RU2659797C1 - Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах - Google Patents

Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах Download PDF

Info

Publication number
RU2659797C1
RU2659797C1 RU2017139276A RU2017139276A RU2659797C1 RU 2659797 C1 RU2659797 C1 RU 2659797C1 RU 2017139276 A RU2017139276 A RU 2017139276A RU 2017139276 A RU2017139276 A RU 2017139276A RU 2659797 C1 RU2659797 C1 RU 2659797C1
Authority
RU
Russia
Prior art keywords
nickel
electrodes
batteries
oxide
electrically conductive
Prior art date
Application number
RU2017139276A
Other languages
English (en)
Inventor
Наталья Николаевна Язвинская
Николай Ефимович Галушкин
Дмитрий Николаевич Галушкин
Original Assignee
Дмитрий Николаевич Галушкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дмитрий Николаевич Галушкин filed Critical Дмитрий Николаевич Галушкин
Priority to RU2017139276A priority Critical patent/RU2659797C1/ru
Application granted granted Critical
Publication of RU2659797C1 publication Critical patent/RU2659797C1/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

Изобретение относится электротехнике и касается вопроса безопасной работы никель-кадмиевых аккумуляторов в составе различных электротехнических и электронных систем. Способ создания на поверхности оксидно-никелевых электродов электрически проводящего никелевого слоя, проницаемого для ионов и имеющего электрический контакт с токоотводом, при этом электрически проводящий никелевый слой толщиной 2-4 мкм на поверхности оксидно-никелевых электродов создается путем электролиза в нейтральном (рН=7) электролите никелирования. Изобретение позволяет создать никель-кадмиевые аккумуляторы с металлокерамическими электродами неподверженными тепловому разгону.

Description

Изобретение относится электротехнике и касается вопроса безопасной работы никель-кадмиевых аккумуляторов в составе различных электротехнических и электронных систем.
Известен способ [патент РФ №2043678, МПК H01M 10/48, H01M 10/26, 1995] контроля теплового разгона в аккумуляторе во время его эксплуатации в буферном режиме. В рамках данного способа температура аккумулятора во время эксплуатации постоянно контролируется с помощью прикрепленных термодатчиков. В случае повышения температуры выше 70-80°С аккумулятор отключается.
Однако данный способ только предотвращает наступление теплового разгона, но не устраняет саму возможность появления этого явления в процессе эксплуатации аккумуляторов.
В качестве прототипа выбран способ создания никель-кадмиевых аккумуляторов с металлокерамическими электродами неподверженными тепловому разгону [патент РФ №2617687, МПК H01M 10/24, 2016], заключающийся в создании на поверхности оксидно-никелевых электродов электрически проводящего никелевого слоя проницаемого для ионов и имеющего электрический контакт с токоотводом, который создается путем помещение металлокерамических оксидно-никелевых электродов в пакеты из тонкой никелевой перфорированной фольги толщиной 2-5 мкм, причем вверху пакеты из фольги привариваются к токоотводам электродов.
Недостаток данного способа заключается в том, что создание перфорированной никелевой фольги и помещение металлокерамических оксидно-никелевых электродов в пакеты из этой фольги являются дорогостоящими и трудоемкими операциями.
Задачей изобретения является разработка дешевого и технологически эффективного способа создания на оксидно-никелевых электродах электрически проводящего никелевого слоя проницаемого для ионов и имеющего электрический контакт с токоотводом.
Поставленная задача решалась благодаря тому, что в известном способе создания на поверхности оксидно-никелевых электродов электрически проводящего никелевого слоя проницаемого для ионов и имеющего электрический контакт с токоотводом внесены изменения, характеризующиеся тем, что электрически проводящий никелевый слой толщиной 2-4 мкм на поверхности оксидно-никелевых электродов создается путем электролиза в нейтральном (рН=7) электролите никелирования.
Сущность предложенного способа заключается в следующем.
В работе [Yazvinskaya N.N., Galushkin N.E., Galushkin D.N., Galushkina LA. Probability investigation of thermal runaway in nickel-cadmium batteries with pocket electrodes // International journal of electrochemical science. - 2016. - V. 11. - P. 5850-5854] экспериментально и теоретически доказано, что в аккумуляторах с ламельными электродами тепловой разгон невозможен. Потому что для начала теплового разгона нужно, чтобы дендрит на кадмиевом электроде пророс через сепаратор, тогда в месте расположения дендрита плотность тока будет значительно выше, чем в соседних местах электрода и электрод будет разогреваться сильней. Это приведет к началу процесса теплового разгона [Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. The mechanism of thermal runaway in alkaline batteries // Journal of the electrochemical society. - 2015. - V. 162. - P. A749-A753]. В аккумуляторах с ламельными электродами, проросший дендрит из-за высокой проводимости ламели не может сильно локально разогреть электрод и при большой плотности тока дендрит просто сгорит. Поэтому в аккумуляторах с ламельными электродами тепловой разгон невозможен.
Создание на поверхности оксидно-никелевых электродов электропроводящего никелевого слоя также не позволит электродам вместе прорастания дендритов сильно разогреваться, что исключит возможность наступления процесса теплового разгона [Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. Study of thermal runaway electrochemical reactions in alkaline batteries // Journal of the electrochemical society. - 2015. - V. 162. - P. A2044-А2050].
Как известно, в случае электрохимического осаждения никеля при рН>5,5 [Шлугер М.А. Гальванические покрытия в машиностроении. Справочник, М.: Машиностроение, 1985, С. 105-118] начинается гидролиз. Продукты гидролиза (оксид и гидроксид никеля), внедряясь в покрытие, способствуют удержанию пузырьков водорода на поверхности катода, поэтому осажденный никель становится пористым, что обеспечивает создание электрически проводящего никелевого слоя проницаемого для ионов. Поэтому для создания электрически проводящего никелевого слоя проницаемого для ионов использовались нейтральные электролиты с рН=7.
Ниже приведены примеры осуществления предлагаемого способа.
Пример 1. Предлагаемый способ блокирования теплового разгона в никель-кадмиевых аккумуляторах с металлокерамическими электродами проверялся на десяти аккумуляторах НКБН-25-У3. Данные аккумуляторы после семи лет эксплуатации были сняты с объекта, вследствие большого тока саморазряда. Аккумуляторы вскрыли и с оксидно-никелевых электродов сняли сепараторы. Затем оксидно-никелевые электроды первой группы из пяти аккумуляторов помещали в электролит никелирования NiSO4⋅7H2O - 170 г/л; NiCl2⋅6H2O - 35 г/л; NaCl - 10 г/л; Na2SO4⋅10H2O - 70 г/л. Никелирование проходило при: плотности тока 0,9 А/дм2; температуре 20°С и рН=7 в течение 18 мин. Это позволило создать на поверхности оксидно-никелевых электродов электрически проводящий никелевый слой, проницаемый для ионов, толщиной около 3 мкм, имеющий электрический контакт с токоотводом. Затем на эти электроды надевались прежние сепараторы.
На оксидно-никелевые электроды второй контрольной группы из пяти аккумуляторов были надеты прежние сепараторы. После этого аккумуляторы собрали снова, запаяли и залили электролит.
Согласно исследованиям в работе [Galushkin N.E., Yazvinskaya N.N., Galushkin D.N., Galushkina LA. Causes analysis of thermal runaway in nickel-cadmium accumulators the mechanism of thermal runaway in alkaline batteries // Journal of the electrochemical society. - 2014. - V. 161. - P.A1360-A1363] вероятность теплового разгона увеличивается с увеличением температуры аккумуляторов при их эксплуатации и напряжения их заряда. В связи с этим, аккумуляторы заряжались в термокамере при температуре 45°С и при напряжении заряда 2,3 В в течение 10 ч. Разряд выполнялся согласно руководству по технической эксплуатации аккумуляторов НКБН-25-У3 током 10 А до напряжения на клеммах аккумулятора 1 В. Было выполнено всего 800 циклов заряда-разряда для аккумуляторов каждой группы.
В результате циклирования тепловой разгон наблюдался четыре раза в контрольной группе аккумуляторов и ни одного раза в аккумуляторах с оксидно-никелевыми электродами, покрытыми электрически проводящим никелевым слоем.
Пример 2. Предлагаемый способ блокирования теплового разгона в никель-кадмиевых аккумуляторах с металлокерамическими электродами проверялся на десяти аккумуляторах НКГК-33СА. Данные аккумуляторы после шести лет эксплуатации были сняты с объекта. Аккумуляторы вскрыли и с оксидно-никелевых электродов сняли сепараторы. Затем оксидно-никелевые электроды первой группы из пяти аккумуляторов были помещены в электролит никелирования NiSO4⋅7H2O - 170 г/л; NiCl2⋅6H2O - 35 г/л; NaCl - 10 г/л; Na2SO4⋅10H2O - 70 г/л. Никелирование происходило при: плотности тока 0,9 А/дм2; температуре 20°С и рН=7 в течение 18 мин. Это позволило создать на поверхности оксидно-никелевых электродов электрически проводящий никелевый слой, проницаемый для ионов толщиной около 3 мкм, имеющий электрический контакт с токоотводом. Затем на эти электроды были надеты прежние сепараторы.
На оксидно-никелевые электроды второй контрольной группы из пяти аккумуляторов были надеты прежние сепараторы. После этого аккумуляторы собрали снова, запаяли и залили электролит.
Аккумуляторы заряжали в термокамере при температуре 45°С и при напряжении заряда 2,3 В в течение 10 ч. Разряд выполнялся согласно руководству по технической эксплуатации аккумулятора НКГК-33СА током 6 А до напряжения на клеммах аккумулятора 1 В. Было выполнено всего 800 циклов заряда-разряда для аккумуляторов каждой группы.
В результате циклирования тепловой разгон наблюдался четыре раза в контрольной группе аккумуляторов и ни одного раза в аккумуляторах с оксидно-никелевыми электродами, покрытыми электрически проводящим никелевым слоем.
Предлагаемый способ является недорогим и эффективным способом, позволяющим создавать никель-кадмиевые аккумуляторы с металлокерамическими электродами неподверженными тепловому разгону.
ИСТОЧНИКИ
1. Патент РФ №2043678, МПК Н01М 10/48, Н01М 10/26, 1995.
2. Патент РФ №2617687, МПК Н01М 10/24, 2016.
3. Galushkin N.E., Yazvinskaya N.N., Galushkin D.N., Galushkina I.A. Causes analysis of thermal runaway in nickel-cadmium accumulators the mechanism of thermal runaway in alkaline batteries // Journal of the electrochemical society. - 2014. - V. 161. - P. A1360-A1363.
4. Yazvinskaya N.N., Galushkin N.E., Galushkin D.N., Galushkina I.A. Probability investigation of thermal runaway in nickel-cadmium batteries with pocket electrodes // International journal of electrochemical science. - 2016. - V. 11. - P. 5850-5854.
5. Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. The mechanism of thermal runaway in alkaline batteries // Journal of the electrochemical society. - 2015. - V. 162. - P. A749-A753.
6. Galushkin N.E., Yazvinskaya N.N., Galushkin D.N. Study of thermal runaway electrochemical reactions in alkaline batteries // Journal of the electrochemical society. - 2015. - V. 162. - P. A2044-A2050.
7. Шлугер M.A. Гальванические покрытия в машиностроении. Справочник, М.: Машиностроение, 1985, С. 105-118.

Claims (1)

  1. Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах, заключающийся в создании на поверхности оксидно-никелевых электродов электрически проводящего никелевого слоя, проницаемого для ионов и имеющего электрический контакт с токоотводом, отличающийся тем, что электрически проводящий никелевый слой толщиной 2-4 мкм на поверхности оксидно-никелевых электродов создается путем электролиза в нейтральном (рН=7) электролите никелирования.
RU2017139276A 2017-11-09 2017-11-09 Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах RU2659797C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017139276A RU2659797C1 (ru) 2017-11-09 2017-11-09 Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017139276A RU2659797C1 (ru) 2017-11-09 2017-11-09 Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах

Publications (1)

Publication Number Publication Date
RU2659797C1 true RU2659797C1 (ru) 2018-07-04

Family

ID=62815880

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017139276A RU2659797C1 (ru) 2017-11-09 2017-11-09 Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах

Country Status (1)

Country Link
RU (1) RU2659797C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402514A1 (de) * 1989-06-16 1990-12-19 HILLE & MÜLLER Sinterfolien-Elektrode für Nickel-Cadmium-Akkumulatoren und Verfahren zur Herstellung der Elektrode
RU2058627C1 (ru) * 1994-08-09 1996-04-20 Акционерное общество закрытого типа "АвтоУАЗ" Щелочной аккумулятор
RU2099820C1 (ru) * 1995-01-10 1997-12-20 Закрытое акционерное общество "АвтоУАЗ" Никель-кадмиевый аккумулятор
RU2617687C1 (ru) * 2016-10-18 2017-04-26 Дмитрий Николаевич Галушкин Способ создания никель-кадмиевых аккумуляторов с металлокерамическими электродами, не подверженных тепловому разгону

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0402514A1 (de) * 1989-06-16 1990-12-19 HILLE & MÜLLER Sinterfolien-Elektrode für Nickel-Cadmium-Akkumulatoren und Verfahren zur Herstellung der Elektrode
RU2058627C1 (ru) * 1994-08-09 1996-04-20 Акционерное общество закрытого типа "АвтоУАЗ" Щелочной аккумулятор
RU2099820C1 (ru) * 1995-01-10 1997-12-20 Закрытое акционерное общество "АвтоУАЗ" Никель-кадмиевый аккумулятор
RU2617687C1 (ru) * 2016-10-18 2017-04-26 Дмитрий Николаевич Галушкин Способ создания никель-кадмиевых аккумуляторов с металлокерамическими электродами, не подверженных тепловому разгону

Similar Documents

Publication Publication Date Title
US20150171398A1 (en) Electrochemical separators with inserted conductive layers
KR101771122B1 (ko) 실리콘 혹은 실리콘산화물을 포함하는 전극의 전―리튬화 방법, 장치, 이에 의하여 제조된 전극 및 이를 포함하는 리튬이차전지
CN108427077A (zh) 一种利用参比电极监测负极析锂的实验方法
EP3309875B1 (en) Lithium metal electrode and its related lithium metal battery
US4637970A (en) Lead-titanium, bipolar electrode in a lead-acid battery
CN105529426B (zh) 分离器和具有稳健地分开阴极和阳极的结构的原电池
CN111613773B (zh) 一种分级结构玻璃纤维与金属锂的复合物及其制备方法
CN110911689A (zh) 集流体及其制备方法、电极片和二次电池
US20160293986A1 (en) FLOW-ASSIST-FREE Zn/NiOOH BATTERY
US4464446A (en) Anodes of composite materials and accumulators using solid anodes
RU2659797C1 (ru) Способ блокирования теплового разгона в никель-кадмиевых аккумуляторах
US20230077777A1 (en) Layered Cavity Electrode Lithium Battery
CN110911662A (zh) 一种具有保护层的锂负极及其制备方法和应用
US3553027A (en) Electrochemical cell with lead-containing electrolyte and method of generating electricity
CN114497435B (zh) 一种铝电池负极及其阳极氧化制备方法和应用
CN216671689U (zh) 复合集流体、极片和锂电池
RU2617687C1 (ru) Способ создания никель-кадмиевых аккумуляторов с металлокерамическими электродами, не подверженных тепловому разгону
CN109728240A (zh) 使用混合离子电子导体的固态电池设计
CN212182476U (zh) 一种高能量密度高功率密度铝离子电池
Raicheff et al. Novel current collector and active mass carrier of the zinc electrode for alkaline nickel-zinc batteries
KR101982538B1 (ko) 리튬 금속 음극 및 이의 제조 방법
US11322749B2 (en) Porous polymer lithium anode
CA1090878A (en) Lead crystal storage cells and storage devices made therefrom
RU99247U1 (ru) Литий-ионный аккумулятор с нанокластерными частицами
KR20180074248A (ko) 리튬 금속 음극 및 이의 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191110