RU2659891C1 - Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса - Google Patents

Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса Download PDF

Info

Publication number
RU2659891C1
RU2659891C1 RU2017121128A RU2017121128A RU2659891C1 RU 2659891 C1 RU2659891 C1 RU 2659891C1 RU 2017121128 A RU2017121128 A RU 2017121128A RU 2017121128 A RU2017121128 A RU 2017121128A RU 2659891 C1 RU2659891 C1 RU 2659891C1
Authority
RU
Russia
Prior art keywords
hap
radiation
haf
source
area
Prior art date
Application number
RU2017121128A
Other languages
English (en)
Inventor
Юрий Исаакович Белоусов
Всеволод Борисович Степанов
Алексей Викторович Гладилин
Олег Анатольевич Савицкий
Original Assignee
Акционерное общество "Акустический институт имени академика Н.Н. Андреева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Акустический институт имени академика Н.Н. Андреева" filed Critical Акционерное общество "Акустический институт имени академика Н.Н. Андреева"
Priority to RU2017121128A priority Critical patent/RU2659891C1/ru
Application granted granted Critical
Publication of RU2659891C1 publication Critical patent/RU2659891C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры ГАП, зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: - возможность получения данных о структуре ГАП в отсутствие влияния границ, гидролого-акустических условий и на значительных расстояниях от объекта; - уменьшение материальных, финансовых и временных затрат на проведение измерений; - возможность проведения измерений практически на любых акваториях; - возможность определения вклада от вибраций корпуса объекта, возбужденных совокупностью различных источников. Технический результат достигается за счет того, что в известном способе в районе измерения структуры ГАП в точке измерения располагают источник звуковых импульсов, например взрыв малого заряда ВВ, с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют вибрационный отклик корпуса подводного объекта от излучения импульсного источника, затем в процессе обработки находят передаточную характеристику излучения объекта в район расположения импульсного источника, далее измеряют ГАП; для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции), повторяют излучение импульсного источника и измерение ГАП каждый раз при нахождении объекта под нужным углом, при этом до проведения измерений в акватории располагают объект и импульсный источник так, чтобы разности во временах прихода отраженных от границ импульсов, по сравнению с прямым были бы максимальными; используя только вибрационный импульсный отклик, возбужденный прямым сигналом от импульсного источника, при соответствующей обработке получают значения ГАП объекта без влияния границ среды (в безграничном пространстве). 1 з.п. ф-лы.

Description

Изобретение относится к области гидроакустики и может быть использовано для измерения (уточнения) структуры ГАП, в том числе - зависимостей ГАП от угла в пространстве и от расстояния до объекта.
Известен способ (прототип) определения ГАП объектов на акваториях, полигонах, включающий проведение измерения структуры ГАП с помощью стационарных антенных решеток, располагаемых вертикально и (или) горизонтально, возможно на дне водоема, с регистрацией сигналов от антенн на берегу (Клей К., Медвин Г. Акустическая океанография. Основы и применения. Издательство «Мир», М., 1980, с. 525-526).
Известно, что установка на дне или в водном слое вертикальных и горизонтальных антенных систем значительно увеличивает стоимость измерений структуры ГАП, привязывает их к конкретному полигону, а также ограничивает область измерений ГАП дальностью действия аппаратных средств измерительных комплексов.
Недостатком вышеуказанного способа является сложность непосредственного измерения структуры поля в безграничном пространстве при нахождении объекта в водном слое. Вместе с тем возможность измерений поля для безграничного пространства является практически важной, поскольку позволяет выполнить пересчет структуры поля на любые расстояния от объекта, учесть влияние границ и реальных гидролого-акустических условий. Кроме того, определение ГАП известным способом характеризуется существенными материальными и финансовыми издержками (установка и обслуживание антенных систем, прокладка кабельных сетей до береговых строений и строительство измерительных постов с необходимой береговой инфраструктурой).
Техническим результатом настоящего изобретения является повышение эффективности, включая:
- возможность получения данных о структуре ГАП в отсутствие влияния границ, гидролого-акустических условий и на значительных расстояниях от объекта;
- уменьшение материальных, финансовых и временных затрат на проведение измерений;
- возможность проведения измерений практически на любых акваториях.
- возможность определения ГАП от вибраций корпуса объекта, возбужденных совокупностью различных источников.
Технический результат достигается за счет того, что в известном способе в районе измерения структуры ГАП в точке измерения располагают источник коротких звуковых импульсов, например, взрывного типа, с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют вибрационный отклик корпуса подводного объекта от излучения импульсного источника, затем в процессе обработки находят передаточную характеристику излучения объекта в районе расположения импульсного источника, как отношение спектра усредненного вибрационного отклика корпуса объекта к спектру объемного ускорения источника звуковых импульсов, далее определяют ГАП, для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции) и повторяют излучение импульсного источника и определение ГАП каждый раз при нахождении объекта под нужным углом.
Сущность изобретения заключается в том, что реализуют определение структуры ГАП техногенных подводных объектов в водной среде (акватории, полигоне) от вибраций корпуса, для чего располагают объект в среде на выбранном расстоянии от импульсного источника звука, устанавливают импульсный источник таким образом, чтобы разница во времени прихода к объекту отраженных от границ среды акустических импульсов по сравнению с прямым была бы максимальной. Это позволяет при соответствующей обработке получать значения ГАП объекта без влияния границ (в безграничном пространстве). Затем излучают звуковой импульс и регистрируют вибрационный отклик (вибрационное ускорение) корпуса объекта.
При обработке получают передаточную характеристику, которая, согласно принципу взаимности, равна отношению спектра вибрационного отклика к спектру объемного ускорения импульсного источника с учетом коэффициента, зависящего от массы стенки корпуса объекта с учетом ребер жесткости и соколеблющейся массы внешней среды, средней частоты и ширины полосы измерения, и величины коэффициента потерь, а ГАП определяют перемножением передаточной характеристики на спектр усредненного вибрационного ускорения корпуса объекта, далее получают значения ГАП для различных углов облучения объекта и строят угловые зависимости ГАП объекта в выбранных частотных полосах, как в условиях безграничного пространства. При этом угол излучения определяемого спектра ГАП объекта равен, по принципу взаимности, соответствующему углу облучения. Для получения оценки ГАП с учетом влияния границ среды для измерений используется акустический отклик, включающий сумму прямого импульса и отраженных от границ среды.

Claims (2)

1. Способ определения структуры гидроакустического поля (ГАП) техногенных подводных объектов от вибраций корпуса, включающий проведение измерения структуры ГАП, отличающийся тем, что в районе измерений ГАП, в точке измерения располагают источник звуковых импульсов с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют вибрационный отклик корпуса подводного объекта от излучения импульсного источника, затем в процессе обработки находят передаточную характеристику излучения объекта в районе расположения импульсного источника, которая равна отношению спектра вибрационного отклика к спектру объемного ускорения импульсного источника с учетом коэффициента, зависящего от массы стенки корпуса объекта с учетом ребер жесткости и соколеблющейся массы внешней среды, средней частоты и ширины полосы измерения, и величины коэффициента потерь, а ГАП определяют перемножением передаточной характеристики на спектр усредненного вибрационного ускорения корпуса объекта; для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции) и повторяют излучение импульсного источника и определение ГАП каждый раз при нахождении объекта под нужным углом, а после завершения испытаний освобождают акваторию от объекта и импульсного источника.
2. Способ по п.1, отличающийся тем, что до проведения измерений ГАП в безграничной среде объект и импульсный источник располагают в акватории так, чтобы разности во временах прихода отраженных от границ импульсов по сравнению с прямым были бы максимальными; используя только вибрационный импульс, возбужденный прямым сигналом от импульсного источника, при соответствующей обработке получают значения ГАП объекта без влияния границ (в безграничном пространстве).
RU2017121128A 2017-06-16 2017-06-16 Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса RU2659891C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121128A RU2659891C1 (ru) 2017-06-16 2017-06-16 Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121128A RU2659891C1 (ru) 2017-06-16 2017-06-16 Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса

Publications (1)

Publication Number Publication Date
RU2659891C1 true RU2659891C1 (ru) 2018-07-04

Family

ID=62815263

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121128A RU2659891C1 (ru) 2017-06-16 2017-06-16 Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса

Country Status (1)

Country Link
RU (1) RU2659891C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229809A (en) * 1979-01-29 1980-10-21 Sperry Corporation Acoustic under sea position measurement system
RU2125278C1 (ru) * 1997-09-30 1999-01-20 Институт проблем морских технологий Дальневосточного отделения РАН Способ измерения расстояния до контролируемого объекта (его варианты)
RU2219563C2 (ru) * 2001-01-03 2003-12-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Способ определения направления прихода эхосигнала (варианты)
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
RU2495448C1 (ru) * 2012-05-25 2013-10-10 Сергей Николаевич Доля Способ обнаружения подводных объектов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229809A (en) * 1979-01-29 1980-10-21 Sperry Corporation Acoustic under sea position measurement system
RU2125278C1 (ru) * 1997-09-30 1999-01-20 Институт проблем морских технологий Дальневосточного отделения РАН Способ измерения расстояния до контролируемого объекта (его варианты)
RU2219563C2 (ru) * 2001-01-03 2003-12-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Способ определения направления прихода эхосигнала (варианты)
RU2242021C2 (ru) * 2002-07-15 2004-12-10 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидролокационный способ обнаружения подводных объектов, движущихся с малой радиальной скоростью в контролируемой акватории, и гидролокационная станция кругового обзора, реализующая этот способ
RU2495448C1 (ru) * 2012-05-25 2013-10-10 Сергей Николаевич Доля Способ обнаружения подводных объектов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МИТЬКО В.Б. и др. Гидроакустические средства связи и наблюдения. - Л.: Судостроение, 1982, с.33, 34. *

Similar Documents

Publication Publication Date Title
Pyo et al. Development of vector hydrophone using thickness–shear mode piezoelectric single crystal accelerometer
Hui et al. Underwater acoustic channel
CN111142071B (zh) 一种结合半经验公式的单阵元匹配场爆炸声源定位方法
RU136899U1 (ru) Устройство для съемки рельефа дна акватории
EP2607921A1 (en) Method and device for managing the acoustic performances of a network of acoustic nodes arranged along towed acoustic linear antennas.
RU2346295C1 (ru) Активный гидролокатор
RU2559159C1 (ru) Способ измерения толщины льда
RU2659891C1 (ru) Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса
RU2007105779A (ru) Способ определения глубины погружения объекта
Balk et al. Surface-induced errors in target strength and position estimates during horizontal acoustic surveys.
RU2546852C1 (ru) Гидроакустический способ измерения дистанции с использованием взрывного сигнала
RU2655680C1 (ru) Способ определения структуры гидроакустического поля техногенных подводных объектов от воздушного шума внутри корпуса
RU2655683C1 (ru) Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса под действием динамических сил
Wan et al. Simulation and prototype testing of a low-cost ultrasonic distance measurement device in underwater
RU2463624C1 (ru) Гидроакустическая навигационная система
Fangqi et al. An experiment of the actual vertical resolution of the sub-bottom profiler in an anechoic tank
RU2614854C2 (ru) Способ измерения глубин и эхолот для его осуществления
RU2590932C1 (ru) Гидроакустический способ измерения глубины погружения неподвижного объекта
RU2562001C1 (ru) Способ поверки доплеровского измерителя скорости течений
RU168083U1 (ru) Акустический волнограф
Xiao et al. Experimental results for peak pressure and sound exposure level in deep-sea explosions
Lippert et al. On the prediction of pile driving induced underwater sound pressure levels over long ranges
RU2660292C1 (ru) Способ определения глубины погружения объекта
RU2689998C1 (ru) Многочастотный гидролокатор бокового обзора
Blachet et al. Sonar data simulation with application to multi-beam echo sounders