровского картирования осуществляется фильтрация, направленная на подавление компоненты Bk, представляющей результат отражения сигналов от малоподвижных тканей. В англоязычной литературе эта процедура называется wall-filtering или clutter-filtering. В качестве wall-фильтра часто используются фильтры высоких частот, а также различные виды регрессии. Получаемый после этого сигнал
Figure 00000006
становится центрированным относительно нуля.
Компоненты сигнала, соответствующие отражению от аномалий физической плотности, кровотока и «белому» шуму, проходят фильтр и сортируются на этапе маскирования. Для выделения компоненты отражения от движущихся объектов часто используется маска по среднеквадратичному отклонению:
Figure 00000007
(маска пропускает только значения, превышающие некоторый заданный порог).
Подканал цветового доплеровского картирования рассчитан на обнаружение отражения от объектов, движение которых за время пачки импульсов можно приближенно считать прямолинейным поступательным. Эти сигналы представлены компонентой Ak, характерный вид которой дан на фиг. 1.
Нами установлено, что аномалии физической плотности характеризуются двумя компонентами сигнала. Одна - Ck - вызвана микроколебаниями аномалий физической плотности под воздействием сканирующих импульсов (фиг. 2). Вторая - компонента Dk - вызвана отражением от кавитационных микропузырьков и представляет собой шумоподобный сигнал значительной мощности (фиг. 3).
Сигналы от аномалий физической плотности Ck и Dk содержат компоненты, которые также не подавляются ФВЧ, предназначенным для исключения малоподвижных объектов. При этом они имеют достаточную мощность, чтобы пройти маску (3), изначально рассчитанную на обнаружение только компоненты Ak. В результате, наряду с картированием движущихся участков, в доплеровском режиме на изображении появляются дополнительные окрашенные области. Именно это явление получило название мерцающего артефакта.
Для выделения сигнала от аномалии физической плотности мы предлагаем дополнить обработку маской, сформированной на основе модуля коэффициента попарной корреляции:
Figure 00000008
В местах преобладания компоненты Dk коэффициент попарной корреляции (4) оказывается ниже, чем в области кровотока и в среднем по изображению. При этом среднеквадратичное отклонение сигнала, содержащего отражение от аномалий физической плотности, вычисляемое по формуле (3), значительно выше, чем среднеквадратичное отклонение естественного шума, возникающего в тракте приема. Поэтому совмещение маски по формуле (4), настроенной на пропускание малых значений, и маски по формуле (3), пропускающей большие значения, позволит надежно отличать участки возникновения аномалии физической плотности, характеризуемые компонентой Dk, от сигналов кровотока Ak и от шумов Ek.
Для компоненты Ck, связанной с гармоническими колебаниями аномалии физической плотности, характерно высокое значение модуля коэффициента корреляции действительной и мнимой частей сигнала:
Figure 00000009
Использование маски, рассчитанной по формуле (5), позволит определить характер колебаний аномалии физической плотности. Для компоненты, обусловленной кавитацией, значение по формуле (5) будет малым. При настройке маски на пропускание больших значений (5) картироваться будут сигналы, содержащие информацию о гармонических колебаниях объекта.
После маскирования выделенные области окрашиваются цветом, делающим их заметными на фоне серошкального В-изображения. При использовании формул (3-5) предлагается окрашивать места обнаружения аномалий физической плотности двумя цветами (фиг. 4): одним - в случае превышения порога по формуле (5), что характерно для гармонического колебания объекта, причем можно не только картировать положение, но и кодировать цветом среднюю частоту колебаний аномалии физической плотности; другим - при малых значениях величин, вычисляемых по формулам (4), (5) и больших величинах по формуле (3), что характерно для кавитации.
Анализ сигналов по формулам (3-5) может проводиться также с использованием дополнительного источника акустических колебаний на частоте от нескольких десятков до нескольких тысяч герц. Использование такого источника может усилить проявление как микроколебаний наблюдаемого объекта, так и возникновение кавитационных микропузырьков, что увеличит амплитуду компонент Ck,
Dk и повысит вероятность обнаружения объекта.
Способ работает для объектов, называемых аномалиями физической плотности. Таковыми аномалиями могут быть, например, микрокальцинаты, кальцинаты, камни, возникающие при нефро-, уретролитиазе и др. заболеваниях, связанных с отложением солей, пузырьки, титановые скрепки и пр. объекты, плотность которых отличается от окружающих тканей и жидкостей полых органов и каналов.
Источники информации
1. Громов А.И., Кубова С. Ю. Ультразвуковые артефакты. М.: Видар, 2007.
2. Seghal С. Apparatus for imaging an element within a tissue and method therefor. United States Patent №5,997,477. 1999.
3. Weinstein S.P., Seghal C, Conant E.F., Patron J.A. Microcalcifications in Breast Tissue Phantoms Visualized with Acoustic Resonance Coupled with Power Doppler US: Initial Observations. Radiology. July 2002: 265-269.
4. Lu W. Ultrasonic Detection and Expulsion of Kidney Stones [dissertation]. Seattle: Department of Bioengineering, University of Washington, 2012.
5. Леонов Д.В., Кульберг H.C., Громов А.И., Морозов С.П., Ким С.Ю. Исследование причин возникновения мерцающего артефакта в доплеровских режимах ультразвукового медицинского диагностического устройства// Акустический журнал. 2018. №1. С. 100-111.

Claims (19)

1. Способ визуализации аномалий физической плотности при использовании устройства акустической визуализации в режиме цветового доплеровского картирования, где картируемым параметром является энергия доплеровского сигнала, обработанного ВЧ фильтром, состоящий в том, что проводят измерения сигнала в режиме цветового доплеровского картирования, отличающийся тем, что
- на основе полученных значений измеренного сигнала вычисляют модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала;
- выбирают порог по модулю коэффициента корреляции действительной и мнимой частей отсчетов сигнала;
- путем сравнения с порогом строят маску, которая принимает ненулевые значения на участках, где модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала превышает некоторый порог;
- при отображении аномалий физической плотности на экране прибора цветом кодируют энергию доплеровских сигналов, для которых маска принимает ненулевые значения, то есть сигналов, соответствующих упругим колебаниям, исходящим от аномалий физической плотности.
2. Способ по п. 1, отличающийся тем, что при получении доплеровских сигналов биообъект облучаются дополнительным источником акустических колебаний на частоте, соответствующей резонансной частоте аномалии.
3. Способ по п. 1 или 2, отличающийся тем, что при картировании используют лишь один оттенок, окрашивающий часть кадра, в которой маска принимает ненулевые значения.
4. Способ по п. 1 или 2, отличающийся тем, что картируемым параметром является среднее значение частоты колебаний аномалии физической плотности.
5. Способ визуализации аномалий физической плотности при использовании устройства акустической визуализации в режиме цветового доплеровского картирования, где картируемым параметром является энергия доплеровского сигнала, обработанного ВЧ фильтром, состоящий в том, что проводят измерения сигнала в режиме цветового доплеровского картирования, отличающийся тем, что
- на основе полученных значений измеренного сигнала вычисляют модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала;
- на основе полученных значений измеренного сигнала вычисляют среднеквадратичное отклонение отсчетов сигнала;
- на основе полученных значений измеренного сигнала вычисляют модуль коэффициента попарной корреляции отсчетов сигнала;
- выбирают порог по модулю коэффициента корреляции действительной и мнимой частей отсчетов сигнала;
- выбирают порог по среднеквадратичному отклонению отсчетов сигнала;
- выбирают порог по модулю коэффициента попарной корреляции отсчетов сигнала;
- путем сравнения с порогом строят маску, которая принимает ненулевые значения на участках, где модуль коэффициента корреляции действительной и мнимой частей отсчетов сигнала ниже некоторого порога, среднеквадратичное отклонение отсчетов сигнала превышает некоторый порог, а модуль коэффициента попарной корреляции отсчетов также ниже некоторого порога;
- при отображении аномалий физической плотности на экране прибора цветом кодируется энергия доплеровских сигналов, для которых маска принимает ненулевые значения, то есть сигналов, соответствующих микрокавитации, возникающей на поверхности аномалий физической плотности.
6. Способ по п. 5, отличающийся тем, что при картировании используется лишь один оттенок, окрашивающий часть кадра, в которой маска принимает ненулевые значения.
7. Способ по п. 5 или 6, отличающийся тем, что на серошкальное изображение анатомических структур помимо наложения карты, характеризующей возникновение кавитации, накладывается карта, полученная согласно способу по любому из пп. 1-4, характеризующая возникновение гармонических колебаний аномалий физической плотности.
RU2017113162A 2017-04-18 2017-04-18 Способ выявления аномалий физической плотности при акустической визуализации RU2665223C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017113162A RU2665223C1 (ru) 2017-04-18 2017-04-18 Способ выявления аномалий физической плотности при акустической визуализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017113162A RU2665223C1 (ru) 2017-04-18 2017-04-18 Способ выявления аномалий физической плотности при акустической визуализации

Publications (1)

Publication Number Publication Date
RU2665223C1 true RU2665223C1 (ru) 2018-08-28

Family

ID=63459721

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113162A RU2665223C1 (ru) 2017-04-18 2017-04-18 Способ выявления аномалий физической плотности при акустической визуализации

Country Status (1)

Country Link
RU (1) RU2665223C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784302C1 (ru) * 2022-02-18 2022-11-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ выявления твердых включений при ультразвуковой диагностике

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997477A (en) * 1997-04-14 1999-12-07 The Trustees Of The University Of Pennsylvania Apparatus for imaging an element within a tissue and method therefor
US6385474B1 (en) * 1999-03-19 2002-05-07 Barbara Ann Karmanos Cancer Institute Method and apparatus for high-resolution detection and characterization of medical pathologies
RU2432903C1 (ru) * 2010-04-21 2011-11-10 Александр Демьянович Зубов Способ определения показаний к инвазивным исследованиям при узловых образованиях щитовидной железы
RU2488352C1 (ru) * 2012-01-25 2013-07-27 Федеральное Государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт Минздравсоцразвитя России" Способ дифференциальной диагностики патологии предстательной железы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997477A (en) * 1997-04-14 1999-12-07 The Trustees Of The University Of Pennsylvania Apparatus for imaging an element within a tissue and method therefor
US6385474B1 (en) * 1999-03-19 2002-05-07 Barbara Ann Karmanos Cancer Institute Method and apparatus for high-resolution detection and characterization of medical pathologies
RU2432903C1 (ru) * 2010-04-21 2011-11-10 Александр Демьянович Зубов Способ определения показаний к инвазивным исследованиям при узловых образованиях щитовидной железы
RU2488352C1 (ru) * 2012-01-25 2013-07-27 Федеральное Государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт Минздравсоцразвитя России" Способ дифференциальной диагностики патологии предстательной железы

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784302C1 (ru) * 2022-02-18 2022-11-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ выявления твердых включений при ультразвуковой диагностике

Similar Documents

Publication Publication Date Title
US11635514B2 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
JP6734079B2 (ja) 医用診断装置、および医用解析プログラム
KR101397802B1 (ko) 점탄성 매체를 이미징하는 방법 및 디바이스
CN100548224C (zh) 利用超声检测内部狭窄以识别由其引起的组织振动的设备
JP3865800B2 (ja) 超音波診断装置
US8864671B2 (en) Methods and systems for color flow imaging
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
JPWO2006123742A1 (ja) 画像診断装置
KR20070110855A (ko) 초음파 진단 이미징 시스템과 간의 손상을 검출하기 위한방법
EP0626822A4 (en) TISSUE EXAMINATION USING ULTRASONIC CONTRAST AGENTS.
JPWO2014162966A1 (ja) 超音波診断装置、及び弾性評価方法
US7803116B2 (en) Transcutaneous localization of arterial bleeding by two-dimensional ultrasonic imaging of tissue vibrations
WO1991015999A1 (en) Ultrasound imaging technique using non linear scattering from bubbles
JP2017104526A (ja) 解析装置
RU2665223C1 (ru) Способ выявления аномалий физической плотности при акустической визуализации
JP2007007434A (ja) 超音波診断装置
RU184396U1 (ru) Ультразвуковое устройство для диагностики аномалий физической плотности
Artem et al. Image preprocessing for color Doppler flow antialiasing using power and complex phase data
JP2021137081A (ja) 超音波映像装置
JP2024054939A (ja) 超音波診断装置、超音波画像生成方法及びプログラム
Xu Two-dimensional blood flow velocity estimation using ultrasound speckle pattern dependence on scan direction and velocity
Merritt Spectral analysis
Kim et al. P1E-8 Ultrasonic Doppler Measurement of Tissue Vibrations: Opportunities and Limitations
JP2007097938A (ja) 超音波診断装置
Wermke et al. Colour and Power Doppler

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner