RU2665145C1 - Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата - Google Patents

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата Download PDF

Info

Publication number
RU2665145C1
RU2665145C1 RU2017119080A RU2017119080A RU2665145C1 RU 2665145 C1 RU2665145 C1 RU 2665145C1 RU 2017119080 A RU2017119080 A RU 2017119080A RU 2017119080 A RU2017119080 A RU 2017119080A RU 2665145 C1 RU2665145 C1 RU 2665145C1
Authority
RU
Russia
Prior art keywords
sun
spacecraft
current
solar battery
parameters
Prior art date
Application number
RU2017119080A
Other languages
English (en)
Inventor
Александр Иванович Спирин
Михаил Юрьевич Беляев
Дмитрий Николаевич Рулев
Николай Дмитриевич Рулев
Эрик Эдуардович Сармин
Василий Викторович Сазонов
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2017119080A priority Critical patent/RU2665145C1/ru
Application granted granted Critical
Publication of RU2665145C1 publication Critical patent/RU2665145C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока СБ. На интервале измерения тока СБ определяют расстояние от Земли до Солнца, производят поворот СБ. Производят съемку освещенных Солнцем элементов конструкции КА в видимом спектральном диапазоне. По измерениям яркости элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА, определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ. Прогнозируют ток СБ под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции КА. При выявлении рассогласования измеренных и расчетных значений тока СБ их сравнение выполняют с учетом измеренных параметров углового положения СБ относительно Солнца и элементов конструкции КА. Техническим результатом изобретения является повышение точности прогнозирования выходного тока СБ. 1 ил.

Description

Изобретение относится к области космической техники, а именно к энергообеспечению космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) КА.
Одной из составляющей контроля системы энергопитания снабженного СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольтамперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).
Для контроля электрических характеристик СБ в полете используются измерения электрических характеристик СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983. стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, в этом положении СБ определяют их текущие выходные параметры и контроль характеристик СБ осуществляют по результатам сравнения полученных текущих данных с их задаваемыми номинальными значениями (проектными или некоторыми исходными значениями, например, полученными на предыдущих этапах полета).
Данный способ обеспечивает контроль текущих выходных параметров СБ в полете. Например, меньшие значения фактического выходного тока СБ по отношению к заданным номинальным значениям означают «деградацию» СБ в ходе полета КА.
Недостаток данного способа связан с тем, что он не предусматривает учета внешних полетных условий, при которых был выполнен замер тока СБ, что вносит неопределенность в дальнейшее использование (интерпретацию) результатов выполненных замеров.
Известен способ определения максимальной выходной мощности СБ КА (патент РФ №2354592 по заявке №2007119224, приоритет от 23.05.2007 - прототип), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют высоту орбиты КА, определяют по ней угол возвышения верхней границы атмосферы над видимым с КА горизонтом Земли (ε), определяют значение углового полураствора видимого с КА диска Солнца (Qs), измеряют угол между направлением на Солнце и плоскостью орбиты КА (β), на витках, на которых значение измеряемого угла β менее или равно расчетному значению, определяемому по предложенному соотношению, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли (g) и максимальную выходную мощность СБ при их минимальной температуре определяют как произведение значений напряжения и тока СБ, измеренных в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли на восходе Солнца, определяемый из условия равенства значения измеряемого угла g сумме значений углов ε и Qs при возрастании значения угла g, а максимальную выходную мощность СБ при максимальной установившейся рабочей температуре определяют как произведение значений напряжения и тока СБ, измеренных в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца, определяемый из условия равенства значения измеряемого угла g сумме значений углов ε и Qs при убывании значения угла g.
Данный способ обеспечивает контроль текущих выходных параметров СБ в указанные моменты времени на восходе и заходе Солнца, что обеспечивает контроль выходных параметров СБ при двух температурных режимах - при минимальной и максимальной установившейся рабочей температуре СБ.
Недостаток способа-прототипа связан с тем, что он обеспечивает контроль текущих выходных параметров СБ в выборочные моменты времени и не предусматривает непрерывного контроля системы электропитания в холе полета КА.
Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности контроля системы электропитания снабженного СБ КА в полете.
Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в повышении точности прогнозирования выходного тока СБ на этапах планирования и реализации полета и послеполетном анализе за счет учета освещения СБ как прямым солнечным излучением, так и излучением, поступающим от освещенных Солнцем элементов конструкции КА.
Технический результат достигается тем, что в способе контроля системы энергопитания снабженного СБ КА, включающем измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока СБ. Дополнительно на интервале измерения тока СБ определяют расстояние от Земли до Солнца, производят поворот СБ до положения, при котором нормаль к рабочей поверхности СБ составляет с направлением от рабочей поверхности СБ на освещенные Солнцем элементы конструкции КА угол менее значения угла полураствора зоны чувствительности рабочей поверхности СБ, и производят съемку освещенных Солнцем элементов конструкции КА в видимом спектральном диапазоне, по полученным измерениям яркости элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА, определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ с учетом определяемых параметров модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, для планируемого интервала полета прогнозируют расстояние от Земли до Солнца и параметры углового положения СБ относительно Солнца и КА, по которым прогнозируют ток СБ под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции КА, при этом при выявлении рассогласования измеренных и расчетных значений тока СБ их сравнение выполняют с учетом измеренных параметров углового положения СБ относительно Солнца и элементов конструкции КА.
Суть предлагаемого изобретения поясняется на чертеже, на котором представлена схема, отображающая направление от рабочей поверхности СБ на освещенные Солнцем элементы конструкции КА.
На чертеже введены обозначения:
K - СБ КА;
Ki - i-я цепочка фотоэлементов рабочей поверхности СБ;
Nsb - вектор нормали к рабочей поверхности СБ;
fsb - угол полураствора зоны чувствительности рабочей поверхности СБ;
S - вектор направления на Солнце;
Pj - j-й освещенный Солнцем участок поверхности КА;
N - вектор нормали к участку поверхности КА;
M - вектор идеального (зеркального) отражения солнечного излучения от освещенного Солнцем участка поверхности КА;
L - направление от цепочки фотоэлементов рабочей поверхности СБ на освещенный Солнцем участок поверхности КА;
V - направление от освещенного Солнцем участка поверхности КА на цепочку фотоэлементов рабочей поверхности СБ.
Поясним предложенные в способе действия.
Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что сила тока является переменной величиной, напрямую зависящей от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей (ФЭП), при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.
В предложенном техническом решении для решения поставленной задачи на интервале измерения тока СБ определяют текущее значение расстояния от Земли до Солнца, производят поворот СБ до положения, при котором нормаль к рабочей поверхности СБ составляет с направлением от рабочей поверхности СБ на освещенные Солнцем участки поверхности (элементы конструкции) КА угол менее значения угла полураствора зоны чувствительности рабочей поверхности СБ.
Поворот СБ в описанные положения обеспечивает поступление на рабочую поверхность СБ излучения от освещенных Солнцем элементов конструкции КА, при этом данное излучение поступает на СБ КА при таких углах с нормалью к рабочей поверхности СБ, при которых воздействие данного излучения на СБ приводит к генерации тока СБ.
Производят съемку освещенных Солнцем участков поверхности элементов конструкции К А в видимом спектральном диапазоне.
По полученным измерениям яркости участков поверхности элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА (включая параметры углового положения СБ относительно Солнца и КА), определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ с учетом определяемых параметров модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА.
Съемка освещенных Солнцем участков поверхности элементов конструкции КА в видимом спектральном диапазоне осуществляется посредством соответствующей спектральной аппаратуры. Например, на таком КА как международная космическая станция (МКС) съемка может быть осуществлена с помощью имеющейся на российском сегменте МКС научной аппаратуры: «Система оптических телескопов» (включает установленные на двухосной платформе наведения камеры высокого и среднего разрешения), «Фотоспектральная система», «Видеоспектральная система» (ручная аппаратура, размещенная внутри PC МКС) и др.
При моделировании излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, может быть использована модель рассеянного/отраженного излучения, составленная из двух компонент - диффузной и зеркальной. Для расчета диффузной компоненты может быть применено Ламбертово приближение, для расчета зеркальной компоненты - закон Фонга [Д. Роджерс. Алгоритмические основы машинной графики = Procedural Elements for Computer Graphics. - M.: Мир, 1989. - С. 394. - 512 c.- ISBN 0-07-053534-5; Bui Tuong Phong, Illumination of Computer-Generated Images, Department of Computer Science, University of Utah, UTEC-CSs-73-129, July 1973; Bui Tuong Phong, "Illumination for Computer Generated Pictures," Comm. ACM, Vol. 18 (6): 311-317, June/, 1975]. Параметрами указанной модели являются коэффициенты диффузного и зеркального отражения и коэффициент блеска и интенсивность поля рассеянного/отраженного излучения определяется выражением:
Figure 00000001
,
где
Figure 00000002
- направление на Солнце,
Figure 00000003
- нормаль к поверхности КА в точке отражения,
Figure 00000004
- направление идеального отражения,
Figure 00000005
- направление от точки отражения на СБ,
Kd, Km - коэффициенты диффузного и зеркального отражения в точке отражения,
α - коэффициент резкости бликов зеркальной компоненты,
B - внеатмосферная интенсивность солнечной радиации.
На основании полученных измерений яркости элементов конструкции КА может быть осуществлен расчет параметров эффективности СБ и параметров модели рассеяния/отражения элементов конструкции КА, при которых минимизируется рассогласование модельных значений тока СБ относительно фактических значений тока СБ.
Задача минимизации данной целевой функции решается, например, методом наименьших квадратов, при этом расчет указанных параметров по указанным измерениям сводится к минимизации функционала
Figure 00000006
,
где Tk - измерения тока СБ;
Figure 00000007
- модель генерации тока СБ под воздействием прямого солнечного излучения и рассеянного/отраженного излучения от освещенных Солнцем элементов конструкции КА;
Figure 00000008
- вектор параметров, включающий полученные измерения яркости элементов конструкции КА и параметры взаимного положения СБ, съемочной аппаратуры, Земли, Солнца, КА на моменты tk измерений тока СБ;
Figure 00000009
- вектор определяемых параметров, включающий, в том числе коэффициенты диффузного и зеркального отражения Kd, Km и коэффициент резкости бликов зеркальной компоненты α для заданных типов элементов конструкции КА и коэффициент эффективности фото-преобразователей СБ
При расчете освещения СБ учитывают отклонения текущего значения внеатмосферной интенсивности солнечной радиации от номинального (среднего) значения (данное отклонение возникает вследствие эллиптичности орбиты Земли при ее движении вокруг Солнца). Например, можно считать, что текущее значение внеатмосферной интенсивности солнечной радиации с достаточной степенью точности обратно пропорционально значению расстояния от Земли до Солнца (Макарова Е.А., Харитонов А.В., Распределение энергии в спектре Солнца и солнечная постоянная, М., 1972; Поток энергии Солнца и его изменения, под ред. О. Уайта, пер. с англ., М., 1980; Кмито А.А., Скляров Ю.А., Пиргелиометрия, Л.)
Figure 00000010
,
где Bср, Bтек - фиксированное номинальное (среднее) и текущее значения внеатмосферной интенсивности солнечной радиации соответственно;
Dср, Dтек - фиксированное номинальное (среднее) и текущее значения расстояния от Земли до Солнца.
Далее на этапе планирования для планируемого интервала полета прогнозируют расстояние от Земли до Солнца, прогнозируют параметры углового положения СБ относительно Солнца и элементов конструкции КА.
По указанным параметрам с использованием модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, прогнозируют ток СБ под воздействием излучения, поступающего на СБ от Солнца и освещенных Солнцем элементов конструкции КА.
Далее в ходе реализации запланированного интервала полета осуществляют измерение тока СБ и параметров углового положения СБ относительно Солнца и элементов конструкции КА, сравнивают измеренные и прогнозируемые (расчетные) значения тока СБ и по результатам данного сравнения осуществляют контроль системы электропитания КА.
В процессе контроля выявляют рассогласования между измеренными значениями тока СБ и их расчетными значениями. При выявлении рассогласования между упомянутыми измеренными и прогнозируемыми значениями тока СБ для выявления и анализа его причин осуществляется сравнение измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ относительно Солнца и элементов конструкции КА.
Например, наличие или отсутствие нарушений работы СЭС может диагностироваться в случае, если сравнение измеренных значений тока СБ с последними упомянутыми расчетными модельными значениями тока СБ, определенными с учетом фактических значений указанных параметров, соответственно выявляет или не выявляет рассогласования между сравниваемыми значениями тока.
Опишем технический эффект предлагаемого изобретения.
Предлагаемое техническое решение позволяет повысить точность прогнозирования выходного тока СБ на этапах планирования и реализации полета и послеполетном анализе за счет учета освещения СБ как прямым солнечным излучением, так и излучением, поступающим от освещенных Солнцем элементов конструкции КА.
Контроль системы электропитания включает прогнозирование генерации тока СБ на этапе планирования полета (на этом этапе осуществляется составление такой циклограммы выполнения полетных операций и работы бортовой аппаратуры, при которой обеспечивается необходимая генерация тока СБ непрерывно в течение планируемых витков полета), проверку необходимой генерации тока СБ в непрерывно процессе реализации полета и выявление и анализ выявленных рассогласований между измеренными значениями тока СБ и их расчетными (модельными) значениями, осуществляемые на послеполетном этапе.
Рассогласования между измеренными значениями тока СБ и их прогнозируемыми значениями могут появляться вследствие как нарушения штатной работы непосредственно СБ и/или других элементов системы электроснабжения КА (данные нарушения могут быть вызваны, например, воздействием на СБ факторов открытого космического пространства, что приводит к их постепенной «деградации»), так и отклонениями, нарушениями, изменениями циклограмм работы других систем КА (например, системы ориентации КА) относительно запланированных.
В случае выявления рассогласований между измеренными значениями тока СБ и их прогнозируемыми значениями для анализа причин такого рассогласования осуществляется сравнение измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ относительно Солнца, Земли и КА, а также фактических параметров покрытия облаками видимой с К А земной поверхности.
По результатам данного сравнения измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ и фактических параметров покрытия облаками видимой с КА земной поверхности, наличие нарушений работы системы электропитания КА может диагностироваться в случае, если по результатам данного (повторного) сравнения измеренных значений тока СБ с их расчетными (модельными) значениями рассогласование между сравниваемыми значениями тока СБ продолжает выявляться, а отсутствие нарушений работы системы электропитания КА может диагностироваться в случае, если по результатам данного (повторного) сравнения измеренных значений тока СБ с их расчетными (модельными) значениями рассогласование между сравниваемыми значениями тока СБ не выявляется.
Учет освещения СБ как прямым солнечным излучением, так излучением, поступающим от освещенных Солнцем элементов конструкции КА, позволяет увеличить как точность прогнозирования генерации тока СБ на стадии планирования полета, так и точность модельного расчета тока СБ на стадии послеполетного анализа. Это позволяет, с одной стороны, максимально уменьшить возможное рассогласование между измеренными значениями тока СБ и их прогнозируемыми значениями в случае, если реализация полета идет в соответствии с запланированной циклограммой, и, с другой стороны, максимально точно выявлять рассогласования между измеренными значениями тока СБ и их прогнозируемыми значениями и максимально информативно выполнять анализ выявленных рассогласований в случае, если реализация полета отклоняется от запланированной циклограммы.
Таким образом, получаемый технический эффект повышает эффективность контроля системы электропитания КА.
В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Claims (1)

  1. Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата, включающий измерение тока солнечной батареи и параметров углового положения солнечной батареи, определение параметров эффективности солнечной батареи и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока солнечной батареи, отличающийся тем, что дополнительно на интервале измерения тока солнечной батареи определяют расстояние от Земли до Солнца, производят поворот солнечной батареи до положения, при котором нормаль к рабочей поверхности солнечной батареи составляет с направлением от рабочей поверхности солнечной батареи на освещенные Солнцем участки поверхности космического аппарата угол менее значения угла полураствора зоны чувствительности рабочей поверхности солнечной батареи и производят съемку освещенных Солнцем элементов конструкции космического аппарата в видимом спектральном диапазоне, по полученным измерениям яркости элементов конструкции космического аппарата, параметрам относительного положения съемочной аппаратуры, снимаемых участков элементов конструкции космического аппарата, Солнца, солнечной батареи и космического аппарата, определенному расстоянию от Земли до Солнца и измерениям тока солнечной батареи уточняют значения параметров эффективности солнечной батареи с учетом определяемых параметров модели яркости излучения, поступающего на солнечную батарею от освещенных Солнцем элементов конструкции космического аппарата, для планируемого интервала полета прогнозируют расстояние от Земли до Солнца и параметры углового положения солнечной батареи относительно Солнца и космического аппарата, по которым прогнозируют ток солнечной батареи под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции космического аппарата, при этом при выявлении рассогласования измеренных и расчетных значений тока солнечной батареи их сравнение выполняют с учетом измеренных параметров углового положения солнечной батареи относительно Солнца и элементов конструкции космического аппарата.
RU2017119080A 2017-05-31 2017-05-31 Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата RU2665145C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017119080A RU2665145C1 (ru) 2017-05-31 2017-05-31 Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017119080A RU2665145C1 (ru) 2017-05-31 2017-05-31 Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Publications (1)

Publication Number Publication Date
RU2665145C1 true RU2665145C1 (ru) 2018-08-28

Family

ID=63460034

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017119080A RU2665145C1 (ru) 2017-05-31 2017-05-31 Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Country Status (1)

Country Link
RU (1) RU2665145C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101400A (ja) * 1993-10-07 1995-04-18 Toshiba Corp 太陽電池パドル制御装置
JPH07228299A (ja) * 1994-02-15 1995-08-29 Mitsubishi Electric Corp 三軸安定衛星の太陽電池パドル駆動制御装置
RU2353555C2 (ru) * 2006-08-31 2009-04-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
RU2354592C2 (ru) * 2007-05-23 2009-05-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
RU2618844C2 (ru) * 2015-07-20 2017-05-11 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101400A (ja) * 1993-10-07 1995-04-18 Toshiba Corp 太陽電池パドル制御装置
JPH07228299A (ja) * 1994-02-15 1995-08-29 Mitsubishi Electric Corp 三軸安定衛星の太陽電池パドル駆動制御装置
RU2353555C2 (ru) * 2006-08-31 2009-04-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
RU2354592C2 (ru) * 2007-05-23 2009-05-10 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
RU2618844C2 (ru) * 2015-07-20 2017-05-11 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения максимальной выходной мощности солнечных батарей космического аппарата

Similar Documents

Publication Publication Date Title
Frieß et al. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements
RU2353555C2 (ru) Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
Pottler et al. Ensuring performance by geometric quality control and specifications for parabolic trough solar fields
Bondur et al. Methods for retrieval of sea wave spectra from aerospace image spectra
CN103745055A (zh) 一种基于光谱brdf的空间目标可见光成像方法
Eşlik et al. Short-term solar radiation forecasting with a novel image processing-based deep learning approach
RU2655089C1 (ru) Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами
RU2665145C1 (ru) Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата
RU2354592C2 (ru) Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления
RU2655561C1 (ru) Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах
CN103115876A (zh) 一种新型野外双向反射分布函数自动测量装置
RU2662372C1 (ru) Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата
Janeček et al. FRAM for the Cherenkov Telescope Array: an update
CN112417670B (zh) 一种考虑帆板偏移效应的geo目标光度特性计算模型
RU2770331C1 (ru) Способ определения производительности установленной на космическом аппарате солнечной батареи с двусторонней светочувствительностью
US20220099483A1 (en) Measuring Direct, Diffuse, Global, and/or Ground-Reflected Solar Irradiance Using an Array of Irradiance Sensors
RU2624885C2 (ru) Способ определения максимальной выходной мощности солнечных батарей космического аппарата
RU2653890C2 (ru) Способ определения производительности установленной на космическом аппарате солнечной батареи с положительной выходной мощностью тыльной поверхности
RU2387969C1 (ru) Пассивная инфракрасная мира с системой автоматического регулирования
RU2706643C2 (ru) Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами
RU2770330C1 (ru) Способ контроля производительности установленной на космическом аппарате солнечной батареи с двусторонней светочувствительностью
RU2771552C1 (ru) Способ оценки эффективности солнечных панелей системы электропитания космического аппарата
Sandmeier et al. The Swiss field-goniometer system (FIGOS)
Mohd et al. Analysis on parameter effect for solar radiation prediction modeling using NNARX
Huang et al. Intelligence of astronomical optical telescope: Present status and future perspectives