RU2665005C1 - Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии - Google Patents

Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии Download PDF

Info

Publication number
RU2665005C1
RU2665005C1 RU2017117721A RU2017117721A RU2665005C1 RU 2665005 C1 RU2665005 C1 RU 2665005C1 RU 2017117721 A RU2017117721 A RU 2017117721A RU 2017117721 A RU2017117721 A RU 2017117721A RU 2665005 C1 RU2665005 C1 RU 2665005C1
Authority
RU
Russia
Prior art keywords
mmp
progression
timp
glaucoma
ratio
Prior art date
Application number
RU2017117721A
Other languages
English (en)
Inventor
Анна Сергеевна Хохлова
Елена Владимировна Маркелова
Людмила Петровна Догадова
Наталья Валерьевна Филина
Екатерина Александровна Купчина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации
Priority to RU2017117721A priority Critical patent/RU2665005C1/ru
Application granted granted Critical
Publication of RU2665005C1 publication Critical patent/RU2665005C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/577Immunoassay; Biospecific binding assay; Materials therefor involving monoclonal antibodies binding reaction mechanisms characterised by the use of monoclonal antibodies; monoclonal antibodies per se are classified with their corresponding antigens

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Изобретение относится к области медицины, в частности к офтальмологии, и предназначено для прогнозирования скорости прогрессии глаукомной оптической нейропатии. В слезной жидкости определяют концентрации ММР-9 и TIMP-1 методом иммуноферментного анализа и затем рассчитывают величину их отношения. При величине отношения MMP-9/TIMP-1 163,3±6,5 прогнозируют быструю прогрессию глаукомной оптической нейропатии. При величине отношения MMP-9/TIMP-1 61,4±4,8 прогнозируют медленную прогрессию. При величине отношения MMP-9/TIMP-1 52,9±3,4 прогнозируют стабилизацию процесса глаукомной оптической нейропатии. Изобретение обеспечивает простой и неинвазивный способ прогнозирования скорости прогрессии глаукомной оптической нейропатии. 3 ил., 2 табл., 1 пр.

Description

Изобретение относится к медицине, в частности к офтальмологии. Способ позволяет прогнозировать стабилизацию зрительных функций при первичной открытоугольной глаукоме либо прогнозировать скорость прогрессии заболевания. Это позволит вовремя выбрать тактику наблюдения и терапии первичной открытоугольной глаукомы.
Поражение зрительного нерва при глаукоме получило название глаукомной оптической нейропатии (ГОН), которая считается основным проявлением заболевания и
В подавляющем большинстве случаев, причина ГОН - первичная открытоугольная глаукома (ПОУГ) - до 90%. Опасность ее заключается в резком снижении зрения без предпосылок. В последнее время внимание стало уделяться оценке скорости прогрессии глаукомного процесса. Однозначных объяснений скорости прогрессии, на сегодняшний момент, не существует.
В отечественной и зарубежной литературе последних лет обсуждаются данные о роли иммунно-опосредованных механизмов в патогенезе ГОН. Появились данные о том, что важным звеном поражения нервной ткани при глаукоме является разрушение межаксонального, межклеточного пространства. Первичным фактором называется именно активация глии, а протеолитические ферменты - матриксные металло протеиназы (ММП), запускают ремоделирование в области решетчатой пластинки и области диска зрительного нерва. Данные об уровне ММП-9 в слезе при одинаковых стадиях ПОУГ в разных работах существенно отличаются.
Известны многочисленные публикации о способах прогнозирования прогрессирования глаукомной оптической нейропатии, в которых в качестве оценочных критериев используют корнеальный гистерезис и центральную толщину роговицы (патент RU 2354287)., скорость кровотока, минутный объем водянистой влаги и коэффициент легкости оттока (патент RU 2346655), суммарную антиокислительную активность слезы (патент RU 2139538). Общим недостатком для них является сложность выполнения и неспецифичность выбранных показателей.
Известно исследование, где показано, что у пациентов с ПОУГ в клетках трабекулярной сети уровень концентрации гиалуроновой кислоты увеличивает деятельность ММП2 и ММП-9. Отсутствие гиалуроновой кислоты во внутриглазной жидкости может привести к снижению деятельности ММР и, следовательно, может быть вовлечена в патогенез ПОУГ. Потому как уменьшение ММП в водянистой влаге может изменить баланс между ММП и тканевыми ингибиторами металлопротеиназ (ТИМП). Этот дисбаланс может привести к прогрессированию ПОУГ (Guo M.S., Wu Y.Y., Liang Z.B. // Hyaluronic acid increases MMP-2 and MMP-9 expressions in cultured trabecular meshwork cells from patients with primary open-angle glaucoma // Molecular Vision 2012; 18:1175-1181). Эти данные подтверждают роль показателей межклеточного матрикса в развитии ГОН, но недостаточно точно отражают степень этой зависимости, не анализируют скорость прогресии ГОН у конкретных пациентов. Субстратом исследования является внутриглазная жидкость, что серьезно усложнит способ в связи с его инвазивностью.
Известны исследования, в результате которых была выявлена зависимость между уровнями ММП-9 и стадией глаукомы: концентрация ММП-9 у больных с начальной и развитой стадиями глаукомы достоверно ниже, чем у больных с далекозашедшей и терминальной стадиями болезни (p=0,03). Таким образом, концентрация ММП-9 в слезной жидкости может служить критерием прогрессирования ПОУГ (Соколов В.А., Леванова О.Н., Никифоров А.А. Матриксная металлопротеиназа-9 как биомаркер первичной открытоугольной глаукомы. Российский медико-биологический вестник имени академика И.П. Павлова, 2013, №4, 139-142) Однако, к сожалению, результаты этих исследований, не позволяют прогнозировать скорость развития глаукомной оптической нейропатии.
Известен способ прогнозирования заболевания первичной открытоугольной глаукомой (патент RU 2483306). Авторы предлагают использовать способ для ранней диагностики первичной открытоугольной глаукомы у пациентов, страдающих миопией, гипертонической болезнью, сахарным диабетом 2 типа и относящихся к группе риска развития заболевания. Повышенные уровни металлопротеиназы-9 (ММР-9), показатели которой превышают 52,5 нг/мл в слезной жидкости и 274,49 нг/мл в сыворотке крови; повышенные уровни комплекса металлопротеиназы-9 и ее тканевого ингибитора (MMP-9/TIMP-1), показатели которого превышают 0,19 нг/мл в слезной жидкости и 4,93 нг/мл в сыворотке крови, и повышенные уровни секреторного иммуноглобулина A (sIgA), показатели которого превышают 47,38 мг/л в слезной жидкости и 2,1 г/л в сыворотке крови, являются критериями, диагностирующими первичную открытоугольную глаукому.
Данный способ, является в большей степени диагностическим - включает однократный забор материала из двух биологических жидкостей (слеза и кровь) и оценивает только наличие либо отсутствие глаукомы; не исследует динамику развития глаукомы, поэтому непригоден для прогнозирования скорости развития заболевания.
Известен способ прогнозирования риска прогрессирования глаукомной оптической нейропатии (патент RU 2530588 от 30.07.2013). Авторы изобретения определяют у больных ГОН уровень лактата в крови и при значении уровня лактата ≥4,33 ммоль/л прогнозируют высокий риск прогрессирования глаукомной оптической нейропатии в течение 1 года после обследования. Однако способ инвазивен и точность прогнозирования скорости развития ГОН невысокая поскольку не предполагается периодический контроль в течение года.
За прототип принят известный способ прогнозирования прогрессирования первичной открытоугольной глаукомы (патент RU 2517233 от 22.11.2012), поскольку показатель развития заболевания определялся на разных стадиях ПОУГ, что позволяет выявить риск прогрессирования заболевания на более ранних стадиях. В качестве показателя риска определяют содержание антиапоптотического белка Bcl-2 в слезной жидкости и в сыворотке крови. При отсутствии его в слезной жидкости и/или сыворотке прогнозируют прогрессирование глаукоматозного процесса.
Недостатком данного способа является то, что он не позволяет определить скорости прогрессии глаукомной оптической нейропатии, и что в качестве показателя выбран антиапоптотического белка Bcl-2, который является более поздним показателем развития нежелательного апоптоза гангионарных клеток сетчатки, а первичным фактором в патогенезе ГОН, как известно, являются матриксные металлопротеиназы (ММП) и их ингибиторы.
Задача изобретения - создание более точного неинвазивного способа прогнозирования скорости прогрессии глаукомной оптической нейропатии, позволяющего определять прогноз и возможность неблагоприятного развития заболевания для назначения лечения на более ранних стадиях развития ГОН.
Для решения поставленной задачи в способе прогнозирования скорости прогрессии глаукомной оптической нейропатии, включающем исследования биохимических факторов слезной жидкости пациента, согласно изобретению, биохимическими факторами служат металлопротеиназа-9 (ММП-9) и свободный тканевый ингибитор (ТИМП-1), концентрации которых в слезной жидкости определяют методом иммуноферментного анализа с использованием специфических тест-систем и затем рассчитывают величину их отношения, при величине значения ММП-9/ТИМП-1 более 61,4 прогнозируют быструю прогрессию глаукомной оптической нейропатии, при величине значения ММП-9/ТИМП-1 в диапазоне 52,9-61,4 прогнозируют медленную прогрессию, при величине значения ММП-9/ТИМП-1 менее 52,9 прогнозируют стабилизацию процесса глаукомной оптической нейропатии.
Технический результат состоит в том, что создан новый достаточно простой и неинвазивный способа прогнозирования скорости прогрессии глаукомной оптической нейропатии, позволяющий приступить к лечению на ранних стадиях заболевания.
Исследование проводилось в слезной жидкости методом иммуноферментного анализа (ИФА) с использованием специфических тест-систем. В качестве биологического материала для иммунологических исследований использовалась слезная жидкость. Забор слезной жидкости проводился после раздражения парами аммиака, инсулиновым шприцем (игла предварительно снята) из внутреннего угла глаза и использовался для исследования матриксной металлопротеиназы-9 секреторного типа человека (ММП-9), исследование ее тканевого ингибитора 1 типа (ТИМП-1) и расчета их отношения (ММП-9/ТИМП-1), которое было названо авторами индексом активации ММП-9.
Определение концентрации ММП-9 проводили с помощью набора «R&D Systems, Inc. USA». Метод определения основан на твердофазном иммуноферментном анализе. В лунки планшета (Costar, corhing Inc., USA) внесли по 100 мкл раствора мышиных антител против ММП-9 человека в концентрации 1.0 мкг/мл в фосфатно-солевом буфере (ФСБ - 137). Инкубировали в течение ночи при комнатной температуре, после чего содержимое планшета удалили, лунки промыли промывочным буфером. Затем в каждую лунку добавили 300 мкл раствора для разведения сывороток (РРС), инкубировали 2 часа при комнатной температуре, затем внесли по 100 мкл калибровочных образцов в дублях. В остальные лунки планшета внесли по 100 мкл слезной жидкости без разведения. После инкубации в течение 2 часов при комнатной температуре лунки промыли. В каждую лунку внесли по 100 мкл раствора биотинилированных антител против ММП-9 в концентрации 100 нг/мл в РРС. Инкубировали в течение 2 часов при комнатной температуре с последующим промыванием лунок. Внесли в каждую лунку по 100 мкл конъюгата стрептавидина с пероксидазой в разведении 1:200 в РРС. Затем инкубация при комнатной температуре и промывание лунок. Далее в каждую лунку внесли по 100 мкл раствора тетраметилбензидина. Далее инкубировали в темноте 20 минут. Во все лунки планшета добавили по 50 мкл раствора стоп-реагента (5% H2SO4). Результаты регистрировали с помощью планшетного спектрофотометра (μQuant Bio-Tek Instruments, USA) на длине волны 450 нм. По результатам измерения вычислили среднее арифметическое значение оптической плотности в лунках-дубликатах и определили концентрацию ММП-9 в анализируемых образцах с помощью калибровочного графика.
Определение концентрации тканевого ингибитора металлопротеиназы 1 (ТИМП-1) проводили с помощью набора «R&D Systems, Inc. USA». Метод определения основан на твердофазном иммуноферментном анализе. В лунки планшета (Costar, corhing Inc., USA) внесли по 100 мкл раствора биотинилированных антител против ТИМП-1 человека в концентрации 4.0 мкг/мл в фосфатно-солевом буфере (ФСБ). После инкубации в течение ночи при комнатной температуре содержимое планшета удалили, лунки промыли промывочным буфером. Затем в каждую лунку добавили 300 мкл блокирующего буфера (1% бычьего сывороточного альбумина в ФСБ). После двухчасовой инкубации при комнатной температуре лунки промыли и внесли по 100 мкл калибровочных образцов в дублях. Затем инкубация при комнатной температуре и промывка лунок. В каждую лунку внесли по 100 мкл раствора тетраметилбензидина, инкубировали в темноте 20 минут при комнатной температуре. Во все лунки планшета внесли по 50 мкл раствора стоп-реагента (5% H2SO4). Результаты зарегистрировали с помощью планшетного спектрофотометра (μQuant Bio-Tek Instruments, USA) на длине волны 450 нм. По результатам измерения вычисляли среднее арифметическое значение оптической плотности в лунках-дубликатах и определяли концентрацию ТИМП-1 в анализируемых образцах.
Отличительным признаком заявляемого способа от прототипа является проведение исследования не в виде разовой выборке и анализ в зависимости от стадии, а проведение исследования при первичном выявлении глаукомы и оценка результатов через год с фиксацией скорости прогрессии глаукомной оптической нейропатии.
Затем производили арифметическое деление концентрации ММП-8 на концентрацию ТИМП-1, авторы назвали это отношение индексом активации ММП-8. Производили арифметическое деление концентрации ММП-9 на концентрацию ТИМП-1, авторы назвали это отношение индексом активации ММП-9.
Заявляемый способ отличается от известных решений применением иммунологических тестов для диагностики глаукомы в разных группах обследованных: со стабилизацией глаукомного процесса, с медленным и быстрым прогрессированием глаукомной оптической нейропатии.
Создание способа основано на обследовании 75 пациентов с ПОУГ I-IV стадий (145 глаз). Количество глаз с I стадией составило 30%, со II стадией 40%, с III стадией - 23%, IV стадией - 7%. Срок наблюдения за пациентами составил 1 год от момента диагностирования ПОУГ и забора слезной жидкости. Офтальмологическое обследование пациентов выполнялось через 1, 3, 6 и 12 месяцев с целью выяснения скорости прогрессирования заболевания (при условии нормализации офтальмотонуса). Все пациенты ежедневно получали местно препараты простагландинового ряда.
Пациенты распределены на следующие группы на основании критериев, охарактеризованных в «национальном руководстве по глаукоме» (Егоров Е.А. Национальное руководство по глаукоме (путеводитель): руководство для поликлинических врачей (Е.А. Егоров, Ю.С. Астахов, А.Г. Щуко. - М.: «Дом печати». - 2015. - 824 с.).
1 группа - стабилизация ГОН (44 глаза). Стабилизация ГОН - характеризуется отсутствием ухудшения показателя светочувствительности сетчатки при трехкратном исследовании на компьютерном периметре «Octopus 900» (США), программа «Глаукома».
2 группа - медленно прогрессирующая ГОН (53 глаза). Медленная прогрессия ГОН - характеризуется снижением светочувствительности сетчатки менее, чем на 1,0 ДБ в год.
3 группа - быстро прогрессирующая ГОН (27 глаз). Быстрая прогрессия ГОН - характеризуется снижением светочувствительности сетчатки более, чем на 1,0 ДБ в год.
4 группа - была выделена дополнительно, в нее вошли пациенты, которым понадобилось хирургическое вмешательство (непроникающая глубокая склерэктомия), за период наблюдения в связи с отсутствием нормализации офтальмотонуса (21 глаз). Средний возраст составил 63,2±1,4 года.
Контрольную группу составили 20 практически здоровых добровольцев (40 глаз) без патологии глаз, возраст которых был 56,5±3,4 года.
Забор слезной жидкости проводился инсулиновым шприцем (игла предварительно снята) из внутреннего угла глаза после предварительного раздражения парами аммиака (количество слезы 0,1 мл). Способ оценки уровня ММП-8, -9, и, ТИМП-1 приведены выше в описании изобретения.
В таблице 1 представлены результаты исследований в слезной жидкости пациентов ПОУГ 4-х групп и людей контрольной группы, а в таблице 2 - Содержание ММП-8, -9, ТИМП-1 и их соотношение с ТИМП-1 в слезной жидкости с различным прогрессированием ГОН.
На Фиг. 1. представлена ROC - кривая оценки отношения ММП9/ТИМП-1 у пациентов с быстрым прогрессированием ГОН и стабилизацией процесса.
На Фиг. 2 представлено изображение компьютерной периметрии пациентки Я., 15.03.2015 г. (клинический пример, первичный осмотр).
На фиг. 3 представлено изображение компьютерной периметрии пациентки Я., 20.04.2016 г. (клинический пример, контрольный осмотр.)
Figure 00000001
Примечание: статистическая достоверность различий между группами: с группой контроля: p<0,05 - *; p<0,01 - **; p<0,001 - ***;
Из таблицы 1 следует, что, с наибольшей достоверностью, в развитии глаукомы участвует ММП-9 (ее содержание в группе с глаукомой в 6 раз больше, чем в контрольной группе) и отношение ММП-9 к ТИМП-1 (это отношение в 7 раз больше в группе с глаукомой, чем в контрольной группе).
Но, учитывая, задачу выявить маркеры риска прогрессирования ГОН, был проведен анализ всех вышеизложенных показателей в зависимости от скорости прогрессии.
Figure 00000002
Примечание: статистическая достоверность различий между группами: p - с группой контроля: p<0,05 - *; p<0,01 - **; p<0,001 - ***; p1, 2, 3 - сравниваемые группы; # - p<0,05 между группами пациентов с разной скоростью прогрессии ГОН, n=чел./глаз
Из таблицы 2 следует, что самым значимым маркером прогрессирования глаукомной оптической нейропатии является отношение ММП-9 к ТИМП-1 (индекс активации ММП-9). В группе в медленным прогрессированием индекс выше в 4 раза, чем в группе контроля, а в группе с быстрым прогрессированием в 11 раз выше, чем в группе контроля. Чем выше изначально этот индекс, тем выше скорость прогрессии ГОН у пациента за последующий год.
На основании вышеизложенных данных, выявлено, что самым характерным показателем скорости прогрессии глаукомного процесса является индекс активации ММП-9. Повышение отношения металлопротеиназы-9 и ее свободного тканевого ингибитора (ММП-9/ТИМП-1), то есть индекса активации ММП-9, показатель которого превышает 61,4 в слезной жидкости, служит критерием, свидетельствующими о предполагаемой быстрой прогрессии ГОН; отношение ММП-9/ТИМП-1 в слезной жидкости в пределах 52,9-61,4 прогнозирует медленную прогрессию ГОН, отношение ММП-9/ТИМП-1 в слезной жидкости менее 52,9 - прогнозирует стабилизацию процесса.
Дополнительно был проведен ROC-анализ (фиг. 1), выявлена максимально высокая специфичность и чувствительность индекса активации ММП-9 у пациентов ПОУГ с быстрым прогрессированием процесса в сравнении с группой со стабилизацией глаукомной нейропатии (Sensitivity 96,4%, Specificity 90,0%, Criterion>61,4).
ROC - кривая оценки отношения ММП9/ТИМП-1 у пациентов с быстрым прогрессированием ГОН и стабилизацией процесса свидетельствует о большом значении отношения ММП-9/ТИМП-1 как дополнительного иммунологического критерия прогрессирования глаукомной оптической нейропатии.
Полученные данные свидетельствуют о существенной роли ММП-9 и ТИМП-1, а именно, в большей степени, их дисбаланса, в патогенезе ПОУГ и риске быстрого прогрессирования. Чрезмерный синтез экстраклеточного матрикса, возможно, лежит в основе снижения оттока внутриглазной жидкости, дегенеративных изменениях в шлеммовом канале и диске зрительного нерва.
Данный способ позволяет выявлять различные «подтипы» первичной открытоугольной глаукомы, по-видимому, с уже имеющимися нарушениями в выработке экстрацеллюлярного матрикса. Чем выраженнее эти нарушения изначально, тем выше риск быстрого прогрессирования глаукомной оптической нейропатии.
Клинический пример.
Пациентка Я. обратилась 15.03.2015 с жалобой на снижение зрения, периодическое «выпадение» полей зрения в течение полугода. При осмотре: острота зрения 0,9/0,7 н/к; факосклероз, диски зрительных нервов бледные с серым оттенком, э/д 0,5/0,6; тонометрия 19/20 мм рт.ст.; пахиметрия 545/549 мкм; компьютерная периметрия (см. фиг. 2) - MD справа 5,7 Дб, слева 7,8 Дб.
Выставлен диагноз ПОУГ обоих глаз, развитая стадия с компенсированным ВГД (ПОУГ 2а стадии). Назначен простагландин латанопрост 1 р в день постоянно.
Индекс активации ММП-9 в правом глазу составил 19,5, в левом глазу 54,5. Обращает на себя внимание данная асимметрия показателей на глазах, при том, что по офтальмологическим данным диагноз на обоих глазах одинаковый (ПОУГ 2а стадии).
В течение года пациентка обследовалась два раза, правый глаз показывал стабилизацию процесса, левый глаз постепенно ухудшал функции. При этом давление было компенсировано и составляло 16-17 мм рт.ст.
Контрольный осмотр 20.04.16 (динамика - 1 год): Жалобы на снижение зрения на левый глаз за последний год, острота зрения 0,9/0,6 н/к; факосклероз, диски зрительных нервов бледные с серым оттенком, э/д 0,5/0,7; тонометрия 16/16 мм рт.ст.; пахиметрия 545/548 мкм; компьютерная периметрия (см. фиг. 3) - MD справа 5,9 Дб, слева 8,3 Дб.
Снижение MD за год составило справа 0,2 Дб (вариант стабилизации процесса), слева 0,6 Дб с появлением скотом в центральном поле зрения (в пределах 30 градусов от точки фиксации). Такие скотомы стали беспокоить пациентку гораздо больше, чем периферические, выявленные год назад.
Индекс активации ММП-9 составил 21,2 справа, 78,3 слева.
Было принято решение выполнить на левый глаз антиглаукоматозную операцию и продолжить инстилляцию простагландинов на оба глаза. При оценке в течение полугода после оперативного лечения - стабилизация функций на оба глаза.
Таким образом, выявленное изначально повышение индекса активации ММП-9 на левый глаз до 54,5 предполагало риск прогрессирования глаукомы, что и подтвердилось через год, и, даже потребовало оперативного лечения.
Использование изобретения в лечебной практике позволяет прогнозировать течение заболевания: стабилизацию зрительных функций при первичной открытоугольной глаукоме либо прогнозировать скорость прогрессии ГОН, что позволит вовремя выбрать тактику наблюдения и терапии данного социально-значимого заболевания.

Claims (1)

  1. Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии, включающий исследование биохимических факторов слезной жидкости пациента, отличающийся тем, что биохимическими факторами служат металлопротеиназа-9 (ММР-9) и ее тканевой ингибитор (TIMP-1), концентрации которых в слезной жидкости определяют методом иммуноферментного анализа и затем рассчитывают величину их отношения, при величине отношения MMP-9/TIMP-1 163,3±6,5 прогнозируют быструю прогрессию глаукомной оптической нейропатии, при величине отношения MMP-9/TIMP-1 61,4±4,8 прогнозируют медленную прогрессию, при величине отношения MMP-9/TIMP-1 52,9±3,4 прогнозируют стабилизацию процесса глаукомной оптической нейропатии.
RU2017117721A 2017-05-22 2017-05-22 Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии RU2665005C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017117721A RU2665005C1 (ru) 2017-05-22 2017-05-22 Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017117721A RU2665005C1 (ru) 2017-05-22 2017-05-22 Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии

Publications (1)

Publication Number Publication Date
RU2665005C1 true RU2665005C1 (ru) 2018-08-24

Family

ID=63286843

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017117721A RU2665005C1 (ru) 2017-05-22 2017-05-22 Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии

Country Status (1)

Country Link
RU (1) RU2665005C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749121C1 (ru) * 2020-09-15 2021-06-04 Федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Фёдорова Министерства здравоохранения РФ Способ прогнозирования течения репаративных процессов в путях оттока внутриглазной жидкости у пациентов с открытоугольной глаукомой после непроникающей глубокой склерэктомии
RU2785859C1 (ru) * 2022-04-28 2022-12-14 ФГБНУ "НИИ глазных болезней" Способ прогнозирования повышения остроты зрения при наследственных оптических нейропатиях

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2235503C1 (ru) * 2003-03-28 2004-09-10 Государственное образовательное учреждение высшего профессионального образования "Ивановская государственная медицинская академия" Способ прогнозирования течения глаукоматозной оптической нейропатии
RU2517233C1 (ru) * 2012-11-22 2014-05-27 Федеральное государственное бюджетное учреждение "Московский научно-исследовательский институт глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации Способ прогнозирования прогрессирования первичной открытоугольной глаукомы

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2235503C1 (ru) * 2003-03-28 2004-09-10 Государственное образовательное учреждение высшего профессионального образования "Ивановская государственная медицинская академия" Способ прогнозирования течения глаукоматозной оптической нейропатии
RU2517233C1 (ru) * 2012-11-22 2014-05-27 Федеральное государственное бюджетное учреждение "Московский научно-исследовательский институт глазных болезней имени Гельмгольца" Министерства здравоохранения Российской Федерации Способ прогнозирования прогрессирования первичной открытоугольной глаукомы

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATHALONE N. et al. MMP expression in leaking filtering blebs and tears after glaucoma filtering surgery. Graefes Arch Clin Exp Ophthalmol. 2011 Jul; 249(7): 1047-55. *
ZALEWSKA R. et al. Metalloproteinase 9 and TIMP-1 expression in retina and optic nerve in absolute angle closure glaucoma. Adv Med Sci. 2016 Mar; 61(1): 6-10. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2749121C1 (ru) * 2020-09-15 2021-06-04 Федеральное государственное автономное учреждение "Национальный медицинский исследовательский центр "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Фёдорова Министерства здравоохранения РФ Способ прогнозирования течения репаративных процессов в путях оттока внутриглазной жидкости у пациентов с открытоугольной глаукомой после непроникающей глубокой склерэктомии
RU2785859C1 (ru) * 2022-04-28 2022-12-14 ФГБНУ "НИИ глазных болезней" Способ прогнозирования повышения остроты зрения при наследственных оптических нейропатиях

Similar Documents

Publication Publication Date Title
Inoue et al. Simultaneous increases in multiple proinflammatory cytokines in the aqueous humor in pseudophakic glaucomatous eyes
Briggs et al. TIMP1, TIMP2, and TIMP4 are increased in aqueous humor from primary open angle glaucoma patients
Leske et al. Predictors of long-term progression in the early manifest glaucoma trial
Gazzard et al. Intraocular pressure and visual field loss in primary angle closure and primary open angle glaucomas
RU2483306C1 (ru) Способ прогнозирования заболевания первичной открытоугольной глаукомы
Xu et al. Correlation between intraocular pressure and angle configuration measured by OCT: the Chinese American eye study
CA3011353C (en) Method for measuring tear constituents in a tear sample
Sahay et al. TGFβ1, MMPs and cytokines profiles in ocular surface: Possible tear biomarkers for pseudoexfoliation
Funatsu et al. Risk evaluation of outcome of vitreous surgery for proliferative diabetic retinopathy based on vitreous level of vascular endothelial growth factor and angiotensin II
Iyengar et al. Tear biomarkers and corneal sensitivity as an indicator of neuropathy in type 2 diabetes
Ding et al. Differential expression of connective tissue growth factor and hepatocyte growth factor in the vitreous of patients with high myopia versus vitreomacular interface disease
RU2665005C1 (ru) Способ прогнозирования скорости прогрессии глаукомной оптической нейропатии
Abikoye et al. Is primary open-angle glaucoma a risk factor for diabetic retinopathy?
Woltsche et al. Neurofilament light chain: A new marker for neuronal decay in the anterior chamber fluid of patients with glaucoma
Peyman et al. Outcome of corneal collagen cross-linking in keratoconus: Introducing the predictive factors
US11499980B2 (en) Method for measuring tear constituents in a tear sample
Tojo et al. Can a contact lens sensor predict the success of trabectome surgery?
RU2610535C1 (ru) Способ ранней диагностики и прогнозирования прогрессирования диабетической и гипертонической ретинопатии при сочетанном течении сахарного диабета 2 типа и гипертонической болезни
US20230079291A1 (en) Method for measuring tear constituents in a tear sample
Kashiwagi et al. Five-year incidence of angle closure among glaucoma health examination participants
RU2741693C1 (ru) Способ ранней диагностики и прогнозирования развития макулярного отёка при диабетической ретинопатии
Magacho et al. Ibopamine provocative test and glaucoma: consideration of factors that may influence the examination
Sallam et al. Use of corneal hysteresis and corneal resistance factor in target intraocular pressure estimation in patients with early primary open-angle glaucoma
Taniguchi et al. Peripheral microvascular abnormalities Associated with Open-Angle Glaucoma
RU2624256C2 (ru) Способ оценки фибринолитической активности слезной жидкости