RU2661535C1 - Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций - Google Patents

Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций Download PDF

Info

Publication number
RU2661535C1
RU2661535C1 RU2017120894A RU2017120894A RU2661535C1 RU 2661535 C1 RU2661535 C1 RU 2661535C1 RU 2017120894 A RU2017120894 A RU 2017120894A RU 2017120894 A RU2017120894 A RU 2017120894A RU 2661535 C1 RU2661535 C1 RU 2661535C1
Authority
RU
Russia
Prior art keywords
testing
model
faults
equipment
malfunctions
Prior art date
Application number
RU2017120894A
Other languages
English (en)
Inventor
Дмитрий Александрович Недорезов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС"
Priority to RU2017120894A priority Critical patent/RU2661535C1/ru
Application granted granted Critical
Publication of RU2661535C1 publication Critical patent/RU2661535C1/ru

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/261Functional testing by simulating additional hardware, e.g. fault simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/263Generation of test inputs, e.g. test vectors, patterns or sequences ; with adaptation of the tested hardware for testability with external testers
    • G06F11/2635Generation of test inputs, e.g. test vectors, patterns or sequences ; with adaptation of the tested hardware for testability with external testers using a storage for the test inputs, e.g. test ROM, script files

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Quality & Reliability (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Neurology (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Debugging And Monitoring (AREA)

Abstract

Изобретение относится к компьютерным системам, основанным на специфических вычислительных моделях. Техническим результатом изобретения является увеличение вероятности обнаружения неисправностей электронной аппаратуры. Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения (ПО) заключается в том, что на языках описания аппаратуры создают проект исправной модели электронного устройства, имитирующей поведение его каналов ввода-вывода и проект модели электронного устройства с неисправностями. Записывают получившиеся проекты модели в программируемую логическую интегральную схему (ПЛИС) устройства имитации неисправностей. Проводят тестирование на этой модели. Сравнивают результаты тестирования от исправной и неисправной моделей. Если в процессе тестирования исправной модели неисправностей не обнаруживают, а при тестировании неисправной обнаруживают весь массив внесенных неисправностей, то электронную аппаратуру или ее управляющее ПО считают прошедшими тестирование. 1 з.п. ф-лы.

Description

Изобретение относится к компьютерным системам, основанным на специфических вычислительных моделях с использованием электронных средств.
Известен способ тестирования электронной аппаратуры, реализуемый при помощи устройства для имитации отказов и внутрисхемного тестирования элементов дискретной аппаратуры (патент РФ №2093885). Способ позволяет имитировать неисправности как на отдельных, так и на нескольких выводах цифровых элементов путем аппаратного макетирования. Обеспечивает возможность работы с элементами, имеющими двунаправленные шины, а также предусматривает использование устройства в качестве цифрового внутрисхемного тестера за счет создания аппаратно-программной защиты каналов устройства от перегрузки. Позволяет осуществлять автоматизированное управление процессом тестирования. Недостатками данного устройства являются: отсутствие реконфигурируемой, при помощи языков описания аппаратуры, аппаратной части тестового устройства, что увеличивает время, затрачиваемое на имитацию отказов; отсутствие в способе описания правил локализации неисправностей.
Известен способ анализа безопасности устройств с использованием метода внесения неисправностей основанного на языках описания аппаратуры (патент США №US8418012 B2). Способ заключается в том, что получают базовый проект тестируемого электронного устройства на языке описания аппаратуры. Создают математические модели неисправностей для конфигурируемой интегральной схемы тестируемого электронного устройства. Описывают эти неисправности на языке описания аппаратуры. Вносят описанные неисправности в базовый проект особой конфигурируемой интегральной схемы тестируемого устройства. Проводят несколько экспериментов по внесению неисправностей, где каждый эксперимент включает неисправность, по крайней мере, одного сигнала.
Недостатками данного способа являются: невозможность имитации неисправностей устройств, не имеющих в своем составе программируемых логических интегральных схем (ПЛИС), по причине того, что неисправности вносятся в ПЛИС самого тестируемого устройства, при этом в составе тестового комплекса ПЛИС отсутствует; отсутствие возможности управления включением/выключением неисправностей в моделях без перекомпиляций проекта ПЛИС при помощи программного обеспечения (ПО) высокого уровня; отсутствие в способе описания правил локализации неисправностей.
Наиболее близким (прототипом) является способ мутационного тестирования радиоэлектронной аппаратуры и ее управляющего ПО (патент РФ №2549523). Способ заключается в том, что на языке описания аппаратуры создают два проекта модели электронного устройства: с неисправностями и исправный; затем проводят тестирование с использованием обоих проектов; сравнивают результаты тестирования от исправной и неисправной моделей на каждой неисправности из заданного массива, если в процессе тестирования исправной модели неисправностей не обнаруживают, а при тестировании неисправной обнаруживают весь массив внесенных неисправностей, то тестируемую электронную аппаратуру или ее управляющее ПО считают прошедшими тестирование. При этом в состав тестового комплекса входит ПЛИС для вышеописанного моделирования электронных устройств.
Недостатком данного способа является отсутствие описания правил локализации неисправностей.
Задачей изобретения является устранение указанного недостатка, что позволит, согласно правилам локализации, определять, какие именно мутации необходимо моделировать для увеличения вероятности обнаружения неисправностей тестируемой электронной аппаратурой в ходе ее штатной эксплуатации.
Поставленная задача изобретения решается тем, что в проекты ПЛИС, реализованные на языках описания аппаратуры, намеренно вносят модели неисправностей; затем проводят тестирование с целью оценки вероятности обнаружения внесенных моделей неисправностей тестируемой аппаратурой или ПО; на языке описания аппаратуры создают проект исправной модели электронного устройства, имитирующей поведение каналов ввода-вывода объекта испытаний (электронного устройства, разрабатываемого для конечного потребителя); записывают получившийся проект модели в ПЛИС устройства имитации неисправностей, встроенного в устройство управления процессом тестирования и содержащего интерфейсные каналы ввода-вывода; проводят тестирование на этой модели; результаты тестирования заносят в протокол при помощи устройства управления процессом тестирования; на языках описания аппаратуры создают проект модели объекта тестирования с неисправностями, причем предусматривают возможность их включения/выключения в процессе тестирования без перекомпиляции проекта, при помощи управляющего ПО высокого уровня; записывают получившийся проект модели в ПЛИС устройства имитации неисправностей, встроенного в устройство управления процессом тестирования; при помощи устройства управления процессом тестирования формируют массив управляющих воздействий поочередно включающих неисправности, реализованные в модели и указанные в массиве; проводят тестирование на этой модели; результаты тестирования заносят в протокол при помощи устройства управления процессом тестирования; при помощи устройства управления тестированием, сравнивают результаты тестирования от исправной и неисправной моделей на каждой неисправности из заданного массива, если в процессе тестирования исправной модели неисправностей не обнаруживают, а при тестировании неисправной, обнаруживают весь массив внесенных неисправностей, то тестируемую аппаратуру или ПО считают прошедшими тестирование; если в процессе тестирования исправной модели обнаруживают неисправности, то определяют коэффициент первого этапа R1=1/о, где о - количество обнаруженных неисправностей; если в процессе тестирования неисправной модели обнаруживают не все неисправности, то определяют коэффициент второго этапа R2=ov/oo, где ov - количество внесенных в модель неисправностей, оо - количество обнаруженных неисправностей.
Метод мутационного тестирования основывается на намеренном внесении неисправностей (мутаций) в объект тестирования (электронную аппаратуру, разрабатываемую для конечного потребителя) или его модель с последующим тестированием их наличия (ikit.sfu-kras.ru/files/ikit/7_Mutacionnoe_testirovanie.pdf - сайт Сибирского федерального университета; Budd Т. A. Mutation Analysis of Program Test Data. PhD thesis. - New Haven CT, Yale University, 1980).
Для увеличения вероятности обнаружения неисправностей вводятся правила локализации неисправностей, заключающиеся в том, что необходимо имитировать:
1. Неисправность каждого элемента компонентной базы моделируемой аппаратуры и каждого элемента управляющего ПО не менее одного раза.
2. Неисправность в каждой из возможных ветвей алгоритма работы моделируемой системы не менее одного раза.
3. Неисправность каждой функции, которую выполняет тестируемая аппаратура не менее одного раза.
4. Неисправности всех стандартов и интерфейсов передачи данных, представленных в тестируемой аппаратуре не менее одного раза.
5. Неисправности всех типов данных представленных в ПО тестируемой аппаратуры не менее одного раза.
6. Неисправности всех диапазонов данных представленных в ПО тестируемой аппаратуры не менее одного раза.
Таким образом, реализация вышеперечисленных мутаций позволяет максимально полно проверить способность тестируемой электронной аппаратуры обнаруживать и правильно реагировать на неисправности различных типов, что впоследствии позволяет доработать ее и увеличить тем самым вероятность обнаружения и парирования данных неисправностей в дальнейшем.
Способ осуществляют следующим образом.
На языке описания аппаратуры создают проект исправной модели электронного устройства, имитирующей поведение каналов ввода-вывода объекта тестирования (электронного устройства или его частей), связывающих устройство имитации неисправностей с устройством управления процессом тестирования, содержащим устройства контроля. Записывают получившийся проект в ПЛИС устройства имитации неисправностей, встроенного в устройство управления процессом тестирования и содержащего интерфейсные каналы ввода-вывода. Реализация модели на ПЛИС позволяет исключить моделирование временных промежутков, так как современные ПЛИС поддерживают такой же уровень скоростей, как и аппаратура, создаваемая для конечного потребителя, имеющая чисто аппаратную реализацию. В то же время на ПЛИС можно реализовывать любые устройства, требуемые для тестирования, путем простого перепрограммирования, что занимает гораздо меньше времени, чем аппаратное макетирование, которое требует приобретения реальной компонентной базы электроники и сложного процесса ее монтажа на печатные платы. Далее проводят тестирование модели. Результаты тестирования автоматически заносятся в протокол устройством управления процессом тестирования. На языке описания аппаратуры создают проект модели электронной аппаратуры с неисправностями, причем предусматривают возможность их включения/выключения в процессе тестирования, при помощи управляющего ПО высокого уровня, что сильно сокращает количество перекомпиляций проектов ПЛИС. Например, необходимо имитировать 10 различных неисправностей, причем ввести их в процесс тестирования во всех возможных комбинациях. На каждую комбинацию потребуется переделать проект ПЛИС и провести его перекомпиляцию. Допустим, что наличие неисправности это 1, а отсутствие 0, это значит, что количество перекомпиляций (исключая исправную модель) составит 1023 (1111111111двоичная=1024десятичная). В предлагаемом способе в проекте ПЛИС модели предусматривают возможность включения/выключения каждой отдельной неисправности путем введения программируемой логической структуры «ЕСЛИ», которая управляется ПО высокого уровня формированием массива управляющих воздействии включения/выключения. Далее записывают получившийся проект в ПЛИС того же самого устройства имитации неисправностей, встроенного в устройство управления процессом тестирования. При помощи устройства управления процессом тестирования формируется массив управляющих воздействий автоматически поочередно включающих неисправности, реализованные в модели и указанные в массиве. Проводят тестирование на этой модели. Результаты тестирования автоматически заносятся в протокол устройством управления процессом тестирования. При помощи устройства управления тестированием, сравнивают результаты тестирования от исправной и неисправной моделей на каждой неисправности из заданного массива. Если в процессе тестирования исправной модели неисправностей не обнаружено, а также обнаружен весь массив внесенных неисправностей в неисправную модель, то аппаратура или ее управляющее ПО считаются прошедшими тестирование. Если в процессе тестирования исправной модели обнаруживают неисправности, то определяют коэффициент первого этапа R1=1/о, где о - количество обнаруженных неисправностей. Если в процессе тестирования неисправной модели обнаруживают не все неисправности, то определяют коэффициент второго этапа R2=ov/oo, где ov - количество включенных в модель неисправностей, оо - количество обнаруженных неисправностей.
Описанный способ осуществим также с реализацией исправной и неисправной моделей в двух отдельных одинаковых устройствах. В этом случае тестирование исправной и неисправной моделей можно проводить одновременно, что дополнительно сократит время тестирования.
Необходимо отметить, что, в рамках предлагаемого способа мутационного тестирования аппаратуры и ее управляющего ПО, модели на ПЛИС функционируют как «Черный ящик», лишь функционально имитируя поведение каналов ввода-вывода электронных устройств или их частей, при этом ставится задачей максимально адекватно воспроизвести входные и выходные сигналы по временным параметрам, для обеспечения взаимодействия с внешней аппаратурой, подключенной к данным каналам в процессе тестирования. Внутренняя реализация моделей на ПЛИС имеет лишь отдаленную схожесть с внутренней реализацией имитируемого прибора.
Устройство управления процессом тестирования реализовано в крейт-шасси, управляемом крейт-контроллером, к которому подключаются манипуляторы (мышь и клавиатура). Данные о процессе тестирования выводятся на монитор. Управление крейт-контроллером обеспечивает операционная система и пакет прикладных программ. Также при помощи пакета прикладных программ задается массив неисправностей для неисправной модели. Данные, полученные в процессе тестирования, протоколируются, и результаты сравниваются. Вычисляются коэффициенты покрытия неисправностей проведенного тестирования (R1 и R2). Устройство имитации неисправностей в модульном исполнении, содержащее ПЛИС и каналы ввода-вывода для соединения с устройством управления, встраивают в крейт-шасси устройства управления. При помощи вышеописанного пакета прикладных программ оператор задает, какие неисправности и в какой последовательности включать в тестирование, и запускает процесс. Для каждой комбинации неисправностей автоматически поочередно проводится тестирование. Результаты автоматически анализируются и заносятся в протокол, содержащийся в памяти крейт-контроллера устройства управления.
Выбор моделируемых неисправностей определяется следующими правилами:
1. Необходимо имитировать неисправности каждого электронного компонента моделируемой аппаратуры и каждого элемента управляющего ПО не менее одного раза. В случае, если известен состав компонентной базы и исходный код управляющего ПО, необходимо разработать такие модели неисправностей, при которых каналы ввода-вывода модели имитируемого прибора будут вести себя так, как будто в нем неисправен конкретный аппаратный или программный элемент. К элементам аппаратной части могут относиться, например, реле, конденсаторы, транзисторы, резисторы, интегральные схемы и т.п. К элементам ПО - переменные, константы, условия, циклы, функции и т.п.
2. Необходимо имитировать неисправности в каждой из возможных ветвей алгоритма работы моделируемой системы не менее одного раза. Производится изменение порядка, отмена или внесение избыточных операций алгоритма работы имитируемой аппаратно-программной системы.
3. Необходимо имитировать невыполнение каждой функции, которую выполняет моделируемая аппаратура не менее одного раза. К подобным функциям могут относиться, например, сбор данных с датчиков, преобразование цифрового сигнала в аналоговый, включение гидронасосов, определение местоположения объектов, коммутация электропитания, расчет числового значения и т.п.
4. Необходимо имитировать неисправности обмена по всем стандартам и интерфейсам передачи данных, представленных в моделируемой аппаратуре, не менее одного раза. К подобным относятся, например, внутри- или межприборные интерфейсы: Ethernet, MKO, DMA-T, RS-232, USB, SPI, LVDS и.т.п.
5. Необходимо имитировать неисправности всех типов данных представленных в ПО моделируемой аппаратуры не менее одного раза. Подмена ожидаемых элементом ПО входных или выходных данных данными другого типа. Например, если функция принимает входной параметр типа Word подать на него значение типа Byte.
6. Необходимо имитировать неисправности всех диапазонов данных представленных в ПО моделируемой аппаратуры не менее одного раза. Например, если входной параметр функции управляющего ПО имитируемой электронной аппаратуры должен находиться в диапазоне от 100 до 200, подать на него значение 90.
Необходимо отметить, что объем моделирования вышеописанных неисправностей (мутаций) зависит от конкретных задач тестирования, сложности тестируемой аппаратуры, условий производственного процесса и других факторов и может включать в себя как моделирование всего спектра неисправностей в соответствии с вышеописанными правилами, так и отдельных их видов.
Таким образом, реализация заявляемого способа позволяет достигнуть увеличения вероятности обнаружения неисправностей тестируемой аппаратурой ввиду проверки ее способности обнаруживать неисправности различных типов с последующей доработкой.

Claims (2)

1. Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения (ПО), при реализации которого в проекты программируемых логических интегральных схем (ПЛИС), реализованные на языках описания аппаратуры, намеренно вносят модели неисправностей, затем проводят тестирование с целью оценки вероятности обнаружения тестируемой аппаратурой или ее управляющим ПО внесенных моделей неисправностей, заключающийся в том, что на языке описания аппаратуры создают проект исправной модели электронного устройства, имитирующей поведение его каналов ввода-вывода; записывают получившийся проект исправной модели в ПЛИС устройства имитации неисправностей, содержащего интерфейсные каналы ввода-вывода; проводят тестирование исправной модели; результаты тестирования заносят в протокол при помощи устройства управления процессом тестирования (УУПТ); на языках описания аппаратуры создают проект модели электронного устройства с неисправностями (ПМСН), причем предусматривают возможность их включения/выключения без перекомпиляции проекта в процессе тестирования при помощи управляющего программного обеспечения высокого уровня; записывают получившийся ПМСН в ПЛИС устройства имитации неисправностей; при помощи УУПТ формируют массив управляющих воздействий, поочередно включающих неисправности, реализованные в модели ПМСН и указанные в массиве; проводят такое же тестирование этой модели ПМСН, как и в предыдущем случае с исправной моделью; результаты тестирования заносят в протокол при помощи устройства управления процессом тестирования; при помощи устройства управления процессом тестирования сравнивают результаты тестирования от исправной и неисправной моделей на каждой неисправности из заданного массива, если в процессе тестирования исправной модели неисправностей не обнаруживают, а при тестировании неисправной обнаруживают весь массив внесенных неисправностей, то тестируемую электронную аппаратуру или ее управляющее ПО считают прошедшими тестирование; если в процессе тестирования исправной модели обнаруживают неисправности, то определяют коэффициент первого этапа R1=l/о, где о - количество обнаруженных неисправностей; если в процессе тестирования неисправной модели обнаруживают не все неисправности, то определяют коэффициент второго этапа R2=ov/oo, где ov - количество внесенных в модель неисправностей, оо - количество обнаруженных неисправностей, отличающийся тем, что имитируют неисправность каждого электронного элемента моделируемой аппаратуры и каждого элемента управляющего ПО не менее одного раза; имитируют неисправность в каждой из возможных ветвей алгоритма работы моделируемой системы не менее одного раза; имитируют невыполнение каждой функции, которую выполняет моделируемая аппаратура, не менее одного раза; имитируют неисправности всех стандартов и интерфейсов передачи данных, представленных в моделируемой аппаратуре, не менее одного раза; имитируют неисправности всех типов данных, представленных в ПО моделируемой аппаратуры, не менее одного раза; имитируют неисправности всех диапазонов данных, представленных в ПО моделируемой аппаратуры, не менее одного раза.
2. Способ по п. 1, отличающийся тем, что тестирование исправной модели и модели с неисправностями проводят одновременно.
RU2017120894A 2017-06-14 2017-06-14 Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций RU2661535C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017120894A RU2661535C1 (ru) 2017-06-14 2017-06-14 Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017120894A RU2661535C1 (ru) 2017-06-14 2017-06-14 Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций

Publications (1)

Publication Number Publication Date
RU2661535C1 true RU2661535C1 (ru) 2018-07-17

Family

ID=62917245

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120894A RU2661535C1 (ru) 2017-06-14 2017-06-14 Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций

Country Status (1)

Country Link
RU (1) RU2661535C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717630C1 (ru) * 2019-04-03 2020-03-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ определения достаточности контроля электронной аппаратуры в режиме внесения неисправностей
RU2725783C1 (ru) * 2019-02-19 2020-07-06 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ испытаний электронной аппаратуры на основе аппаратно-программного внесения неисправностей с маршрутизацией
RU2764837C1 (ru) * 2021-01-25 2022-01-21 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф.Решетнёва» Способ испытаний вычислительных устройств систем управления космических аппаратов

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94013455A (ru) * 1993-04-21 1996-09-20 ЦСЕЕ - Транспор (FR) Микропроцессорная система обеспечения безопасности, применимая, в частности, в области железнодорожного транспорта
RU2093885C1 (ru) * 1995-11-17 1997-10-20 Научно-производственное общество "ДИАТОН" (на правах товарищества с ограниченной ответственностью) Устройство для имитации отказов и внутрисхемного тестирования элементов дискретной аппаратуры
RU2109329C1 (ru) * 1996-03-27 1998-04-20 Военная академия противовоздушной обороны сухопутных войск РФ Устройство для диагностирования дискретных блоков
RU2447488C1 (ru) * 2010-10-26 2012-04-10 Открытое Акционерное Общество "Программные, Технические Средства И Системы" (Оао "Программпром") Способ и система построения модели нарушенного функционирования технического объекта и машиночитаемый носитель
US8418012B2 (en) * 2010-09-21 2013-04-09 Ansaldo Sts Usa, Inc. Method of analyzing the safety of a device employing on target hardware description language based fault injection
RU148904U1 (ru) * 2014-09-10 2014-12-20 Закрытое Акционерное Общество "Научно-Производственное Объединение "Эшелон" ЗАО "НПО "Эшелон" Система оценки защищенности автоматизированных систем на основе выборочного комбинаторного контроля
RU2549523C1 (ru) * 2014-04-29 2015-04-27 Открытое акционерное общество "Информационные спутниковые системы " имени академика М.Ф. Решетнева" Способ мутационного тестирования радиоэлектронной аппаратуры и ее управляющего программного обеспечения
US20160306900A1 (en) * 2015-04-17 2016-10-20 Dspace Digital Signal Processing And Control Engineering Gmbh Apparatus and method for testing an automatic control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94013455A (ru) * 1993-04-21 1996-09-20 ЦСЕЕ - Транспор (FR) Микропроцессорная система обеспечения безопасности, применимая, в частности, в области железнодорожного транспорта
RU2093885C1 (ru) * 1995-11-17 1997-10-20 Научно-производственное общество "ДИАТОН" (на правах товарищества с ограниченной ответственностью) Устройство для имитации отказов и внутрисхемного тестирования элементов дискретной аппаратуры
RU2109329C1 (ru) * 1996-03-27 1998-04-20 Военная академия противовоздушной обороны сухопутных войск РФ Устройство для диагностирования дискретных блоков
US8418012B2 (en) * 2010-09-21 2013-04-09 Ansaldo Sts Usa, Inc. Method of analyzing the safety of a device employing on target hardware description language based fault injection
RU2447488C1 (ru) * 2010-10-26 2012-04-10 Открытое Акционерное Общество "Программные, Технические Средства И Системы" (Оао "Программпром") Способ и система построения модели нарушенного функционирования технического объекта и машиночитаемый носитель
RU2549523C1 (ru) * 2014-04-29 2015-04-27 Открытое акционерное общество "Информационные спутниковые системы " имени академика М.Ф. Решетнева" Способ мутационного тестирования радиоэлектронной аппаратуры и ее управляющего программного обеспечения
RU148904U1 (ru) * 2014-09-10 2014-12-20 Закрытое Акционерное Общество "Научно-Производственное Объединение "Эшелон" ЗАО "НПО "Эшелон" Система оценки защищенности автоматизированных систем на основе выборочного комбинаторного контроля
US20160306900A1 (en) * 2015-04-17 2016-10-20 Dspace Digital Signal Processing And Control Engineering Gmbh Apparatus and method for testing an automatic control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725783C1 (ru) * 2019-02-19 2020-07-06 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ испытаний электронной аппаратуры на основе аппаратно-программного внесения неисправностей с маршрутизацией
RU2717630C1 (ru) * 2019-04-03 2020-03-24 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ определения достаточности контроля электронной аппаратуры в режиме внесения неисправностей
RU2764837C1 (ru) * 2021-01-25 2022-01-21 Акционерное общество «Информационные спутниковые системы» имени академика М.Ф.Решетнёва» Способ испытаний вычислительных устройств систем управления космических аппаратов

Similar Documents

Publication Publication Date Title
US4727545A (en) Method and apparatus for isolating faults in a digital logic circuit
CN107633155B (zh) 用于组件故障树的基于计算机的生成的方法和设备
RU2661535C1 (ru) Способ мутационного тестирования электронной аппаратуры и ее управляющего программного обеспечения с определением локализации мутаций
US9606902B2 (en) Malfunction influence evaluation system and evaluation method using a propagation flag
RU2549523C1 (ru) Способ мутационного тестирования радиоэлектронной аппаратуры и ее управляющего программного обеспечения
Pakonen et al. User-friendly formal specification languages-conclusions drawn from industrial experience on model checking
Litovski et al. Analogue electronic circuit diagnosis based on ANNs
Enoiu et al. Mutation-based test generation for plc embedded software using model checking
Murrell et al. A survey of tools for the validation and verification of knowledge-based systems: 1985–1995
EP3427074B1 (en) Apparatus and method for testing a circuit
Adam et al. QMTOOL-a qualitative modelling and simulation CAD system for designing automated workcells
Lojda et al. FT-EST Framework: Reliability Estimation for the Purposes of Fault-Tolerant System Design Automation
Sini et al. An automatic approach to perform FMEDA safety assessment on hardware designs
RU2725783C1 (ru) Способ испытаний электронной аппаратуры на основе аппаратно-программного внесения неисправностей с маршрутизацией
RU2717630C1 (ru) Способ определения достаточности контроля электронной аппаратуры в режиме внесения неисправностей
Kim et al. A method for evaluating fault coverage using simulated fault injection for digitalized systems in nuclear power plants
Mertens et al. ESS: EMF-based simulation specification, a domain-specific language for model validation experiments
Lehtelä Computer-aided failure mode and effect analysis of electronic circuits
EP3642637B1 (en) System and method for formal fault propagation analysis
Harward et al. A fault injection system for measuring soft processor design sensitivity on Virtex-5 FPGAs
Lennon et al. Model-based design for mechatronic systems
US10948549B2 (en) Apparatus and method for a reusable functional failure test for a specific technical system
Kutscher et al. Concept for Interaction of Hardware Simulation and Embedded Software in a Digital Twin Based Test Environment
RU2764837C1 (ru) Способ испытаний вычислительных устройств систем управления космических аппаратов
Afanasyex et al. Development of expert systems for evaluating user's actions in training systems and virtual laboratories