RU2664746C1 - Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов - Google Patents

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов Download PDF

Info

Publication number
RU2664746C1
RU2664746C1 RU2017136057A RU2017136057A RU2664746C1 RU 2664746 C1 RU2664746 C1 RU 2664746C1 RU 2017136057 A RU2017136057 A RU 2017136057A RU 2017136057 A RU2017136057 A RU 2017136057A RU 2664746 C1 RU2664746 C1 RU 2664746C1
Authority
RU
Russia
Prior art keywords
welding
molybdenum
joint
thin
electron beam
Prior art date
Application number
RU2017136057A
Other languages
English (en)
Inventor
Андрей Равильевич Абитов
Валерий Иванович Выбыванец
Евгений Геннадиевич Колесников
Аркадий Васильевич Приезжев
Владимир Александрович Толченников
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ") filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "ЛУЧ" (ФГУП "НИИ НПО "ЛУЧ")
Priority to RU2017136057A priority Critical patent/RU2664746C1/ru
Application granted granted Critical
Publication of RU2664746C1 publication Critical patent/RU2664746C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/04Electron-beam welding or cutting for welding annular seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб между ними помещают присадочный материал в виде вставки из молибден-рениевого сплава, размеры которой обеспечивают содержание рения в шве не менее 11%. Осуществляют стыковку труб с приложением осевого усилия и вставку фиксируют электронным лучом в нескольких точках. Стык прогревают расфокусированным лучом до температуры 800-900°С. Сварку ведут со скоростью 24-26 мм/с. Изобретение позволяет получить качественное, прочное и пластичное сварное соединение при сварке тонкостенных труб из молибденовых сплавов. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к машиностроению и может быть использовано при изготовлении тонкостенных трубных сварных изделий из молибденовых сплавов с пониженной пластичностью для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты.
В настоящее время тугоплавкие металлы (хром, ванадий, гафний, ниобий, молибден, тантал, вольфрам и др.) и сплавы на их основе находят широкое применение в различных отраслях современной техники вследствие своих уникальных свойств: высокой температуре плавления, повышенной жаропрочности и жаростойкости, коррозионной стойкости и других специальных свойств.
Все тугоплавкие металлы при повышенных температурах, характерных для сварки плавлением (аргоно-дуговая, электронно-лучевая), активно взаимодействуют с атмосферными газами и другими окислителями, являющимися примесями внедрения, которые резко ухудшают пластические свойства, деформируемость в холодном и горячем состояниях, обрабатываемость резанием и особенно свариваемость. Поэтому сварку тугоплавких металлов осуществляют в вакууме или контролируемой атмосфере, а также с применением геттерной защиты.
К удовлетворительно сваривающимся можно отнести тугоплавкие металлы подгруппы титана (титан, цирконий, гафний) и ванадия (ванадий, ниобий, тантал). Металлы подгруппы хрома - хром, молибден, вольфрам - свариваются значительно хуже, сварные соединения этих металлов склонны к образованию трещин, снижению пластичности и росту порога хладноломкости. На свойства сварных соединений в первую очередь влияют режимы сварки, термическая обработка сварных соединений, параметры термического цикла, прежде всего скорость охлаждения шва и другие.
Получение достаточно пластичных сварных соединений при сварке плавлением молибденовых сплавов является весьма сложной задачей. Для ее решения идут, с одной стороны, по пути создания удовлетворительно свариваемых сплавов на основе молибдена, обладающих повышенной пластичностью и вязкостью и в минимальной степени загрязненных вредными примесями - газами, и с другой, по пути изыскания оптимальных условий сварки таких сплавов, включающих выбор присадочных материалов, термических циклов сварки и др.
Применение высококонцентрированного источника нагрева, высокого вакуума и тонкой регулировки параметров процесса делают электроннолучевой способ сварки наиболее приемлемым для сварки металлов подгруппы хрома.
Известен способ электронно-лучевой сварки толстостенных труб из циркониевых и титановых сплавов с введением в зону сварки присадочного материала (патент РФ №2085347, В23К 15/00 (МПК - 1995.01), опубл. 27.07.1997). Сущность способа заключается в том, что присадочную проволоку из циркониевого сплава диаметром 1,6 мм с 1,0-2,5% ниобия подают под углом 5-7 градусов к поверхности сварочной ванны. Место для образования сварочной ванны выбирают на боковой поверхности V-образной разделки в диапазоне 15-30 градусов относительно верхней точки трубы. Проволока подается в сварочную ванну вне зоны действия электронного луча. Отсутствие экранирующего действия сварочной проволоки позволяет получить сварные соединения высокого качества. Присадка отбирает часть тепла от сварочной ванны и способствует ускорению кристаллизации и уменьшению зоны термического влияния.
Однако известный способ не решает задачу получения прочных и качественных сварных соединений при сварке тонкостенных трубных сварных изделий из молибденовых сплавов.
Также известен способ электронно-лучевой сварки труб из химически активных металлов, таких как цирконий, титан и другие с введением в зону сварки присадочной проволоки (патент РФ №2259264, В23К 15/04 (МПК - 2000.01), опубл. 27.08.2005). При осуществлении электронно-лучевой сварки толстостенных труб с U-образной разделкой при заполнении ее металлом присадочной проволоки используют колебания электронного луча по траектории полуэллипса. Пятно нагрева электронного луча фокусируют до диаметра не более 1,2 мм и колеблют его с частотой не более 30 колебаний в секунду. Длину поперечной оси полуэллипса устанавливают не менее ширины донной части U-образной разделки. Точки изменения направления колебания движения по траектории полуэллипса располагают в хвостовой части сварочной ванны. В известном техническом решении присадочная проволока подается в сварочную ванну не в холодном состоянии, а в подогретом за счет многократного пересечения подаваемой присадочной проволоки пятном нагрева радиусной частью полуэллипсной траектории колебания пятна нагрева, вследствие чего уменьшается объем сварочной ванны, ширина околошовных зон, что также улучшает прочностные и антикоррозионные свойства сварных швов.
Однако известный способ также не решает задачу получения качественных сварных соединений при сварке тонкостенных труб из молибденовых сплавов.
Наиболее близким по технической сущности к заявляемому изобретению, выбранным в качестве прототипа, является способ электроннолучевой сварки монокристаллических труб из тугоплавких металлов и сплавов, при котором производят установку стыков труб с приложением осевого и радиального усилий (патент РФ №2067516, В23К 5/00 (МПК 1995.01), заявл. 19.05.1992). Перед сваркой осуществляют кристаллографическую ориентацию стыка, пассивацию с уравновешиванием теплоотвода в зоне кристаллизации и подогрев стыка расфокусированным лучом. Сварку ведут в режиме существования сварочной ванны в течение 0,05-0,2 с. После сварки осуществляют правку, увеличив радиальное усилие при одновременном вращении труб и поддержании температуры нагрева труб не ниже пластического течения материала под приложенным радиальным усилием.
Однако заявленный способ, направленный на решения проблемы повышения выхода годных по монокристальности стыков, не решает проблемы повышения пластичности сварного соединения.
Задача, на решение которой направлено заявляемое изобретение, и достигаемый при использовании изобретения технический результат - получение качественного, прочного и пластичного сварного соединения при сварке тонкостенных труб из молибденовых сплавов.
Указанный технический результат достигается тем, что в способе электронно-лучевой сварки тонкостенных труб из молибденовых сплавов, при котором производят стыковку труб с приложением осевого усилия и прогрев стыка расфокусированным лучом, согласно изобретению перед стыковкой труб между ними помещают присадочный материал в виде вставки из молибден-рениевого сплава, размеры которой обеспечивают содержание рения в шве не менее 11%, после стыковки с приложением осевого усилия вставку фиксируют электронным лучом в нескольких точках, стык прогревают расфокусированным лучом до температуры 800-900°С, а сварку ведут со скоростью 24-26 мм/с.
Наилучшие результаты получены при содержании рения в шве от 16 до 17%.
При этом вставку выполняют в виде кольца прямоугольного сечения толщиной 0,42 мм, внешний радиус которого превышает радиус наружной поверхности трубы на 2,8-3,1%, а внутренний радиус меньше радиуса отверстия трубы на 1,2-1,5%.
Молибденовые сплавы чувствительны к термическим циклам сварки и прежде всего к скорости охлаждения, с которой связано выделение второй фазы. Поэтому, главным образом, от скорости сварки зависит ориентация кристаллов металла шва, форма границ зерен, уровень остаточных напряжений. Проведение сварки тонкостенных молибденовых труб со скоростью 24-26 мм/с с предварительным прогревом стыка расфокусированным лучом до температуры 800-900°С позволило исключить поры и способствовало более спокойному формированию субструктуры в сварном шве. При скорости сварки меньше 24 мм/с наблюдалась резкая усадка сварочной ванны, возрастали внутренние остаточные напряжения в шве и, как следствие, наблюдались деформации (поводки) труб. Сварка со скоростью превышающей 26 мм/с приводила к возникновению дефектов сварного соединения в виде непроваров.
Кроме того, прогрев стыка расфокусированным лучом при температуре 800-900°С способствовал удалению поверхностных загрязнений и адсорбированных газов (особенно кислорода) на свариваемых поверхностях. Причем прогрев при температуре выше 900°С не целесообразен вследствие возможной деформации стенок труб и процесса начала рекристаллизации, а прогрев температуре ниже 800°С приводит к возникновению непроваров и цепочек пор в сварном шве.
Установлено, что размещение между стыками труб присадочного материала в виде вставки из молибден-рениевого сплава способствует улучшению пластичности сварного соединения, при этом размеры вставки должны обеспечивать содержание рения в шве не менее 16%.
Осуществление изобретения
Изготавливали трубы из молибденового сплава ТСМ-7С ТУ 48-4206-613-15, наружный диаметр которых составляет 35,2 мм, толщина стенки - 1 мм, длина каждой трубы - 600 мм. Трубы очищали в ультразвуковой ванне и отжигали в вакууме. Трубы стыковали на оправках, предварительно между стыками труб помещали вставки из молибден-рениевого сплава МР-47 ТУ 48-19-271-85, выполненные в виде кольца прямоугольного сечения с размерами (толщиной), указанными в таблице, приведенной ниже. Наружные и внутренние размеры вставок подбирались экспериментально с целью исключения дефектов сварных соединений в виде подрезов. Трубы поджимали с осевым усилием 8-10 кг. Вставку фиксировали электронным лучом в нескольких точках.
Сварку проводили на электронно-лучевой сварочной установке ЭЛУ-5. Производили прогрев стыка расфокусированным лучом до температуры от 800-900°С по режимам: ускоряющее напряжение 60 кВ, ток пучка 12 мА, время прогрева 2 мин. Далее производили сварку стыка электронным лучом с острой фокусировкой в пятне с ускоряющим напряжением 60 кВ, током пучка 26 мА, скоростью сварки от 24-26 мм/с с охлаждением в сварочной камере в течение 20 мин. После сварки изделие отжигали в вакууме для снятия напряжений в сварном шве.
Полученные в соответствии с настоящим изобретением изделия были подвергнуты испытаниям на статический изгиб и на статическое растяжение по ГОСТ 6996-66, результаты которых приведены ниже.
Figure 00000001
Как видно из таблицы при указанных выше режимах сварки для получения качественного сварного шва с точки зрения пластичности и прочности содержание рения в шве должно составлять не менее 11%. Дальнейшее увеличение содержания рения в шве не приводит к существенному увеличению угла загиба.
Проведенные испытания на статическое растяжение по ГОСТ 6996-66 также свидетельствуют об улучшении пластичности и, как следствие, повышении прочности сварного соединения. Так, испытания образцов сварных швов, полученных в соответствии с настоящим изобретением, при температуре 20°С показали увеличение среднего значения предела прочности σВ с 387 до 493 МПа, а испытания при температуре 800°С показали увеличение среднего значения предела прочности σВ с 203 до 242 МПа.

Claims (3)

1. Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов, включающий стыковку труб с приложением осевого усилия и прогрев стыка расфокусированным лучом, отличающийся тем, что перед стыковкой труб между ними помещают присадочный материал в виде вставки из молибден-рениевого сплава, после стыковки труб с приложением осевого усилия вставку фиксируют электронным лучом в нескольких точках, стык прогревают расфокусированным лучом до температуры 800-900°C, а сварку ведут со скоростью 24-26 мм/с, причем обеспечивают содержание рения в шве не менее 11%.
2. Способ по п. 1, отличающийся тем, что обеспечивают содержание рения в шве от 16 до 17%.
3. Способ по п. 2, отличающийся тем, что вставку выполняют в виде кольца прямоугольного сечения толщиной 0,42 мм, внешний радиус которого превышает радиус наружной поверхности трубы на 2,8-3,1%, а внутренний радиус меньше радиуса отверстия трубы на 1,2÷1,5%.
RU2017136057A 2017-10-11 2017-10-11 Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов RU2664746C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017136057A RU2664746C1 (ru) 2017-10-11 2017-10-11 Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017136057A RU2664746C1 (ru) 2017-10-11 2017-10-11 Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Publications (1)

Publication Number Publication Date
RU2664746C1 true RU2664746C1 (ru) 2018-08-22

Family

ID=63286788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017136057A RU2664746C1 (ru) 2017-10-11 2017-10-11 Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Country Status (1)

Country Link
RU (1) RU2664746C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276328A (zh) * 2020-10-09 2021-01-29 沈阳富创精密设备股份有限公司 真空电子束焊接在钼铼合金焊接上的应用
CN115106638A (zh) * 2022-07-15 2022-09-27 中国科学院空天信息创新研究院 薄壁无氧铜环的焊接方法
RU2789971C2 (ru) * 2021-05-07 2023-02-14 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ сварки однородных пористых материалов

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1284763A1 (ru) * 1985-03-25 1987-01-23 Научно-производственное объединение по технологии машиностроения Состав сварочной проволоки
SU653844A1 (ru) * 1976-04-02 1988-07-15 Институт Электросварки Им.Е.О.Патона Состав сварочной проволоки
SU1530381A1 (ru) * 1987-11-16 1989-12-23 Институт Электросварки Им.Е.О.Патона Способ многослойной электронно-лучевой сварки в узкий зазор
WO1993022096A2 (en) * 1992-04-30 1993-11-11 E.I. Du Pont De Nemours And Company Joint protection for mo-re alloy lined reaction vessels
RU2067516C1 (ru) * 1992-05-19 1996-10-10 Отделение Научно-технический центр "Источники тока" Научно-исследовательского института Научно-производственного объединения "Луч" Способ электронно-лучевой сварки монокристаллических труб из тугоплавких металлов и сплавов
EP0899448B1 (en) * 1997-08-29 2003-03-19 Hughes Electronics Corporation Fabrication of a rocket engine with transition structure between the combustion chamber and the injector
RU2346797C1 (ru) * 2007-05-17 2009-02-20 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Состав сварочной проволоки

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU653844A1 (ru) * 1976-04-02 1988-07-15 Институт Электросварки Им.Е.О.Патона Состав сварочной проволоки
SU1284763A1 (ru) * 1985-03-25 1987-01-23 Научно-производственное объединение по технологии машиностроения Состав сварочной проволоки
SU1530381A1 (ru) * 1987-11-16 1989-12-23 Институт Электросварки Им.Е.О.Патона Способ многослойной электронно-лучевой сварки в узкий зазор
WO1993022096A2 (en) * 1992-04-30 1993-11-11 E.I. Du Pont De Nemours And Company Joint protection for mo-re alloy lined reaction vessels
EP0638009B1 (en) * 1992-04-30 1996-06-19 E.I. Du Pont De Nemours And Company Joint protection for mo-re alloy lined reaction vessels
RU2067516C1 (ru) * 1992-05-19 1996-10-10 Отделение Научно-технический центр "Источники тока" Научно-исследовательского института Научно-производственного объединения "Луч" Способ электронно-лучевой сварки монокристаллических труб из тугоплавких металлов и сплавов
EP0899448B1 (en) * 1997-08-29 2003-03-19 Hughes Electronics Corporation Fabrication of a rocket engine with transition structure between the combustion chamber and the injector
RU2346797C1 (ru) * 2007-05-17 2009-02-20 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "САЛЮТ" (ФГУП "ММПП "САЛЮТ") Состав сварочной проволоки

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112276328A (zh) * 2020-10-09 2021-01-29 沈阳富创精密设备股份有限公司 真空电子束焊接在钼铼合金焊接上的应用
RU2789971C2 (ru) * 2021-05-07 2023-02-14 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ сварки однородных пористых материалов
CN115106638A (zh) * 2022-07-15 2022-09-27 中国科学院空天信息创新研究院 薄壁无氧铜环的焊接方法
CN115106638B (zh) * 2022-07-15 2024-05-28 中国科学院空天信息创新研究院 薄壁无氧铜环的焊接方法

Similar Documents

Publication Publication Date Title
KR101860128B1 (ko) 경화가능한 강으로 만들어진 하나 이상의 피용접재를 맞대기 이음으로 레이저 용접하기 위한 방법
KR101954561B1 (ko) 구조용 강의 마찰 교반 접합 장치
KR101809388B1 (ko) 구조용 강의 마찰 교반 접합 방법 및 구조용 강의 접합 조인트의 제조 방법
KR102020927B1 (ko) 필릿 아크 용접 조인트 및 그 제조 방법
JP6571937B2 (ja) 耐熱管の溶接構造
JP2015199097A (ja) レーザ溶接方法および溶接構造
RU2664746C1 (ru) Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов
Singh et al. Understanding the effect of weld parameters on the microstructures and mechanical properties in dissimilar steel welds
RU2666822C2 (ru) Пластичный борсодержащий сварочный материал на основе никеля
Mallieswaran et al. Effect of heat treatment on the structure and properties of laser welded joints of aluminum alloy AA2024
Stütz et al. Electron beam welding of TZM sheets
Gupta et al. Experimental investigation on microstructure and mechanical properties of laser-welded Nb-1% Zr-0.1% C alloy
El-Batahgy et al. Nd-YAG laser beam and GTA welding of Ti-6Al-4V alloy
RU2617807C1 (ru) Способ диффузионной сварки трубчатых переходников титан - нержавеющая сталь
RU2699493C1 (ru) Способ сварки неплавящимся электродом алюминиевых сплавов
RU2329127C1 (ru) Способ электронно-лучевой сварки тонкостенной трубы с тонкостенным биметаллическим переходником
Graneix et al. Weldability of superalloys Hastelloy X by Yb: YAG laser
KR102173603B1 (ko) 마찰 교반 접합 방법 및 장치
Mohamad et al. Investigation of preheating method on joint strength of aluminium-stainless steel dissimilar welding using metal inert gas (MIG) process
Shu et al. Microstructural and mechanical inhomogeneity in the narrow-gap weld seam of thick GMA welded Al–Zn–Mg alloy plates
CN112872555A (zh) 9Cr-3W-3Co系列和9Cr-2W系列的异种钢焊接方法
RU2744292C1 (ru) Способ лазерной сварки заготовок из сплавов на основе орторомбического алюминида титана Ti2AlNb с глобулярной структурой
RU2803446C1 (ru) Способ электронно-лучевой сварки кольцевого соединения тонкостенной и толстостенной деталей, выполненных из разнородных алюминиевых сплавов
RU2259906C1 (ru) Способ электронно-лучевой сварки труб
RU2660540C1 (ru) Способ сварки сформованной трубной заготовки с индукционным подогревом