RU2659443C2 - Состав для ограничения водопритока в добывающие скважины - Google Patents

Состав для ограничения водопритока в добывающие скважины Download PDF

Info

Publication number
RU2659443C2
RU2659443C2 RU2016148453A RU2016148453A RU2659443C2 RU 2659443 C2 RU2659443 C2 RU 2659443C2 RU 2016148453 A RU2016148453 A RU 2016148453A RU 2016148453 A RU2016148453 A RU 2016148453A RU 2659443 C2 RU2659443 C2 RU 2659443C2
Authority
RU
Russia
Prior art keywords
composition
amount
water
hydroxyethyl
anionic
Prior art date
Application number
RU2016148453A
Other languages
English (en)
Other versions
RU2016148453A (ru
RU2016148453A3 (ru
Inventor
Дмитрий Юрьевич Митюк
Ольга Евгеньевна Филиппова
Андрей Владимирович Шибаев
Дмитрий Александрович Муравлев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2016148453A priority Critical patent/RU2659443C2/ru
Publication of RU2016148453A publication Critical patent/RU2016148453A/ru
Publication of RU2016148453A3 publication Critical patent/RU2016148453A3/ru
Application granted granted Critical
Publication of RU2659443C2 publication Critical patent/RU2659443C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Lubricants (AREA)
  • Detergent Compositions (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности, способам ограничения водопритока в трещиноватых пластах, изоляции зон поглощения в терригенных и карбонатных коллекторах, выравнивания профиля приемистости нагнетательных скважин и снижения обводненности добываемой продукции. Технический результат при использовании изобретения заключается в снижении обводненности нефтенасыщенных участков пласта и выравнивании профиля приемистости нагнетательных скважин. Состав для ограничения водопритока в добывающие скважины, обеспечивающий вязкость не менее 0,1 Па*с и модуль упругости не менее 0,1 Па, характеризующийся тем, что включает в себя следующие компоненты, мас.%: катионное поверхностно-активное вещество (ПАВ) в количестве 0,5-6,0 или его композиция с анионным ПАВ в количестве 2,0-5,0; анионный водорастворимый полимер в количестве 0,05-0,5; низкомолекулярную соль в количестве 1,0-8,0 с одновалентным катионом; сшивающий агент, в качестве которого используют соли поливалентных металлов в количестве 0,002-0,05; вода - остальное. Изобретение развито в зависимых пунктах формулы изобретения. 5 з.п. ф-лы, 6 ил.

Description

Область техники
Изобретение относится к нефтедобывающей промышленности, способам ограничения водопритока в трещиноватых пластах, изоляции зон поглощения в терригенных и карбонатных коллекторах, выравнивания профиля приемистости нагнетательных скважин и снижения обводненности добываемой продукции. Изобретение может быть применено для улучшения нефтевытесняющей способности фильтрационных потоков, тампонирования промытых зон, увеличения охвата неоднородных пластов заводнением.
Уровень техники
Известны различные способы повышения нефтеотдачи пластов за счет применения составов, способствующих ограничению водопритока в добывающие скважины. Например, известен состав, формула которого включает полисахарид (0,35-0,40% масс.), борный сшиватель (0,035-0,040% масс.), четвертичное аммониевое соединение (0,043-0,050% масс.), комплексное ПАВ «Нафтенол ВВД» (0,01-0,05% масс.), остальное - пресная или минерализованная вода (см. патент РФ №2246609 от 15.04.2003 г. по кл. Е21В 43/12, опубликован 20.02.2005 г.).
Недостатком указанного состава является сравнительно высокое значение водоотдачи (15,9-31,0 мл за 30 минут), что приводит к уменьшению объема геля, в результате происходит лишь частичная кольматация пор обводненного пласта. Другим недостатком является достаточно высокая скорость образования геля - через 1-2 мин после смешения реагентов. Указанное обстоятельство в промысловых условиях неизбежно затрудняет его доставку в зону водоизоляции и, как следствие, также способствует снижению качества проводимых работ.
Кроме того, в диапазоне предложенных в рецептуре изолирующего состава концентраций полисахарида и борного сшивателя не происходит образования прочной трехмерной структуры геля, нарушается ее однородность, что не позволяет получить системы с удовлетворительными реологическими свойствами. Данный состав также имеет пониженную адгезию к породе пласта.
Наиболее близким по технической сущности к заявляемому изобретению является состав, применяемый при реализации способа обработки пласта, который включает водный раствор анионного полимера, растворимую в воде неорганическую или органическую кислоту, или смесь кислот, алифатический или ароматический спирт, или содержащий его продукт, соль поливалентного металла. Известная композиция дополнительно содержит поверхностно-активное вещество (ПАВ) или смесь ПАВ, высокодисперсный гидрофобный материал (ВДГМ) и ингибитор коррозии, причем перед введением соли поливалентного металла в водный раствор анионного полимера дозируют спирт или содержащий его продукт, ПАВ или смесь ПАВ, ВДГМ и ингибитор и доводят значение рН реакционной смеси до 0,5-3,0 путем добавления кислоты или смеси кислот при следующем содержании компонентов, мас. %: водорастворимый анионный полимер 0,004-5,0; спирт или содержащий его продукт 0,50-50,0; ПАВ или смесь ПАВ 0,50-10,0; ВДГМ 0,1-3,0; соль поливалентного металла 0,003-0,30; ингибитор 0,1-3,0; остальное - вода (см. патент РФ №2367792 от 30.08.2007 г. по кл. Е21В 43/32, опубликован 20.09.2009 г.).
Основным недостатком указанного состава является то, что в диапазоне значений рН 0,5-3,0 большая часть катионов поливалентных металлов проявляет минимальную склонность к комплексному связыванию с активными карбоксилат-анионами полимерных цепей в результате их протежирования. Это, в свою очередь, препятствует образованию достаточного количества сшивок между макромолекулами и формированию прочных гелей. Кроме того, недостатком применения данного состава является необходимость проведения закачки в два этапа - сначала 0,5-5,0 мас. % наполнителя, в качестве которого используют водопоглощающий полимер, затворенный в углеводородном растворителе, а затем - основной композиции, являющейся сложной многокомпонентной и многофазной системой. Такое решение требует выполнения большого объема подготовительных работ, что связано с заметным удорожанием проводимого геолого-технического мероприятия.
Раскрытие изобретения
Задачей заявляемого технического решения является создание вязкоупругого состава, обеспечивающего возможность повышения коэффициентов охвата и извлечения нефти. Применение заявляемого состава позволит отключить обводненные участки пласта и подключить нефтенасыщенные зоны, ранее не задействованные в процессе разработки.
Технический результат при использовании изобретения заключается в снижении обводненности нефтенасыщенных участков пласта и выравнивании профиля приемистости нагнетательных скважин.
Предлагаемый состав обладает улучшенными технологическими свойствами по сравнению с его аналогами, благодаря сбалансированному сочетанию целевых уровней реологических характеристик формирующихся вязкоупругих гелей, регулируемого времени гелеобразования, устойчивости к деформационным нагрузкам, хорошим нефтевытесняющим свойствам и восприимчивости к углеводородам.
Поставленная задача решается тем, что заявляемый состав, согласно техническому решению, включает водные растворы следующих компонентов (масс. %): катионное ПАВ в количестве 0,5-6,0 или его композицию (смесь) с анионным ПАВ в количестве 1,0-5,0; анионный или неионогенный водорастворимый полимер в количестве 0,05-0,5; низкомолекулярную соль в количестве 1,0-8,0 с одновалентным катионом; сшивающий агент, в качестве которого используют соли поливалентных металлов в количестве 0,002-0,05; вода - остальное.
При этом в качестве катионных ПАВ могут быть использованы эруцил-бис(2-гидроксиэтил) метиламмония хлорид (ЭГАХ), эруцилтриметиламмония хлорид, олеилметил-бис(гидроксиэтил)аммония хлорид, октадецилметил-бис(гидроксиэтил)аммония бромид; октадецил-три(гидроксиэтил)аммония бромид, октадецилдиметил(гидроксиэтил)аммония хлорид, цетилдиметил(гидроксиэтил)аммония бромид, дикозилдиметил(гидроксиэтил)аммония бромид, дикозилметил-бис(гидроксиэтил)аммония хлорид, дикозил-три(гидроксиэтил)аммония бромид, цетилпиридиния хлорид, цетилтриметиламмония бромид, октилтриметиламмония бромид.
В качестве анионных ПАВ могут быть использованы соли мононенасыщенных жирных кислот, алкилкарбоксилаты, алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, алкилглицерилсульфонаты.
В качестве анионного водорастворимого полимера могут быть использованы ксантан, ритизан, БП-92, гуар, гидроксипропилгуар, соли полиметакриловой кислоты, соли полиакриловой кислоты. В качестве неионогенного полимера могут быть использованы гидроксипропилцеллюлоза, карбоксиметилоксиэтилцеллюлоза.
В качестве соли поливалентного металла могут быть использованы соединения хрома(III), железа(III), алюминия(III), титана(IV), циркония(IV).
В качестве низкомолекулярной соли могут быть использованы хлориды натрия, калия, аммония, салицилат натрия.
Эффективным методом получения прочных гелей на основе полисахаридов является сшивание его макромолекул ионами поливалентных металлов. При концентрациях полимера выше концентрации перекрывания полимерных цепей (С*) происходит образование сплошной трехмерной сетки ассоциированных макромолекул, сопровождающееся существенным ростом реологических характеристик таких систем. В присутствии многозарядных катионов происходит уплотнение сетки, уменьшение линейных размеров отдельных ячеек и утолщение их ребер, что приводит к закономерному упрочнению структуры геля иногда на порядки величин. Регулирование технологических параметров таких систем обеспечивается выбором концентраций полимера и сшивателя (сшивающего агента). Однако в присутствии ПАВ, которые в водных растворах образуют подобные полимерным цепям «червеобразные» мицеллы, идет формирование смешанных сеток. Такие гибридные структуры сочетают в себе преимущества как мицеллярных, так и сшитых полимерных систем.
Присутствие ПАВ в предлагаемых составах приводит не только к заметному упрочнению образующихся гелей, но и снижает межфазное натяжение на границе раздела вода/нефть, облегчая их закачку в пласт и улучшая нефтевытесняющие свойства. Кроме того, при контакте с углеводородами любой природы происходит необратимое падение вязкости таких систем в результате солюбилизации углеводородов и перехода формы мицелл из «червеобразной» в сферическую. Следовательно, указанные составы приобретают свойство селективности.
Таким образом, задача ограничения водопритока в скважины решается при использовании заявляемого гелеобразующего состава, обеспечивающего вязкость не менее 0,1 Па⋅с и модуль упругости (модуль накоплений на плато G') не менее 0,1 Па, на основе катионного ПАВ или его композиции с анионным ПАВ, анионного или неионогенного водорастворимого полимера, низкомолекулярной соли и соли поливалентного металла в качестве сшивающего агента.
Краткое описание чертежей
Заявляемое изобретение поясняется следующими чертежами, показывающими возможность достижения технического результата при использовании заявляемого изобретения на конкретных примерах.
Так,
на фиг. 1 приведен график частотной зависимости модуля накоплений G' и модуля потерь G'' для систем: ксантан различной концентрации/ЭГАХ/Cr3+ в 0,64н водном растворе KCl;
на фиг. 2 приведен график сравнительной частотной зависимости модуля накоплений G' и модуля потерь G'' систем: ЭГАХ; сшитый ксантан и ЭГАХ/ксантан/сшиватель;
на фиг. 3 приведен график частотной зависимости модуля накоплений G' и модуля потерь G'' для состава: 0,09% ксантан/1% ЭГАХ/Cr3+ до и после добавления углеводорода;
на фиг. 4 приведен график частотной зависимости модуля накоплений G' и модуля потерь G'' для состава: 0,09% ксантан/1%/ЭГАХ/Cr3+ до и после разрушения структуры геля.
на фиг. 5 приведен график частотной зависимости модуля накоплений G' и модуля потерь G'' для состава: 0,79% октилтриметиламмоний бромид/2,5% олеат калия и 0,15% ритизан/0,79% октилтриметиламмоний бромид/2,5% олеат калия/Cr3+;
на фиг. 6 приведен график частотной зависимости модуля накоплений G' и модуля потерь G'' для состава: 0,79% октилтриметиламмоний бромид/2,5% олеат калия/0,15% ритизан/Cr3+ до и после добавления углеводорода.
Осуществление изобретения
Заявляемый состав получают следующим образом. Готовят базовые водные растворы каждого из компонентов: например, катионного ПАВ, а также полимера, низкомолекулярной соли и соли поливалентного металла до полного растворения реагентов. Затем базовые растворы в требуемых количествах перемешивают до получения составов нужной концентрации в течение 5-10 мин.
После этого в заводненный пласт через буферную задвижку нагнетательной скважины закачивают расчетное количество приготовленной композиции или количество, при котором наблюдается снижение приемистости скважины до заданного уровня.
После закачки гелеобразующего состава осуществляют технологическую выдержку в течение от 1 до 3 суток. Ее продолжительность зависит от степени неоднородности пласта. Чем выше неоднородность, тем больше продолжительность технологической выдержки, она также зависит от типа сшивающего агента и способа воздействия на пласт. При осуществлении данного способа может применяться минерализованная (сточная) вода с минерализацией до 100 г/л.
С использованием метода осцилляционной вискозиметрии получена следующая частотная зависимость (фиг. 1). Концентрация ионов хрома(III) соответствует мольному отношению ксантан : Cr3+ = 5:1. Уже при малых концентрациях ксантана (0,05%) модуль упругости имеет значение, равное 29 Па, он возрастает до 49 Па при увеличении концентрации полимера до 0,09%. Значительное превышение значения G' над G'' указывает на гелеобразное состояние системы.
На фиг. 2 представлены сравнительные данные для систем: ЭГАХ; сшитый ксантан и ЭГАХ/ксантан/сшиватель (сшивающий агент). Для составов на основе ЭГАХ и сшитого ксантана наблюдаются примерно одинаковые значения модуля накоплений ~3-5 Па. Система ЭГАХ/ксантан/сшиватель значительно превосходит их по своим реологическим свойствам. Модуль накоплений для нее составляет 29 Па, т.е. почти на порядок больше, чем значения модуля двух других систем, взятых по отдельности, что свидетельствует о проявлении синергетического эффекта.
На фиг. 5 представлены сравнительные данные для систем: 0,15% ритизан; 0,79% октилтриметиламмоний бромид/2,5% олеат калия и 0,15% ритизан/0,79% октилтриметиламмоний бромид/2,5% олеат калия/Cr3+. Представленные данные свидетельствуют о заметном увеличении модуля накоплений до 25 Па в присутствии сшивающего агента по сравнению как с составом 0,79% октилтриметиламмоний бромид/2,5% олеат калия, так и с 0,15% ритизаном.
Для исследования влияния углеводородов на предлагаемые составы добавляли н-декан в виде поверхностного слоя толщиной 2 мм. Реологические исследования проводили после выдерживания геля в течение 5 дней. Параллельно вводился углеводород с небольшим перемешиванием (лопастная мешалка, скорость вращения - 20 об./мин) в течение 10 мин и последующим выдерживанием в течение 5 дней. Данные осцилляционной вискозиметрии представлены на фиг. 3 и фиг. 6.
По результатам испытаний было установлено, что контакт составов с углеводородом сопровождается радикальным падением модуля упругости до значений ~1-1,5 Па и приближается по величине к модулю потерь, что свидетельствует о практически полном разрушении структуры геля.
Для оценки деформационной устойчивости предлагаемого состава ЭГАХ/ксантан/сшиватель и его способности к обратимому восстановлению структуры оказывалось энергичное механическое воздействие - перемешивание в течение 10 минут с помощью лопастной мешалки при скорости 100 об./мин. Измерения проводили спустя 4 мин или 20 ч. Полученные данные представлены на фигуре 4. Наблюдается почти полное и быстрое восстановление модуля накоплений и модуля потерь предлагаемого состава до начальных значений. Для исходного состава G'=49 Па, после механического воздействия через 4 минуты G'=33-36 Па (на 26-30% ниже исходного показателя), спустя 20 часов после механического воздействия G'=41,5-44 Па (на 10-15% ниже исходного показателя).
Пример 1
Композиция, имеющая следующий состав (в масс. %):
Figure 00000001
Для подтверждения эффективности предлагаемого состава определяли остаточный фактор сопротивления, который вычисляли по формуле
Rост.=K0/K
где Rост. - остаточный фактор сопротивления;
K0 и K - установившиеся коэффициенты проницаемости пористой среды по воде до и после закачки исследуемого состава.
Тестирование проводили на водонасыщенной линейной насыпной модели пласта, в качестве которой использовали трубу из нержавеющей стали длиной 1000 мм и внутренним диаметром 30 мм, плотно набитой кварцевым песком фракции 0,04-0,26 мм. После фильтрации 5-ти поровых объемов водного раствора хлорида калия (4,75% масс.) при фиксированном перепаде давления определили начальный коэффициент проницаемости, который был равен 2,5 мкм2. После закачки в модель пласта оторочки предлагаемого состава, размер которой составлял 20, 35 и 50% порового объема, продолжали фильтрацию 5 поровых объемов раствора KCl и определяли конечный коэффициент проницаемости, значения которого составили 0,39; 0,21 и 0,12 мкм2 соответственно. Таким образом, в результате проведения серии опытов, отличающихся размерами оторочки, вычислены значения остаточного фактора сопротивления после закачки предлагаемого состава - 6,41; 11,90 и 20,83, что свидетельствует о положительном влиянии композиции на фильтрационные характеристики пористой среды, то есть, о его способности блокировать проницаемость пористых сред и существенно увеличивать охват пласта вытеснением. Возрастание остаточного фактора сопротивления после обработки предлагаемым составом в 5-10 и более раз можно считать эффективным для значимого ограничения приемистости нагнетательных скважин.
Пример 2
Композиция, имеющая следующий состав (в масс. %):
Figure 00000002
Значения остаточного фактора сопротивления, определение которых проводилось в серии опытов по методике, описанной в примере 1, после закачки предлагаемой композиции составили 5,70; 9,88 и 18,12 соответственно при указанных объемах оторочки. Полученные данные свидетельствуют о формировании в пористой среде устойчивой гелеобразной системы даже при относительно низких концентрациях полимера, но выше концентрации перекрывания (С*), которая для ксантана имеет значение ~0,05% масс.
Пример 3
Композиция, имеющая следующий состав (в масс. %):
Figure 00000003
Значения остаточного фактора сопротивления, определение которых проводилось в серии опытов по методике, описанной в примере 1, после закачки композиции составили 7,89; 14,63 и 25,44 соответственно при указанных объемах оторочки, что подтверждает существенное увеличение фильтрационного сопротивления водонасыщенных зон пористой среды в результате применения предлагаемого гелеобразующего состава.
Пример 4
Композиция, имеющая следующий состав (в масс. %):
Figure 00000004
Figure 00000005
Значения остаточного фактора сопротивления, определение которых проводилось в серии опытов по методике, описанной в примере 1, после закачки композиции составили 12,29 и 28,80 соответственно при объемах оторочки 20 и 35% порового объема. При объеме оторочки 50% порового объема происходила полная закупорка пор, что указывает на значительную механическую прочность формирующегося геля.
Пример 5
Композиция, имеющая следующий состав (в масс. %):
Figure 00000006
Релогические данные на фиг. 5 указывают, что, как и в системах, представленных в примерах 1 и 2, введение сшивающего агента в состав 0,15% ритизан/0,79% октилтриметиламмоний бромид/2,5% олеат калия сопровождается ростом модуля упругости и модуля потерь и формированием устойчивой структуры геля, обладающего эффективным тампонирующим действием.
Целью создания данного состава является решение задачи повышения коэффициентов охвата и нефтеизвлечения залежей. Применение предлагаемого состава позволит управлять процессом разработки нефтяных месторождений, изолируя приток вод в добывающие скважины и выравнивая профиль приемистости нагнетательных скважин, способствуя, таким образом, увеличению добычи нефти и снижению ее обводненности.

Claims (6)

1. Состав для ограничения водопритока в добывающие скважины, обеспечивающий вязкость не менее 0,1 Па*с и модуль упругости не менее 0,1 Па, характеризующийся тем, что включает в себя следующие компоненты, масс. %: катионное поверхностно-активное вещество (ПАВ) в количестве 0,5-6,0 или его композиция с анионным ПАВ в количестве 2,0-5,0; анионный водорастворимый полимер в количестве 0,05-0,5; низкомолекулярную соль в количестве 1,0-8,0 с одновалентным катионом; сшивающий агент, в качестве которого используют соли поливалентных металлов в количестве 0,002-0,05; вода - остальное.
2. Состав по п. 1, характеризующийся тем, что в качестве катионных ПАВ используют эруцил-бис(2-гидроксиэтил) метиламмония хлорид - ЭГАХ, эруцилтриметиламмония хлорид, олеилметил-бис(гидроксиэтил)аммония хлорид, октадецилметил-бис(гидроксиэтил)аммония бромид; октадецил-три(гидроксиэтил) аммония бромид, октадецилдиметил(гидроксиэтил)аммония хлорид, цетилдиметил(гидроксиэтил)аммония бромид, дикозил-(тригидроксиэтил)аммония бромид, цетилпиридиния хлорид, цетилтриметиламмония бромид, октилтриметиламмоний бромид.
3. Состав по п. 1, характеризующийся тем, что в качестве анионных ПАВ используют соли мононенасыщенных жирных кислот, алкилкарбоксилаты, алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты.
4. Состав по п. 1, характеризующийся тем, что в качестве анионного водорастворимого полимера используют ксантан, ритизан, БП-92, гуар, гидроксипропилгуар, соли полиметакриловой кислоты, соли полиакриловой кислоты.
5. Состав по п. 1, характеризующийся тем, что в качестве соли поливалентного металла используют соединения хрома (III), железа (III), алюминия (III), титана (IV), циркония (IV).
6. Состав по п. 1, характеризующийся тем, что в качестве низкомолекулярной соли используют хлориды натрия, калия, аммония.
RU2016148453A 2016-12-09 2016-12-09 Состав для ограничения водопритока в добывающие скважины RU2659443C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016148453A RU2659443C2 (ru) 2016-12-09 2016-12-09 Состав для ограничения водопритока в добывающие скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016148453A RU2659443C2 (ru) 2016-12-09 2016-12-09 Состав для ограничения водопритока в добывающие скважины

Publications (3)

Publication Number Publication Date
RU2016148453A RU2016148453A (ru) 2018-06-13
RU2016148453A3 RU2016148453A3 (ru) 2018-06-13
RU2659443C2 true RU2659443C2 (ru) 2018-07-02

Family

ID=62619353

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016148453A RU2659443C2 (ru) 2016-12-09 2016-12-09 Состав для ограничения водопритока в добывающие скважины

Country Status (1)

Country Link
RU (1) RU2659443C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792491C1 (ru) * 2022-09-21 2023-03-22 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки карбонатного коллектора верей-башкирских объектов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008781A1 (en) * 1999-12-29 2003-01-09 Gupta D.V. Satyanaryana Method for fracturing subterranean formations
RU2332439C2 (ru) * 2006-07-03 2008-08-27 Владимир Анатольевич Волков Газонаполненный состав для изоляции водопритока в скважину
RU2367792C2 (ru) * 2007-08-30 2009-09-20 Общество с ограниченной ответственностью "Дельта-пром" Способ обработки пласта нефтяных месторождений
RU2446270C1 (ru) * 2010-08-05 2012-03-27 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ изоляции притока пластовых вод в скважине и крепления призабойной зоны пласта
RU2507232C2 (ru) * 2009-04-07 2014-02-20 Хэллибертон Энерджи Сервисиз, Инк. Способ использования вязкоупругих поверхностно-активных веществ
RU2554957C2 (ru) * 2013-10-01 2015-07-10 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ изоляции притока пластовых вод и крепления призабойной зоны пласта

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008781A1 (en) * 1999-12-29 2003-01-09 Gupta D.V. Satyanaryana Method for fracturing subterranean formations
RU2332439C2 (ru) * 2006-07-03 2008-08-27 Владимир Анатольевич Волков Газонаполненный состав для изоляции водопритока в скважину
RU2367792C2 (ru) * 2007-08-30 2009-09-20 Общество с ограниченной ответственностью "Дельта-пром" Способ обработки пласта нефтяных месторождений
RU2507232C2 (ru) * 2009-04-07 2014-02-20 Хэллибертон Энерджи Сервисиз, Инк. Способ использования вязкоупругих поверхностно-активных веществ
RU2446270C1 (ru) * 2010-08-05 2012-03-27 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ изоляции притока пластовых вод в скважине и крепления призабойной зоны пласта
RU2554957C2 (ru) * 2013-10-01 2015-07-10 Общество с ограниченной ответственностью "Дельта-пром инновации" Способ изоляции притока пластовых вод и крепления призабойной зоны пласта

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792491C1 (ru) * 2022-09-21 2023-03-22 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки карбонатного коллектора верей-башкирских объектов
RU2815111C1 (ru) * 2023-07-27 2024-03-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет императрицы Екатерины II" Полимер-дисперсный состав для увеличения охвата неоднородного нефтяного пласта заводнением

Also Published As

Publication number Publication date
RU2016148453A (ru) 2018-06-13
RU2016148453A3 (ru) 2018-06-13

Similar Documents

Publication Publication Date Title
US11001748B2 (en) Method of preparing and using a drag-reducing additive having a dispersion polymer
US7458424B2 (en) Tight formation water shut off method with silica gel
CN106928959B (zh) 交联剂、全悬浮压裂液及其制备方法
US9074125B1 (en) Gelling agent for water shut-off in oil and gas wells
US20080139411A1 (en) Methods of treating subterranean formations using hydrophobically modified polymers and compositions of the same
US20040209780A1 (en) Methods of treating subterranean formations using hydrophobically modified polymers and compositions of the same
EP2892974B1 (en) Use of thermo-thickening polymers in the gas- and oilfield industry
US20080135247A1 (en) Fracturing Fluid Loss Control Agent
Simjou et al. Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions
NO20190929A1 (en) Lost Circulation Pill for Severe Losses using Viscoelastic Surfactant Technology
WO2019183390A1 (en) Preformed particle gel for enhanced oil recovery
US20100144560A1 (en) Methods and compositions for reducing fluid loss during treatment with viscoelastic surfactant gels
CN105860951A (zh) 一种酸性聚合物压裂液及其制备方法
Kohler et al. Weak gel formulations for selective control of water production in high-permeability and high-temperature production wells
Cozic et al. Broadening the application range of water shutoff/conformance control microgels: an investigation of their chemical robustness
RU2659443C2 (ru) Состав для ограничения водопритока в добывающие скважины
CA2931962A1 (en) Composition and method for treating subterranean formation
CN111394077A (zh) 暂堵修井液及其制备方法
RU2754527C1 (ru) Тампонажный полимерный состав для высоких температур
CN110387006B (zh) 丙烯酰胺类聚合物反相乳液及其在水基钻井液中作为超分子包被剂的应用
RU2396419C1 (ru) Способ изоляции водопритока к добывающим нефтяным скважинам
Kalgaonkar et al. Novel compositions based on nanomaterials designed for use as conformance sealants
CN115417944B (zh) 一种防膨且可在线添加聚合物的压裂乳液及其制备方法
US20240026207A1 (en) Foamed gel system for water shut off in subterranean zones
RU2562998C1 (ru) Эмульсионный состав для глушения скважин