RU2661187C1 - Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата - Google Patents

Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата Download PDF

Info

Publication number
RU2661187C1
RU2661187C1 RU2017125693A RU2017125693A RU2661187C1 RU 2661187 C1 RU2661187 C1 RU 2661187C1 RU 2017125693 A RU2017125693 A RU 2017125693A RU 2017125693 A RU2017125693 A RU 2017125693A RU 2661187 C1 RU2661187 C1 RU 2661187C1
Authority
RU
Russia
Prior art keywords
batteries
battery
spacecraft
ground
charge
Prior art date
Application number
RU2017125693A
Other languages
English (en)
Inventor
Валерий Иванович Пушкин
Сергей Иванович Миненко
Александр Сергеевич Гуртов
Виктор Николаевич Фомакин
Original Assignee
Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации filed Critical Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации
Priority to RU2017125693A priority Critical patent/RU2661187C1/ru
Application granted granted Critical
Publication of RU2661187C1 publication Critical patent/RU2661187C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G5/00Ground equipment for vehicles, e.g. starting towers, fuelling arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

Изобретение относится к наземным испытаниям космических аппаратов (КА). Способ наземной эксплуатации аккумуляторных батарей (АБ) системы электропитания (СЭП) космического аппарата (КА) заключается в циклировании двух или более АБ в режиме заряда-разряда, задаваемом бортовой автоматикой СЭП, ограничении степени заряда АБ по уровню срабатывания сигнальных датчиков, контролировании параметров каждой АБ, например текущей электрической емкости, напряжения, температуры; периодическом оценивании состояния АБ. Штатные или технологические АБ монтируют на технологические термоплаты, расположенные вне КА в замкнутом негерметичном отсеке. В качестве циркулирующего в термоплатах теплоносителя используют охлаждаемую наземными средствами обеспечения теплового режима (НСОТР) воздушную массу. Контур охлаждения АБ, включающий в себя технологические термоплаты, трубопроводы и другие элементы НСОТР, выполняют разомкнутым. Оконечную часть трубопровода контура охлаждения размешают внутри отсека с АБ. Техническим результатом изобретения является повышение надежности эксплуатации различных типов аккумуляторных батарей СЭП КА на этапе проведения наземных испытаний. 3 ил.

Description

Изобретение относится к электротехнической промышленности и может быть использовано при проведении наземных испытаний космических аппаратов (КА) на заводе-изготовителе (ЗИ) КА или на техническом комплексе (ТК) в эксплуатирующей организации (ЭО).
Как известно (B.C. Багоцкий, A.M. Скундин. Химические источники тока, М., Энергоиздат, 1981), из-за значительного тепловыделения АБ в процессе разряда или заряда возникает необходимость их постоянного термостатирования. При штатном функционировании КА, как правило, эта задача решается путем применения термоплат с жидким теплоносителем (Кирилин А.Н., Ахметов Р.Н., Сторож А.Д., Аншаков Г.П. Космическое аппаратостроение, Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс», г.Самара, 2011 г., разд. 8). Однако использование подобного способа эксплуатации АБ при наземных испытаниях (НИ) системы электропитания (СЭП) в составе КА сопряжено с определенными техническими трудностями. Основной причиной этого является то, что в ходе наземной эксплуатации АБ при определенном соотношении значений температуры теплоносителя, с одной стороны, температуры окружающей среды и атмосферного давления, с другой стороны, возможно образование на внешней поверхности термоплат конденсата (влаги). Возникновение и дальнейшее развитие этого физического процесса недопустимо, поскольку в этом случае не гарантируется их безотказная работа из-за неизбежной коррозии металла. При этом не исключается вероятность коррозии и корпуса АБ.
При планировании НИ системы электропитания в составе КА необходимо учитывать тот экспериментально установленный факт, что при переходе от режима заряда или разряда в режим хранения электрохимические процессы в аккумуляторах не прекращаются и их интенсивность снижается только по истечении некоторого времени. К таким процессам, например, у никель-водородных аккумуляторных батарей (НВАБ), относятся рекомбинация выделяющегося частично в конечных фазах заряда и разряда кислорода с водородом и постоянно действующий процесс саморазряда аккумуляторов. Для других типов АБ могут быть характерны иные процессы. В конечном итоге все они способствуют локальному перегреву отдельных аккумуляторов, несмотря на то, что в это время они отключены от зарядно-разрядного цикла. Локальный перегрев аккумуляторов неизбежен и в случае их включения в зарядно-разрядный цикл без предварительного охлаждения. Этот вопрос особенно актуален, если температура окружающей среды значительно превышает номинальную рабочую температуру АБ, равную приблизительно 15°С (Кирилин А.Н., Ахметов Р.Н., Сторож А.Д., Аншаков Г.П. Космическое аппаратостроение, Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс», г.Самара, 2011 г., разд. 8).
При разработке мероприятий, направленных на поддержание на заданном уровне показателей ресурса и надежности эксплуатации штатных АБ, надо иметь в виду, что в случае эксплуатации аккумуляторных батарей при НИ в составе КА путем активного их охлаждения системой терморегулирования (СТР), когда процесс НИ организован как непрерывный процесс, происходит неоправданный расход ресурса АБ и СТР. А если имеют место перерывы в работе с выключением системы электропитания КА и СТР, то такой цикл испытаний, как было отмечено выше, чреват локальным перегревом аккумуляторов, приводящим в конечном итоге к снижению надежности эксплуатации аккумуляторных батарей.
Известен способ эксплуатации никель-водородной аккумуляторной батареи по патенту РФ №2329572 (аналог), заключающийся в проведении зарядов и разрядов с активным термостатированием и контролем температуры аккумуляторов и хранении в заряженном или разряженном состоянии без проведения активного термостатирования; продолжении ее термостатирования по окончании заряда или разряда аккумуляторной батареи перед хранением не менее 1,5 ч от окончания заряда либо разряда.
К числу недостатков аналога следует отнести то, что он не позволяет полностью исключить локальный перегрев аккумуляторов НВАБ, также имеется вероятность образования на корпусе аккумуляторных батарей конденсата. Указанные выше недостатки являются характерными применительно и к другим типам АБ, например к литий-ионным аккумуляторным батареям (ЛИАБ), перспективным для использования в составе СЭП современных КА с большим сроком активного существования.
Известен способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата по патенту RU №2399122 (прототип), заключающийся в том, что две или более аккумуляторные батареи (АБ) циклируют в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания; степень заряда АБ ограничивают по уровню срабатывания сигнальных датчиков давления, размещенных в отдельных аккумуляторах каждой АБ; контролируют параметры каждой АБ, например текущую электрическую емкость, напряжение, температуру; периодически проводят формовочные циклы АБ путем глубокого их разряда; оценивают состояние АБ; периодически, например один раз в 6-9 месяцев, вводят запрет заряда для одной из АБ; в качестве разрядной нагрузки используют бортовую аппаратуру космического аппарата; критерием ограничения глубины разряда выбирают величину напряжения АБ, причем значение граничного уровня напряжения устанавливают в вольтах, равным числу n, либо (n+1) аккумуляторов в АБ, при достижении которого снимают запрет заряда АБ, включая тем самым ее в штатную работу; значения зарядной емкости срабатывания сигнального датчика давления и максимального напряжения АБ при заряде, определяемые в процессе завершения формовочного цикла, используют для оценки состояния аккумуляторной батареи и прогнозирования ее деградации; аналогичную последовательность операций повторяют для последующей АБ; при этом промежуток времени от завершения формовочного цикла одной АБ до начала формовочного цикла другой АБ выбирают, исходя из температурного режима отформованной АБ.
Недостатком известного способа является то, что он не обеспечивает повышение надежности эксплуатации и сохранение ресурсных характеристик АБ на этапе проведения НИ СЭП в составе КА на ЗИ КА или ТК в эксплуатирующей организации.
Задачей предлагаемого изобретения является сохранение ресурсных характеристик и повышение надежности эксплуатации различных типов аккумуляторных батарей СЭП КА на этапе проведения НИ СЭП на ЗИ КА или ТК в ЭО.
Поставленная задача достигается тем, что в известном способе наземной эксплуатации аккумуляторных батарей (АБ) системы электропитания (СЭП) космического аппарата (КА), заключающемся в циклировании двух или более аккумуляторных батарей в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания, ограничении степени заряда АБ по уровню срабатывания сигнальных датчиков, контролировании параметров каждой АБ, например текущей электрической емкости, напряжения, температуры; периодически оценивании состояния АБ, штатные или технологические аккумуляторные батареи монтируют на технологические термоплаты, расположенные вне КА в замкнутом отсеке, причем используют отсек негерметичного исполнения; в качестве теплоносителя, циркулирующего в термоплатах, применяют охлаждаемую наземными средствами обеспечения теплового режима (НСОТР) воздушную массу; контур охлаждения аккумуляторных батарей, включающий в себя технологические термоплаты, трубопроводы и другие элементы НСОТР, выполняют разомкнутым, причем оконечную часть трубопровода контура охлаждения размешают внутри отсека с АБ; в случае, если имеют место перерывы в работе с выключением СЭП и НСОТР, при возобновлении испытаний после перерыва СЭП включают только через определенное время после включения НСОТР как минимум через 1 час.
На фиг. 1 показаны: составные части СЭП (комплекс автоматики и стабилизации (КАС), батарея фотоэлектрическая (БФ), бортовая кабельная сеть (БКС), технологическая кабельная сеть); схема размещения составных частей СЭП на КА в комплектации, необходимой для проведения НИ СЭП на ЗИ КА или на ТК в ЭО.
На фиг. 2 приведена принципиальная пневматическая схема для охлаждения аккумуляторных батарей АБ (АБ-1, …, АБ-N, N -количество аккумуляторных батарей в составе СЭП), применяемая в процессе выполнения НИ СЭП.
На фиг. 3 показана принципиальная электрическая схема подключения аккумуляторных батарей АБ (АБ-1, …, АБ-N), расположенных вне КА в замкнутом отсеке негерметичного исполнения, к КАС.
Составные элементы СЭП размещают на космическом аппарате (см. фиг. 1), состоящем из отсека целевой аппаратуры 1, герметичного приборного отсека 2 и негерметичного агрегатного отсека 3. Комплекс автоматики и стабилизации 4 устанавливают в приборном отсеке 2 и охлаждают газовым потоком. В орбитальном полете КА для термостатирования штатных АБ 5 используют штатные термоплаты (ТП) системы терморегулирования. Термопаты ТП (ТП-1, …, ТП-N) 6 соединяют между собой магистральными трубопроводами 7 для образования штатного контура термостатирования. На место штатных АБ во время проведения испытаний могут быть установлены макеты АБ 5, а при применении в составе СЭП технологических АБ вместо штатных АБ последние могут быть установлены на штатные термоплаты ТП (ТП-1, …, ТП-N) 6, но отключены от СЭП. Для подключения аккумуляторных батарей к КАС 4 применяют технологическую кабельную сеть (ТБКС) 8, кабели которой одним концом подключают к соединителям АБ, а другим концом - к соединителям штатной бортовой кабельной сети (БКС) 9, связывающей штатные АБ с КАС 4 при штатной эксплуатации СЭП. Батарею фотоэлектрическую 10 не используют, поэтому отключают ее на время наземных испытаний от СЭП, при этом функцию штатной БФ 10 выполняет имитатор БФ (на фиг. 1 имитатор БФ не показан). Электрическую стыковку имитатора БФ с КАС 4 осуществляют через штатные электрические соединители 11 БКС 9.
Для охлаждения аккумуляторных батарей в процессе НИ используют наземные средства обеспечения теплового режима (НСОТР) 12 (см. фиг. 2 и фиг. 3), расположенные в помещении 13. В процессе функционирования НСОТР 12 воздушная масса 14, являющаяся теплоносителем, охлаждается и поступает в технологические термоплаты ТТП (ТТП-1, …, ТТП-N) 15 под избыточным давлением и, проходя по магистральным технологическим трубопроводам 16 и каналам 17, образующим разомкнутый контур охлаждения, поступает через оконечное устройство 18 в свободное пространство замкнутого отсека 19 негерметичного исполнения.
В замкнутом отсеке 19 (см. фиг. 3), установленном вне КА, размещены аккумуляторные батареи АБ (АБ-1, …, АБ-N) 20 или вместо них - технологические аккумуляторные батареи, которые подключаются к другим составным частям СЭП с помощью наземной кабельной сети (НКС) 21, ТБКС 8 и БКС 9 (см. фиг. 1).
Наземную эксплуатацию АБ осуществляют следующим образом. Две или более аккумуляторные батареи циклируют в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания. В качестве бортовой автоматики СЭП используют комплекс автоматики и стабилизации 4, который включает в себя N зарядно-разрядных устройств, соответствующих количеству АБ (на фиг. 1 зарядно-разрядные устройства в КАС не выделены). Степень заряда АБ ограничивают по уровню срабатывания сигнальных датчиков давления (для НВАБ) или сигнальных датчиков напряжения аккумуляторов (для ЛИАБ), а параметры каждой АБ, например текущую электрическую емкость, напряжение, температуру, контролируют, используя телеметрическую информацию (ТМИ). В процессе проведения испытаний периодически оценивают состояние аккумуляторных батарей. В случае применения в составе СЭП НВАБ, оценку состояния АБ проводят также в процессе проведения формовочных циклов, выполняемых для выравнивания параметров аккумуляторов формуемой АБ по емкости и напряжению.
При наличии перерывов, возникающих в ходе НИ, аккумуляторные батареи после перерыва включают как минимум через 1 час после включения НСОТР. Такая операция необходима и достаточна для охлаждения еще не функционирующих АБ до (15±5)°С и исключения или существенного ослабления местного перегрева отдельных аккумуляторов за счет эффективного дальнейшего термостатирования предварительно «охлажденных» АБ.
Аналогично и для этой же цели НСОТР выключают на перерыв, например через 1,5 часа после выключения аккумуляторных батарей от зарядно-разрядного цикла. Проведенные в АО «РКЦ «Прогресс» экспериментальные исследования полностью подтверждают эффективность таких мероприятий.
Повышение надежности эксплуатации АБ при проведении проведения НИ и сохранение ресурсных характеристик штатных АБ достигается за счет:
- установки штатных или технологических АБ на технологические термоплаты ТТП (ТТП-1, …, ТТП-N) 15, расположенные вне КА в негерметичном отсеке 19. В этом случае ресурс штатных АБ (если используются технологические АБ) и термоплат СТР не тратится в процессе НИ КА;
- использования воздушного теплоносителя 17, охлаждаемого и прокачиваемого под избыточным давлением с помощью НСОТР 12, и выполнения контура охлаждения разомкнутым. При этом исключается появление конденсата на корпусе термоплат ТТП (ТТП-1, …, ТТП-N) 15 и аккумуляторных батарей АБ (АБ-1, …, АБ-N) 20, поскольку происходит практически выравнивание температур поверхности технологических термоплат и окружающей среды в отсеке 19 с АБ (АБ-1, …, АБ-N) 20;
- выполнения отсека 19 негерметичным. В этом случае давление воздуха в отсеке не отличается от давления окружающей среды, следовательно, отсутствуют условия образования конденсата;
- отключения через заданное время (например, через 1 час) НСОТР 12 после завершения испытаний СЭП. При этом исключается локальный перегрев аккумуляторов.
Таким образом, применение данного способа позволяет в процессе наземной эксплуатации СЭП вместо штатных АБ использовать технологические аккумуляторные батареи, сохранить ресурсные характеристики и повысить надежность эксплуатации различных типов аккумуляторных батарей системы электропитания космических аппаратов на этапе проведения НИ СЭП на ЗИ КА или ТК в ЭО.

Claims (1)

  1. Способ наземной эксплуатации аккумуляторных батарей (АБ) системы электропитания (СЭП) космического аппарата (КА), заключающийся в том, что две или более аккумуляторные батареи циклируют в режиме заряда-разряда, задаваемом бортовой автоматикой системы электропитания; степень заряда АБ ограничивают по уровню срабатывания сигнальных датчиков; контролируют параметры каждой АБ, например текущую электрическую емкость, напряжение, температуру, периодически оценивают состояние АБ, отличающийся тем, что штатные или технологические аккумуляторные батареи монтируют на технологические термоплаты, расположенные вне КА в замкнутом отсеке, причем используют отсек негерметичного исполнения; в качестве теплоносителя, циркулирующего в технологических термоплатах, применяют охлаждаемую наземными средствами обеспечения теплового режима (НСОТР) воздушную массу; контур охлаждения аккумуляторных батарей, включающий в себя технологические термоплаты, трубопроводы и другие элементы НСОТР, выполняют разомкнутым, причем оконечную часть трубопровода контура охлаждения размещают внутри отсека с АБ; в случае, если имеют место перерывы в работе с выключением СЭП и НСОТР, при возобновлении испытаний после перерыва СЭП включают только через определенное время после включения НСОТР как минимум через 1 час.
RU2017125693A 2017-07-17 2017-07-17 Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата RU2661187C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017125693A RU2661187C1 (ru) 2017-07-17 2017-07-17 Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017125693A RU2661187C1 (ru) 2017-07-17 2017-07-17 Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата

Publications (1)

Publication Number Publication Date
RU2661187C1 true RU2661187C1 (ru) 2018-07-12

Family

ID=62916916

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017125693A RU2661187C1 (ru) 2017-07-17 2017-07-17 Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата

Country Status (1)

Country Link
RU (1) RU2661187C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396388B2 (en) 2018-12-20 2022-07-26 The Boeing Company Optimized power balanced variable thrust transfer orbits to minimize an electric orbit raising duration
US11401053B2 (en) * 2018-12-20 2022-08-02 The Boeing Company Autonomous control of electric power supplied to a thruster during electric orbit raising
CN116374208A (zh) * 2022-12-30 2023-07-04 中国科学院空间应用工程与技术中心 一种用于空间站的在轨充放气方法及系统
US11753188B2 (en) 2018-12-20 2023-09-12 The Boeing Company Optimized power balanced low thrust transfer orbits utilizing split thruster execution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
RU2399122C1 (ru) * 2009-05-12 2010-09-10 Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
RU2585171C1 (ru) * 2014-12-31 2016-05-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания модульного исполнения (варианты)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
RU2399122C1 (ru) * 2009-05-12 2010-09-10 Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
RU2585171C1 (ru) * 2014-12-31 2016-05-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания модульного исполнения (варианты)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11396388B2 (en) 2018-12-20 2022-07-26 The Boeing Company Optimized power balanced variable thrust transfer orbits to minimize an electric orbit raising duration
US11401053B2 (en) * 2018-12-20 2022-08-02 The Boeing Company Autonomous control of electric power supplied to a thruster during electric orbit raising
US11753188B2 (en) 2018-12-20 2023-09-12 The Boeing Company Optimized power balanced low thrust transfer orbits utilizing split thruster execution
CN116374208A (zh) * 2022-12-30 2023-07-04 中国科学院空间应用工程与技术中心 一种用于空间站的在轨充放气方法及系统
CN116374208B (zh) * 2022-12-30 2023-11-07 中国科学院空间应用工程与技术中心 一种用于空间站的在轨充放气方法及系统

Similar Documents

Publication Publication Date Title
RU2661187C1 (ru) Способ наземной эксплуатации аккумуляторных батарей системы электропитания космического аппарата
US11658350B2 (en) Smart battery management systems
US10230139B2 (en) Temperature control apparatus and method for energy storage system
RU2399122C1 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
CN105429249A (zh) 电池控制装置以及控制电池的方法
US9735601B2 (en) Systems and techniques for energy storage regulation
Abousleiman et al. Charge capacity versus charge time in CC-CV and pulse charging of Li-ion batteries
KR20140054320A (ko) 축전 장치 관리 시스템
Hasan et al. The impact of temperature on battery degradation for large-scale bess in pv plant
RU2543487C2 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
Ma et al. Fuzzy logic based power and thermal management system design for multi-cell lithium-ion battery bank protection and operation
Suyanto et al. Study on Optimization of System Management Battery for Lithium Batteries and Lead Acid Batteries at the New and Renewable Energy Research Center IT PLN
He et al. Capacity fast prediction and residual useful life estimation of valve regulated lead acid battery
Zarei-Jelyani et al. Development of lifetime prediction model of lithium-ion battery based on minimizing prediction errors of cycling and operational time degradation using genetic algorithm
RU2621694C2 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания летательных аппаратов
Turgut et al. CAN communication based modular type battery management system for electric vehicles
CN108695926B (zh) 一种高轨卫星锂离子蓄电池组控制方法
Calinao et al. Battery management system with temperature monitoring through fuzzy logic control
RU2014133435A (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата (варианты)
Huhman et al. Design of a battery intermediate storage system for rep-rated pulsed power loads
RU2661340C1 (ru) Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата
JP6910437B2 (ja) 電池を保管するためのシステム及び方法
RU2390477C1 (ru) Способ проведения ресурсных испытаний аккумуляторов космического назначения и устройство для его реализации
Gaffar et al. Simulink based performance analysis of lead acid batteries with the variation of load current and temperature
Jousse et al. Assessment of lithium ion LiFePO 4 cells usage in photovoltaic standalone systems