RU2689998C1 - Многочастотный гидролокатор бокового обзора - Google Patents

Многочастотный гидролокатор бокового обзора Download PDF

Info

Publication number
RU2689998C1
RU2689998C1 RU2017146763A RU2017146763A RU2689998C1 RU 2689998 C1 RU2689998 C1 RU 2689998C1 RU 2017146763 A RU2017146763 A RU 2017146763A RU 2017146763 A RU2017146763 A RU 2017146763A RU 2689998 C1 RU2689998 C1 RU 2689998C1
Authority
RU
Russia
Prior art keywords
antenna
sonar
switch
inputs
control unit
Prior art date
Application number
RU2017146763A
Other languages
English (en)
Inventor
Вадим Юрьевич Волощенко
Сергей Павлович Тарасов
Антон Юрьевич Плешков
Василий Алексеевич Воронин
Петр Петрович Пивнев
Александр Петрович Волощенко
Original Assignee
Общество с ограниченной ответственностью "ГидроМаринн"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ГидроМаринн" filed Critical Общество с ограниченной ответственностью "ГидроМаринн"
Priority to RU2017146763A priority Critical patent/RU2689998C1/ru
Priority to PCT/RU2018/000860 priority patent/WO2019132726A1/ru
Priority to DE202018006512.9U priority patent/DE202018006512U1/de
Application granted granted Critical
Publication of RU2689998C1 publication Critical patent/RU2689998C1/ru
Priority to US16/914,197 priority patent/US11194046B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8902Side-looking sonar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/56Display arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к гидроакустической технике и может быть использовано при конструировании гидроакустических систем. Многочастотный гидролокатор бокового обзора содержит блок индикации, блок управления, n-входовый сумматор, последовательно соединенные генератор радиоимпульсов, коммутатор и многоэлементную приемоизлучающую интерференционную антенну, отличается тем, что апертура антенны выполнена в виде выпуклого в направлении эхопоиска отсека цилиндрической поверхности радиусом кривизны R, у которого образующая l расположена в азимутальной плоскости и по длине на порядок больше, чем размер хорды α, стягивающей крайние симметричные относительно акустической оси точки дуги длиной L. Изобретение расширяет эксплуатационные возможности гидролокатора бокового обзора, уменьшая мертвую зону и увеличивая протяженность обследуемой полосы донной поверхности в направлении эхопоиска, за счет использования нелинейного эффекта самовоздействия звуковых волн. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к гидроакустической технике и может быть использовано при конструировании гидроакустических систем.
Определение рельефа морского дна при его картографировании и изучении геологической структуры является одной из задач океанографии. Появление и широкое распространение эхолотов позволило вести непрерывные замеры глубин во время движения судна и регистрировать профиль морского дна на больших протяжениях, т.е. сделало измерение глубин двумерным. В настоящее время при записи глубины океанского дна и его рельефа используются взаимно дополняющие друг друга устройства для гидролокационного картирования: двухчастотные эхолоты, установленные на надводных судах, у которых низкочастотный тракт обеспечивает быстрое, но «интегрирующее» широколучевое (300) зондирование, в то время как высокочастотный тракт за счет узкого луча (20) позволяет регистрировать гораздо более мелкие детали, а также глубоководное буксируемое устройство, предназначенное для работы на высоте (100-200) м над поверхностью дна, причем, его гидроакустические антенны облучают последнее под косыми углами специальным образом (основной лепесток излучения имеет «ножевидную» форму: широкую - в угломестной, но узкую - в азимутальной плоскостях соответственно. Метод бокового обзора дает еще более тонкие детали некоторых донных форм, так как осуществляется регистрация каждого из ультразвуковых эхосигналов от многочисленных элементов рельефа дна, находящихся на разных расстояниях, однако интерпретация и «расшифровка» полученных данных достаточно трудоемка.
Из уровня техники известен гидролокатор для обнаружения подводных препятствий и определения их координат [Авт. Свидетельство №187327 СССР: МПК G01C, G08F; заявл. 29.05.1963; опубл. 11.10.1966, Бюл №20.], содержащий генератор, импульсный модулятор, усилитель мощности, коммутатор, поворотное устройство, многоэлементную приемоизлучающую гидроакустическую антенну, усилитель, детектор, блок индикации, блок управления. В процессе эксплуатации устройства применяется специальная конструкция гидроакустической антенны, активный элемент которой состоит из четырех электроакустических преобразователей, имеющих различные пространственные характеристики направленности (ХН) излучения, акустические поля которых в результате суперпозиции колебательных процессов в среде лоцирования и создают желаемую форму результирующей характеристики направленности (ХН). Конструкция антенны выполнена следующим образом - на плоскую прямоугольную металлическую диафрагму размером (70×20) мм наклеены электроакустические преобразователи, сигнальные электроды которых загерметизированы, а режим одностороннего излучения обеспечен тем, что диафрагма является крышкой для воздухозаполненного корпуса антенны. При использовании рабочей частоты излучения 525 кГц и указанных геометрических размерах приемоизлучающая интерференционная антенна формирует акустическое поле со следующими характеристиками: в угломестной (θ) / азимутальной (ϕ) плоскостях - угловая ширина основного лепестка ХН по уровню 0,7 θ0,7(ƒ)=2°/ϕ0,7(ƒ)=7,2°, первые боковые лепестки в направлении θ1(БП)=3,5°/ϕ1(БП)=12° с уровнем Р1(БП)=(-13,3 дБ), вторые боковые лепестки в направлении θ2(БП)=5,8°/ϕ2(БП)=20° от горизонта с уровнем Р2(БП)=(-17,8 дБ), третий боковой лепесток в направлении θ3(БП)=8,2°/ϕ3(БП)=30° от горизонта с уровнем Р3(БП)=(-21 дБ).
К недостаткам описанной системы следует отнести то, что пространственная избирательность приемоизлучающей гидроакустической антенны оказывает существенное негативное влияние как на точность, так и на достоверность данных о подводной обстановке.
Признаки, совпадающие с заявляемым объектом: генератор, коммутатор, гидроакустическая антенна, усилитель, детектор, индикатор, блок управления.
Известна система подводного звуковидения с рабочей частотой 30 кГц, установленная на батискафе «Архимед» [К. Клей, Г. Медвин Акустическая океанография: основы и применения - М.: изд-во «Мир», 1980. - с. 171-176], подводных аппаратах «Циана» (Франция) и «Олвин» (США) [Дж. Р. Хейцлер, У.Б. Брайен. Дно океана в пределах срединно-атлантического рифта // Наука об океане / Пер. с англ.; Под ред. О.И. Мамаева. - М.: Прогресс, 1981. - с. 104-136], содержащая многоэлементную интерференционную антенну, которая снабжена отражателем, блок управления, блок индикации и приемоизлучающий тракт, включающий в себя генератор, приемник и коммутатор, причем, выходы блока управления соединены с управляющими входами блока индикации, приемника и генератора, выход генератора соединен через коммутатор со входом многоэлементной интерференционной антенны, второй выход коммутатора соединен с входом приемника, выход которого соединен с информационным входом блока индикации.
Недостатками данного устройства являются невозможность генерации в водной среде полигармонического зондирующего сигнала за счет нелинейных эффектов, потери при отражении акустических сигналов, а также вероятность искажения результирующей характеристики направленности за счет возбуждения собственных резонансных колебаний металлических элементов акустического экрана-отражателя сложной конструкции.
Признаки, совпадающие с заявляемым объектом: генератор, коммутатор, гидроакустическая антенна, усилитель, детектор, индикатор, блок управления.
Известен акустический эхо-импульсный локатор [авт. св. СССР №1228659 МКИ G01S 7/52, опубл. 20.12.1999, Бюл. №35], принятый за прототип, содержащий индикатор, блок управления, входовый сумматор, последовательно соединенные генератор радиоимпульсов, коммутатор, многоэлементную приемоизлучающую гидроакустическую антенну, цепочек из последовательно соединенных полосового фильтра с частотами пропускания, усилителя, детектора и аттенюатора, параллельно включенных таким образом, что входы фильтров объединены и подключены к коммутатору, а выходы аттенюаторов, управляющие входы которых подключены к блоку управления, соединены с входами сумматора, выход которого подключен к сигнальному входу индикатора.
Недостатками прототипа являются ограничение энергетического потенциала гидроакустической антенны величиной площади ее плоской апертуры; облучение участков с малой протяженностью полосы обзора при значительной «мертвой» зоне; вероятность регистрации недостоверных данных.
Задачей изобретения является расширение эксплуатационных возможностей гидролокатора бокового обзора, заключающееся в уменьшении мертвой зоны и увеличении протяженности обследуемой полосы донной поверхности в направлении эхопоиска, за счет использования нелинейного эффекта самовоздействия звуковых волн.
Техническим результатом изобретения является улучшение качества гидролокационного изображения подводных объектов за счет регистрации и визуализации рассеянных ими ультразвуковых полей кратных частот, формирующихся в водной среде вследствие нелинейного эффекта самовоздействия.
Технический результат достигается тем, что в многочастотном гидролокаторе бокового обзора, содержащем блок индикации, блок управления, n-входовый сумматор, последовательно соединенные генератор радиоимпульсов, коммутатор и многоэлементную приемоизлучающую интерференционную антенну, апертура антенны, состоящая из приемоизлучающих поверхностей электроакустических преобразователей, выполнена в виде выпуклого в направлении эхопоиска отсека цилиндрической поверхности радиусом кривизны R, у которого образующая
Figure 00000001
расположена в азимутальной плоскости и по длине на порядок больше, чем размер хорды α, стягивающей крайние симметричные относительно акустической оси точки дуги длиной L, стрела прогиба h, рабочий сектор α, длина дуги L, хорда α, связаны между собой соотношениями h=α×tg(α/4)/2=R[1-cos(α/2)]; L=0,01745 Rα; α=2R sin(α/2).
Коммутатор соединен через n цепочек, состоящих из последовательно соединенных полосовых фильтров, усилителей, детекторов и аттенюаторов, параллельно включенных таким образом, что входы полосовых фильтров с частотами пропускания ƒ, 2ƒ, 3ƒ, …, nƒ объединены и подключены к выходу коммутатора, а выходы аттенюаторов, управляющие входы которых подключены к блоку управления, соединены с n входами сумматора, выход которого подключен к сигнальному входу блока индикации.
Изобретение поясняется чертежами, где:
на фиг. 1 изображена структурная схема многочастотного гидролокатора бокового обзора с использованием нелинейного эффекта самовоздействия;
на фиг. 2 схематично показана конструкция многоэлементной приемоизлучающей интерференционной антенны гидролокатора;
на фиг. 3 схематически изображено получение гидролокационного изображения морского дна с помощью многочастотного гидролокатора бокового обзора с использованием нелинейного эффекта самовоздействия.
Многочастотный гидролокатор бокового обзора с использованием нелинейного эффекта самовоздействия (фиг. 1) содержит блок индикации 18, блок управления 19, n-входовый сумматор 17, последовательно соединенные генератор радиоимпульсов 1, коммутатор 2, многоэлементную приемоизлучающую интерференционную антенну 3, имеющую возможность осуществления через нелинейную водную среду 4 акустического контакта с объектами, находящимися в области обзора. Выход антенны 3 через коммутатор 2 соединен через n цепочек из последовательно соединенных полосового фильтра (5, 6, …, 7), усилителя (8, 9, …10), детектора (11, 12, …13) и аттенюатора (14, 15, …, 16) параллельно включенных таким образом, что входы полосовых фильтров 5, 6, …7 с частотами пропускания ƒ, 2ƒ, 3ƒ, …, nƒ объединены и подключены к выходу коммутатора 2, а выходы аттенюаторов 14, 15, …, 16, управляющие входы которых подключены к блоку управления 19, соединены с n входами сумматора 17, выход которого подключен к сигнальному входу блока индикации 18.
Многоэлементная приемоизлучающая интерференционная антенна 3 (фиг. 2) гидролокатора бокового обзора состоит из корпуса 20, внутренние поверхности которого покрыты звукоизолирующими экранами 21, основания (на чертеже не показано) с укрепленными на нем электроакустическими преобразователями 22, имеющими резонансную частоту ƒ, и звукопрозрачного герметизирующего компаунда 23, заполняющего внутренний объем корпуса 20, причем, апертура антенны, состоящая из приемоизлучающих поверхностей электроакустических преобразователей 22, выполнена в виде выпуклого в направлении эхопоиска отсека цилиндрической поверхности радиусом кривизны R, у которого образующая
Figure 00000001
расположена в азимутальной плоскости и по длине на порядок больше, чем размер хорды α, стягивающей крайние симметричные относительно акустической оси точки дуги длиной L, стрела прогиба h, рабочий сектор α, длина дуги L, хорда α, связаны между собой соотношениями h=α×tg(α/4)/2=R[1-cos(α/2)]; L=0,01745 Rα; α=2Rsin(α/2).
Функционирование многочастотного гидролокатора бокового обзора осуществляется следующим образом. С выхода генератора радиоимпульсов 1, управляющий вход которого соединен с выходом блока управления 19, радиоимпульс с частотой заполнения ƒ через коммутатор 2 поступает на многоэлементную приемоизлучающую интерференционную антенну 3. В силу пьезоэлектрических свойств электроакустические преобразователи 22 совершают колебания, которые через звукопрозрачный герметизирующий компаунд 23 передаются в водную среду 4 и распространяются в виде сгущений и разряжений, т.е. ультразвуковых волн достаточной интенсивности во всех направлениях, что создает в водном пространстве 4 от антенны ультразвуковое поле. При синфазном электрическом возбуждении всех электроакустических преобразователей 22, составляющих многоэлементную интерференционную антенну с приемоизлучающей апертурой в виде отсека цилиндрической поверхности, ее характеристика направленности в водной среде будет обусловлена интерференцией колебаний в каждой точке водной среды 4, проявляющейся в перераспределении ультразвуковой энергии в виде чередующихся минимумов и максимумов амплитуды результирующего колебания при изменении угла отклонения лучей от нормали к линии, соединяющей источники колебаний (поверхность звукопрозрачного герметизирующего компаунда 23). При эхолокации антенна преобразует подаваемые на нее импульсы электрической энергии и излучает мощные импульсы ультразвуковых колебаний необходимой длительности. В данных условиях начинает меняться роль гидроакустического канала как звукопроводящей среды - от «линейной» акустики, в рамках которой изменение плотности воды 4 еще линейно зависит от изменения звукового давления распространяющегося волнового процесса, что обусловливает выполнение принципа суперпозиции, до «нелинейной» акустики, где начинает проявляться нелинейность ее упругих свойств, вызывающая самовоздействие распространяющихся волн конечной амплитуды, приводя к генерации новых спектральных компонент с частотами ƒ, 2ƒ, 3ƒ, …, nƒ. Таким образом, при распространении в среде 4 акустический сигнал конечной амплитуды испытывает накапливающиеся искажения профиля ультразвуковой волны, что физически означает генерацию высших гармонических компонент 2ƒ, 3ƒ, …, nƒ излученного сигнала с частотой ƒ.
Акустические поля сигналов высших гармоник обладают важными для эхопоиска пространственными характеристиками. Так как на акустической оси антенны 3 изменение свойств водной среды 4 под действием мощной волны накачки с частотой ƒ происходит в наибольшей степени, то главный максимум излучения для каждой последующей гармоники с частотами ƒ, 2ƒ, 3ƒ, …, nƒ имеет более малую угловую ширину по уровню 0,7 как в угломестной (θ), так и в азимутальной (ϕ) плоскостях. В направлениях дополнительных максимумов излучения на основной частоте ƒ изменение свойств среды 4 происходит в гораздо меньшей степени, что приводит к снижению эффективности генерации гармоник в этих направлениях, т.е. уровень бокового поля для каждой последующей гармоники меньше, чем у предыдущей. Так, например, для одного из вариантов «трансформированной» модели многоэлементной приемоизлучающей интерференционной антенны в виде отсека цилиндрической поверхности (рабочий сектор α=45° в угломестной (θ) плоскости) в режиме излучения угловая ширина основного лепестка по уровню 0,7 и уровень бокового поля ХН составят: θ0,7(ƒ)ИЗЛ=32° и PИЗЛ(θ)1(БП,ƒ)=(-11) дБ; θ0,7(2ƒ)ИЗЛ=20° и PИЗЛ(θ)1(БП,2ƒ)=(-20) дБ; θ0,7(3ƒ)=18° и PИЗЛ(θ)1(БП,3ƒ)=(-27) дБ; θ0,7(4ƒ)=16.3° и PИЗЛ(θ)1(БП,4ƒ)=(-30) дБ; θ0,7(5ƒ)ИЗЛ=12,5° и PИЗЛ(θ)1(БП,ƒ)=(-30) дБ соответственно, а для режима приема на спектральных компонентах полигармонического сигнала - уровень бокового поля РПР(θ)1БП, ƒ. 2ƒ, 3ƒ, 4ƒ, 5ƒ)=(-12 дБ) и кратные (~1/n) величины угловой ширины по уровню 0,7 основных лепестков: θ0,7(ƒ)ПР=32° (100 кГц), θ0,7(2ƒ)ПР=16° (200 кГц), θ0,7(3ƒ)ПР=10,7° (300 кГц), θ0,7(4ƒ)ПР=8° (400 кГц), θ0,7(5ƒ)ПР=6,4° (500 кГц). Данное воздействие нелинейного эффекта самовоздействия может быть использовано для регулировки угловой разрешающей способности антенны предлагаемого устройства как в угломестной (θ), так и в азимутальной (ϕ) плоскостях на имеющихся спектральных компонентах с частотами ƒ, 2ƒ, 3ƒ, …nƒ, дает возможность расширить эксплуатационные возможности гидролокатора бокового обзора (фиг. 3). Импульс ультразвуковых колебаний кратных частот распространяется в водной среде 4 и при наличии на его пути объекта, волновое сопротивление которого отличается от волнового сопротивления воды, происходит отражение акустических колебаний от него, причем, некоторая часть энергии импульса распространяется в обратном направлении и достигает, пройдя через звукопрозрачный герметизирующий компаунд 23, электродов - рабочих поверхностей полуволновых электроакустических преобразователей 22, находящихся в режиме приема. Вторичное гидроакустическое «эхо-поле», образованное наложением колебаний основной частоты и его высших гармоник, воздействуя на электроды, передается пьезоэлектрическому материалу полуволновых электроакустических преобразователей 22, в результате чего на них вырабатываются соответствующие им электрические, поступающие через коммутатор 2 на входы n цепочек, каждая из которых состоит из последовательно соединенных полосового фильтра 5, 6, …7 с частотами пропускания ƒ, 2ƒ, 3ƒ, …nƒ, усилителя 8, 9, …10, детектора 11, 12, …13 и аттенюатора 14, 15, …, 16.
Отраженный полигармонический сигнал достигает многоэлементной интерференционной антенны 3, находящейся в режиме приема, которая вырабатывает электрические сигналы, соответствующие указанным выше спектральным компонентам с частотами ƒ, 2ƒ, 3ƒ, …, iƒ, …nƒ. Уровни каждого из электрических сигналов определяются амплитудными характеристиками направленности Rp.ƒ(ϕ,θ), Rp.2ƒ(ϕ,θ), Rp.3ƒ(ϕ,θ), Rp.iƒ(ϕ,θ), а также чувствительностями Yƒ, Y, Y, …, Y в режиме приема многоэлементной интерференционной антенны 3 для каждой из рассеянных границей раздела акустических волн с указанными выше частотами колебаний, где ϕ,θ - углы прихода рассеянных волн в азимутальной и угломестной плоскостях, отсчитываемые от нормали к апертуре антенны 3.
Эффективность направленного действия многоэлементной интерференционной антенны 3 в режиме приема эхосигналов в полосе частот, соответствующей указанному выше диапазону дискретных отраженных компонент сформировавшегося излучения, даже в предположении их некогерентности будет повышена, так как суммарная интенсивность есть результат энергетического суммирования интенсивностей отдельных спектральных составляющих. Рассмотрим параллельную обработку электрических колебаний с частотами ƒ, 2ƒ, 3ƒ, …, nƒ в n - канальном приемном тракте (фильтрация - блоки 5, 6, …7; усиление - блоки 8, 9, …10; детектирование - блоки 11, 12, …, 13), особенностью которой является приведение в аттенюаторах 14, 15, …, 16 амплитуд электрических сигналов к требуемым величинам перед обработкой их в n входовом сумматоре 17. Критерием подбора величин коэффициентов передачи аттенюаторов 14, 15, …, 16 является необходимость формирования равносигнальной формы основного лепестка характеристики направленности многоэлементной интерференционной антенны 3 в режиме приема, обеспечивающей равномерность гидролокационного изображения горизонтальных участков дна по координате «наклонная дальность» в пределах полосы обзора с помощью блока индикации 18. Если в пределах полосы пропускания приемного тракта дискретный спектр частотных составляющих является равномерным, то общая характеристика направленности по интенсивности
Figure 00000002
представляет собой среднее арифметическое их характеристик направленности
Figure 00000003
для многоэлементной интерференционной антенны 3 на отдельных частотных составляющих:
Figure 00000004
,
где RP⋅i(ϕ,θ) - характеристика направленности по давлению на i-той частоте дискретной составляющей спектра, n - общее число дискретных частотных составляющих спектра эхосигнала.
Заявляемое изобретение может найти широкое применение в области гидроакустики, в связи с расширением эксплуатационных возможностей гидролокатора бокового обзора, заключающегося в уменьшении мертвой зоны и увеличении протяженности обследуемой полосы донной поверхности в направлении эхопоиска, за счет использования нелинейного эффекта самовоздействия звуковых волн. При этом достигается улучшение качества гидролокационного изображения подводных объектов за счет регистрации и визуализации рассеянных ими ультразвуковых полей кратных частот, формирующихся в водной среде вследствие нелинейного эффекта самовоздействия.

Claims (3)

1. Многочастотный гидролокатор бокового обзора, содержащий блок индикации, блок управления, n-входовый сумматор, последовательно соединенные генератор радиоимпульсов, коммутатор и многоэлементную приемоизлучающую интерференционную антенну, отличающийся тем, что апертура антенны выполнена в виде выпуклого в направлении эхопоиска отсека цилиндрической поверхности радиусом кривизны R, у которого образующая l расположена в азимутальной плоскости и по длине на порядок больше, чем размер хорды а, стягивающей крайние симметричные относительно акустической оси точки дуги длиной L.
2. Многочастотный гидролокатор бокового обзора по п. 1, отличающийся тем, что стрела прогиба h, рабочий сектор α, длина дуги L, хорда а, связаны между собой соотношениями h=a×tg(α/4)/2=R[1-cos(α/2)]; L=0,01745Rα; а=2Rsin(α/2).
3. Многочастотный гидролокатор бокового обзора по п. 1, отличающийся тем, что коммутатор соединен через n цепочек, состоящих из последовательно соединенных полосовых фильтров, усилителей, детекторов и аттенюаторов, параллельно включенных таким образом, что входы полосовых фильтров с частотами пропускания ƒ, 2ƒ, 3ƒ, …, nƒ объединены и подключены к выходу коммутатора, а выходы аттенюаторов, управляющие входы которых подключены к блоку управления, соединены с n входами сумматора, выход которого подключен к сигнальному входу блока индикации.
RU2017146763A 2017-12-28 2017-12-28 Многочастотный гидролокатор бокового обзора RU2689998C1 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2017146763A RU2689998C1 (ru) 2017-12-28 2017-12-28 Многочастотный гидролокатор бокового обзора
PCT/RU2018/000860 WO2019132726A1 (ru) 2017-12-28 2018-12-24 Многочастотный гидролокатор бокового обзора
DE202018006512.9U DE202018006512U1 (de) 2017-12-28 2018-12-24 Mehrfrequenz-Unterwasserhorchgerät
US16/914,197 US11194046B2 (en) 2017-12-28 2020-06-26 Multiple frequency side-scan sonar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146763A RU2689998C1 (ru) 2017-12-28 2017-12-28 Многочастотный гидролокатор бокового обзора

Publications (1)

Publication Number Publication Date
RU2689998C1 true RU2689998C1 (ru) 2019-05-30

Family

ID=67037654

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146763A RU2689998C1 (ru) 2017-12-28 2017-12-28 Многочастотный гидролокатор бокового обзора

Country Status (4)

Country Link
US (1) US11194046B2 (ru)
DE (1) DE202018006512U1 (ru)
RU (1) RU2689998C1 (ru)
WO (1) WO2019132726A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700031C1 (ru) * 2018-12-26 2019-09-12 Общество с ограниченной ответственностью "Маринн 3Д" Многочастотное приемоизлучающее антенное устройство
RU217273U1 (ru) * 2022-12-13 2023-03-24 Акционерное Общество "Концерн "Океанприбор" Устройство определения среднего значения скорости звука прецизионных промерных эхолотов по данным оперативной океанологии

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU187327A1 (ru) * С. П. Пазухин, А. С. Валеев, А. Н. Яковлев , В. А. Леонтьев Гидроакустический прибор для обнаружения
RU31283U1 (ru) * 2003-02-25 2003-07-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидроакустическая антенна выпуклой формы
RU2259643C1 (ru) * 2004-02-18 2005-08-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидроакустическая многоэлементная антенна выпуклой формы
RU152944U1 (ru) * 2014-10-20 2015-06-27 Открытое акционерное общество "Концерн "Океанприбор" Многоэлементная гидроакустическая антенна для гидролокатора
RU2626072C1 (ru) * 2016-06-14 2017-07-21 Акционерное Общество "Концерн "Океанприбор" Гидроакустическая приемная многоэлементная антенна выпуклой формы двойной кривизны, размещаемая в носовой оконечности носителя

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1228659A1 (ru) * 1983-04-20 1999-12-20 Таганрогский радиотехнический институт им.В.Д.Калмыкова Акустический эхо-импульсный локатор
US6842401B2 (en) * 2000-04-06 2005-01-11 Teratech Corporation Sonar beamforming system
EP1925949A1 (en) * 2006-11-24 2008-05-28 BP Shipping Limited Ship mounted underwater sonar system
US20130016584A1 (en) * 2011-07-15 2013-01-17 Teledyne Scientific & Imaging Llc Methods and apparatus for obtaining sensor motion and position data from underwater acoustic signals
KR102309863B1 (ko) * 2014-10-15 2021-10-08 삼성전자주식회사 전자 장치, 그 제어 방법 및 기록 매체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU187327A1 (ru) * С. П. Пазухин, А. С. Валеев, А. Н. Яковлев , В. А. Леонтьев Гидроакустический прибор для обнаружения
RU31283U1 (ru) * 2003-02-25 2003-07-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидроакустическая антенна выпуклой формы
RU2259643C1 (ru) * 2004-02-18 2005-08-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" Гидроакустическая многоэлементная антенна выпуклой формы
RU152944U1 (ru) * 2014-10-20 2015-06-27 Открытое акционерное общество "Концерн "Океанприбор" Многоэлементная гидроакустическая антенна для гидролокатора
RU2626072C1 (ru) * 2016-06-14 2017-07-21 Акционерное Общество "Концерн "Океанприбор" Гидроакустическая приемная многоэлементная антенна выпуклой формы двойной кривизны, размещаемая в носовой оконечности носителя

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700031C1 (ru) * 2018-12-26 2019-09-12 Общество с ограниченной ответственностью "Маринн 3Д" Многочастотное приемоизлучающее антенное устройство
RU217273U1 (ru) * 2022-12-13 2023-03-24 Акционерное Общество "Концерн "Океанприбор" Устройство определения среднего значения скорости звука прецизионных промерных эхолотов по данным оперативной океанологии

Also Published As

Publication number Publication date
WO2019132726A1 (ru) 2019-07-04
DE202018006512U1 (de) 2021-03-23
US11194046B2 (en) 2021-12-07
US20210018619A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US20200264304A1 (en) Sonar data compression
RU104732U1 (ru) Многочастотное гидроакустическое приемоизлучающее антенное устройство
US20100195434A1 (en) Heterodyned Seismic Source
RU2593673C2 (ru) Радиогидроакустическая система параметрического приема волн источников и явлений атмосферы, океана и земной коры в морской среде
RU179554U1 (ru) Приемоизлучающее антенное устройство с параметрическим режимом излучения
RU2133047C1 (ru) Параметрический эхо-импульсный локатор
RU2271551C2 (ru) Способ обнаружения подводных объектов и устройство для его осуществления
RU2451300C1 (ru) Гидроакустическая навигационная система
RU75062U1 (ru) Доплеровская локационная система
RU2689998C1 (ru) Многочастотный гидролокатор бокового обзора
RU75060U1 (ru) Акустическая локационная система ближнего действия
RU178896U1 (ru) Устройство для акустической гидролокации
RU69646U1 (ru) Параметрический эхо-импульсный локатор
RU178897U1 (ru) Многоэлементная интерференционная гидроакустическая антенна
RU121113U1 (ru) Устройство для самоградуировки акустического преобразователя
RU2602995C2 (ru) Способ формирования и применения пространственно развитой просветной параметрической антенны в морской среде
RU187455U1 (ru) Многочастотный эхолот-профилограф
RU179409U1 (ru) Многоэлементная дуговая антенна
RU2517983C1 (ru) Способ профилирования донных отложений
RU75238U1 (ru) Устройство для профилирования донных отложений
RU2209530C1 (ru) Приемная многоэлементная компенсированная антенна для глубоководного фазового батиметрического гидролокатора бокового обзора
RU98254U1 (ru) Многочастотный корреляционный гидроакустический лаг
RU188744U1 (ru) Двухэлементный электроакустический преобразователь для параметрической генерации акустических сигналов
RU2721307C1 (ru) Акустический способ и устройство измерения параметров морского волнения
RU2697566C2 (ru) Электроакустический преобразователь для параметрической генерации ультразвука