RU2658843C2 - Нанокомпозитный материал с биологической активностью - Google Patents
Нанокомпозитный материал с биологической активностью Download PDFInfo
- Publication number
- RU2658843C2 RU2658843C2 RU2016145941A RU2016145941A RU2658843C2 RU 2658843 C2 RU2658843 C2 RU 2658843C2 RU 2016145941 A RU2016145941 A RU 2016145941A RU 2016145941 A RU2016145941 A RU 2016145941A RU 2658843 C2 RU2658843 C2 RU 2658843C2
- Authority
- RU
- Russia
- Prior art keywords
- carbon
- ion
- substrate
- film
- biological activity
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 38
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 14
- 230000004071 biological effect Effects 0.000 title claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 16
- 239000011737 fluorine Substances 0.000 claims abstract description 16
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 9
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 9
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 8
- 238000005530 etching Methods 0.000 claims abstract description 5
- 239000004341 Octafluorocyclobutane Substances 0.000 claims abstract description 3
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 235000019407 octafluorocyclobutane Nutrition 0.000 claims abstract description 3
- 150000002500 ions Chemical class 0.000 claims description 25
- 230000008021 deposition Effects 0.000 claims description 14
- 230000004907 flux Effects 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 2
- 229910021398 atomic carbon Inorganic materials 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 15
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 abstract description 14
- 230000003287 optical effect Effects 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 238000001556 precipitation Methods 0.000 abstract description 2
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 238000000151 deposition Methods 0.000 description 13
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 229920000307 polymer substrate Polymers 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 238000006065 biodegradation reaction Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 241000191967 Staphylococcus aureus Species 0.000 description 5
- 230000000844 anti-bacterial effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 229910021418 black silicon Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 241000222122 Candida albicans Species 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 230000000975 bioactive effect Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000233866 Fungi Species 0.000 description 2
- 238000004125 X-ray microanalysis Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229920000249 biocompatible polymer Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 244000005706 microflora Species 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 241000726768 Carpinus Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 210000005256 gram-negative cell Anatomy 0.000 description 1
- 210000005255 gram-positive cell Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/14—Paints containing biocides, e.g. fungicides, insecticides or pesticides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B1/005—Constitution or structural means for improving the physical properties of a device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
- C09C3/066—Treatment or coating resulting in a free metal containing surface-region
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Wood Science & Technology (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Materials For Medical Uses (AREA)
Abstract
Изобретение относится к области нанотехнологий. Нанокомпозитный материал с биологической активностью включает подложку из политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана. Рельеф поверхности подложки модифицирован углеродсодержащей пленкой, полученной ионно-стимулированным осаждением в вакууме из плазмообразующей газовой среды. Углеродсодержащая пленка получена из октафторциклобутана, содержит фтор и выполнена толщиной 20-200 нм. Атомное содержание фтора и углерода в пленке находится в соотношении 0,6-0,8. Обеспечивается исключение адгезии микроорганизмов к поверхности, супергидрофобность и оптическая прозрачность материала. 2 пр.
Description
Изобретение относится к области нанотехнологии, а более конкретно к нанокомпозитным материалам с пленочным углеродсодержащим покрытием, получаемым осаждения ионов из газовой фазы углеводородов посредством ионно-стимулированного осаждения.
Уровень данной области техники: характеризует черный кремний (bSi), который представляет собой синтетический наноматериал, содержащий большое число нановыступов на поверхности, и получен простым реактивным ионным травлением для фотовольтаических применений (см., например, Ivanova Е.Р. et al. / Bactericidal activity of black silicon/Nat/Commun/ 4:2338. DOI: 10.1038 (2013).
В статье показано, что поверхность черного кремния имеет иерархические структуры, содержащие нанокластеры а нановыступы, проявляющие механический бактерицидный эффект, независимый от химического состава, действительный для любой гидрофильной и гидрофобной поверхности.
Поверхность черного кремния обладает физической бактерицидной активностью, то есть является механозависимым антибактериальным материалом, бактерицидным против всех испытанных грамположительных и грамотрицательных бактерий, а также эндоспор, демонстрируя скорость их уничтожения до 450000 клеток/(мин⋅см2).
Гидрофобная поверхность черного кремния содержит распределенные нановыступы диаметром 20-80 нм с основанием диаметром 200 нм.
Однако недостатком описанного материала является его непрозрачность, что ограничивает применение в политронике для изготовления активных оптоэлектронных элементов.
Отмеченный недостаток устранен в нанокомпозитном полимерном материале с биологической активностью по патенту RU №2348666 С2, C09D 5/14, В82В 1/00, 2009 г., который по технической сущности и числу совпадающих признаков выбран в качестве наиболее близкого аналога предложенному материалу.
Известный нанокомпозитный полимерный материал (п. 14), обладающий биологической активностью, включает материал подложки из биосовместимого полимера, преимущественно полиэтилентерефталата или политетрафторэтилена (п. 19), выполненный в виде рельефа со среднеквадратичной шероховатостью Rq, равной 5-200 нм, и нанесенную сверху модифицирующую углеродсодержащую пленку толщиной, не превышающей наноразмерный диапазон.
Наноструктурирование поверхности полимерной подложки формирует выступы рельефа высотой 10-80 нм при радиусе их основания в диапазоне 80-230 нм, что определяет расстояние между выступами, многократно превышающее размер как грамположительных клеток с размером 1 мкм (Staphylococus aureus), так и грамотрицательных клеток с размером 2-3 мкм (Pseudomonas aerugenosa), включая грабы, не препятствуя их адгезии и образованию биопленок, результатом чего следует биодеструкция.
Таким образом, известный материал характеризуется неудовлетворительной биологической активностью, потому недолговечен, что ограничивает его практическое применение для ответственных изделий.
К недостаткам известного материала следует отнести неудовлетворительное уничтожение адгезиованных микроорганизмов со стороны углеродсодержащей пленки на наноструктурированной поверхности полимерной подложки. Пленка, содержащая только углерод, не может эффективно противостоять агрессии микроорганизмов и бактерий, поселившихся на поверхности сформированной двухслойной матричной системы нанокомпозитного материала.
Соотношение высоты выступов нанорельефа поверхности подложки к радиусу их оснований незначительно (0,12-0,22), что формирует своеобразную «паллету» с ячейками многократно большего размера, чем микроорганизмы и бактерии, адгезированные в них и образующие биопленки на поверхности.
Известный материал подвержен активной деструкции в результате жизнедеятельности микроорганизмов.
Технической задачей, на решение которой направлена настоящее изобретение, является усовершенствование известного наноструктурированного материала с биологической активностью за счет введения в структуру пленки дополнительного компонента, агрессивно действующего на микрофлору, что сообщает материалу новые свойства и качества, неприсущие известным аналогам, такие как повышенное антимикробное действие, супергидрофобность, уменьшение влагопроницемости, оптическая прозрачность в видимом спектральном диапазоне.
Требуемый технический результат достигается тем, что в известном нанокомпозитном материале с биологической активностью, включающем подложку из биосовместимого полимера, преимущественно политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана, при этом рельеф поверхности подложки модифицирован углеродсодержащей наноразмерной пленкой, полученной ионно-стимулированным осаждением в вакууме из плазмообразующей газовой среды, согласно изобретению углеродсодержащая пленка, полученная из октафторциклобутана, дополнительно содержит фтор и выполнена толщиной 20-200 нм, при этом атомное содержание фтора и углерода в модифицирующей пленке находится в соотношении 0,6-0,8.
Отличительные признает предложенного технического решения полностью исключили адгезию микроорганизмов на поверхности наноструктурированного материала, супергидрофобность которого достигнута за счет оптимизированного содержания фтора и углерода пленки на заданном нанорельефе поверхности подложки, при этом полученная оптическая прозрачность материала в видимом спектральном диапазоне обеспечила пригодность для использования материала в политронике.
Дополнительное модифицирование углеродсодержащей пленки фтором, при оптимальном атомном соотношении в пленке фтора и углерода 0,6-0,8, соответственно как (38-42):(60-55) ат.% обеспечило полную антиадгезивность микроорганизмов к поверхности материала, а следовательно, исключило его биодеструкцию, при этом гарантирована супергидрофобность (как результат уменьшения поверхностной энергии) и оптическая прозрачность в видимом спектральном диапазоне не менее 90%.
При атомном соотношении фтора к углероду меньше 0,6 в пленочном покрытии наноструктурированно полимерной подложки материала с биологической активностью, когда фтора содержится меньше 38 ат.%, а углерода - больше 60 ат.%, наблюдается обрастание поверхности биопленками различной природы с последующей биодеструкцией материала, то есть потеря функциональности. Оптическая прозрачность в этом случае в видимом спектральном диапазоне уменьшается до 75%, а гидрофобность ухудшается из-за увеличения поверхностной энергии и изменения рельефа поверхности при биодеструкции.
При атомном соотношении фтора к углероду больше 0,8 в пленочном покрытии наноструктурированной полимерной подложки материала с биологической активностью, когда фтора содержится больше 42 ат.%, а углерода - меньше 55 ат.%, происходит биообрастание грамположительными микроорганизмами и наблюдаются вздутия поверхности полимерной подложки с последующей биодеструкцией материала, но гидрофобность сохраняется, так как поверхностная энергия при этом снижается.
Следовательно, каждый признак необходим, а их совокупность в устойчивой взаимосвязи являются достаточными для достижения новизны качества, неприсущей признакам в разобщенности, то есть поставленная в изобретении техническая задача решена не суммой эффектов, а новым сверхэффектом суммы признаков.
Предложенный нанокомпозитный материал изготавливается в вакуумной установке с ионным источником ИИ-4-0,15, где проводится ионно-плазменная обработка поверхности подложки из политетрафторэтилена или полиэтилентерефталата потоками ионов тетрафторметана (CF4) в вакууме в течение 15-35 мин, в результате чего происходит травление - наноструктурирование поверхности подложки до шероховатости Rq=6-17 нм, в соответствии с назначением по применению. При этом средняя энергия ионов составляет 500-3000 эВ, плотность тока ионов 0,5-5 мА/см2.
Затем на сформированный нанорельеф поверхности подложки, посредством ионно-стимулированного осаждения из октофторциклобутана (C4F8), наносится модифицирующая фторуглеродная пленка толщиной 20-200 нм.
Оптимальная толщина фторуглеродной пленки экспериментально определена в диапазоне 20-200 нм, которая равномерно покрывает выступы наноструктурированного рельефа полимерной подложки и является не адгезивной для микроорганизмов и бактерий.
Изготовление предложенного нанокомпозитного материала опробовано на опытных образцах пленочного биоактивного полимерного материала, травление поверхности которого и последующая модификация наноструктурированной поверхности (НСП) проводились в вакуумной установке, оснащенной ионным источником марки ИИ-4-0,15.
Испытания образцов биосовместимого материала, нанокомпозитная подложка которого модифицирована осаждением фторуглеродсодержащей пленки, подтвердили достижение новых показателей назначения: повышенное антимикробное действие, супергидрофобность, существенно уменьшающая влагопроницаемость (при снижении энергии поверхности до 30 мН/м), и оптическая прозрачность материала в видимой области спектра, которая составляет не менее 90%.
Обработка поверхности подложки из политетрафторэтилена или полиэтилентерефталата проводится потоками ионов тетрафторметана посредством ионно-плазменного травления в вакууме в течение 15-35 мин, в результате чего происходит наноструктурирование ее поверхности до шероховатости Rq=6-17 нм, в соответствии с назначением по применению.
При этом средняя энергия ионов составляет 500-3000 эВ, плотность тока ионов 0,5-5 мА/см2.
Затем на сформированный нанорельеф подложки, посредством ионно-стимулированного осаждения из октофторциклобутана, наносится модифицирующая фторуглеродсодержащая пленка толщиной 20-200 нм, которая максимально покрывает наноструктурированный рельеф полимерной подложки и является не адгезивной для микроорганизмов.
Опытные образцы биоактивного полимерного материала, поверхность которого подвергли травлению ионами тетрафторметана с последующей модификацией посредством ионно-стимулированного осаждения фторуглеродной пленки из октофторциклобутана для формирования модифицирующей пленки, были исследованы следующим образом.
Толщина пленок измерялась по свидетелю с помощью микроинтерферометров МИИ-4 и МИИ-11.
Спектры отражения и пропускания образцов ПЭТФ исследовались с помощью спектрофотометра Lamda 50 (Perkin Elmer Inc., USA).
Измерения параметров наноструктурированной поверхности проводят методом атомно-силовой микроскопии с использованием прибора «Veeco Dimension Icon 310» (Veeco Instruments Inc., USA), измерение величины поверхностной энергии проводят путем измерения краевого угла смачивания (КУС) по отношению к двум разным жидкостям: воде и этиленгликолю, с использованием горизонтального микроскопа «МГ» с гониометрической приставкой в условиях натекания (капля наносится на поверхность твердого тела).
На основе полученных данных по КУС рассчитывалась удельная энергия поверхности σs и ее полярный и дисперсионный компоненты σd, σp.
Исследование структуры поверхности для сценки колонизации поверхности образцов микроорганизмами проводилось в двухлучевом ионно-электронном сканирующем микроскопе Quanta 200 3D (FEI Company, USA) в режиме высокого вакуума при ускоряющем напряжении 5 и 10 кВ после напыления на их поверхность золота (999) в установке SPI-Module Sputter/Carbon Coater System (SPI Inc., USA). Анализ химического состава образцов проводился методом рентгеновского микроанализа с помощью приставки Genesis ХМ 2 (EDAX, USA) к сканирующему электронному микроскопу Quanta 200 3D.
В качестве микроорганизма биодеструктора были выбраны Staphylococcus aureus, которые обладают мощным деструктивным потенциалом в отношении полимерных материалов, и грибы Candida albicans.
Образцы для исследования инкубировались в жидкой питательной среде, содержащей Staphylococcus aureus 25213 АТСС или грибы Candida albicans в течение 5 сут при комнатной температуре. Дополнительного обогащения питательной среды в течение инкубации не проводилось. После 5-суточного срока инкубации образцы фторуглеродсодержащих материалов фиксировались в 10%-ном нейтральном водном растворе формалина, извлекались из питательной среды, высушивались при комнатной температуре в течение 10 мин и монтировались на алюминиевые столики с помощью угольного скотча.
Пример 1.
Подложку из ПЭТФ помещали на вращающийся барабан - подложко-держатель вакуумной установки с ионным источником ИИ-4-0,15. Камеру вакуумной установки откачивали турбомолекулярным насосом (ТМН-500) до давления (5÷6)⋅10-3 Па. В качестве рабочего газа использовали тетрафторметан, который с помощью натекателя впускали в ионный источник до давления 10-1 Па. Обработку поверхности ПЭТФ производили при величине энергии ионов 700±100 эВ и плотности ионного тока ≈2,0±0,3 мА/см2 в течение 20 мин.
Затем ионно-плазменным осаждением наносили модифицирующую фторуглеродную пленку посредством ионно-стимулированного осаждения из октофторциклобутана, с помощью второго ионного источника, при ускоряющем напряжении 3 кВ, токе в катушке соленоида 2 А и токе разряда 200 мА. Время осаждения составляло 10 мин в соответствии с заданной толщиной покрытия, которую контролировали по свидетелю с помощью микроскопов МИИ-4 и МИИ-11. В результате получили фторуглеродную пленку на наноструктурированной поверхности подложки толщиной 90 нм.
Измерения параметров наноструктурированной поверхности методом атомно-силовой микроскопии показали, что среднеквадратичная шероховатость составляла 11 нм.
Путем измерения краевого угла смачивания по отношению к двум разным жидкостям (воде и этиленгликолю) и на основе полученных данных рассчитали величину полной удельной поверхностной энергии σs. Величина КУС составила 102°, а величина поверхностной энергии - 30 мН/м.
Пропускание образца в видимой области спектра составляет 91%.
Влагопропускание образца составляло 23×10-10 г/(см2⋅нм⋅ч).
Оценка структуры поверхности образцов с целью определения колонизации поверхности микроорганизмами проводилась в двухлучевом ионно-электронном сканирующем микроскопе Quanta 200 3D (FEI Company, USA) в режиме высокого вакуума при ускоряющем напряжении 5 и 10 кВ после напыления на их поверхность золота (999) в установке SPI-Module Sputter/Carbon Coater System (SPI Inc., USA).
При оценке структуры и химического состава полученного образца в указанном оборудовании было показано, что пленка толщиной 90 нм содержит фтор и углерод в атомном соотношении 0,69.
Образцы для исследования инкубировались в жидкой питательной среде, содержащей Staphylococcus aureus 25213 АТСС, в течение 5 сут при комнатной температуре. После 5-суточного срока инкубации образцы фторуглеродсодержащих материалов фиксировались в 10%-ном нейтральном водном растворе формалина, извлекались из питательной среды, высушивались при комнатной температуре в течение 10 мин.
Было установлено, что на поверхности образцов отсутствует адгезия клеток Staphylococcus aureus.
Пример 2.
Подложку из ПТФЭ толщиной 10 мкм помещали на вращающийся барабан – подложко-держатель вакуумной установки с ионным источником ИИ-4-0,15. Камеру вакуумной установки откачивали турбомолекулярным насосом (ТМН-500) до давления (5÷6)⋅10-3 Па. В качестве рабочего газа использовали тетрафторметан, который с помощью натекателя впускали в ионный источник до давления 10-1 Па. Обработку поверхности ПТФЭ производили при величине энергии ионов 900±50 эВ и плотности ионного тока ≈2,0±0,3 мА/см2 в течение 30 мин.
Затем на развитую поверхность подножки ионно-плазменным осаждением наносили модифицирующую фторуглеродную пленку. Нанесение производили методом ионно-стимулированного осаждения из октофторциклобутана с помощью второго ионного источника при ускоряющем напряжении 4 кВ. Время осаждения составляло 30 мин в соответствии с заданной толщиной покрытия, которую контролировали по свидетелю с помощью микроскопов МИИ-4 и МИИ-11. В результате получили фторуглеродную пленку толщиной 180 нм.
Измерения параметров. НСП методом атомно-силовой микроскопии показало, что среднеквадратичная шероховатость составляет 12 нм.
Путем измерения краевого угла смачивания по отношению к двум разным жидкостям (воде и этиленгликолю) и на основе полученных данных рассчитали величину полной удельной поверхностной энергии σs. Величина КУС составляла 110°, а величина поверхностной энергии - 30 мН/м.
Пропускание образца в видимой области спектра составило 90%.
Влагопропускание образца составляло 18×10-10 г/(см2⋅нм⋅ч).
Оценка структуры поверхности образцов проводилась в двухлицевом ионно-электронном сканирующем микроскопе Quanta 200 3D (FEI Company, USA) в режиме высокого вакуума при ускоряющем напряжении 5 и 10 кВ после напыления на их поверхность золота (999) в установке SPI-Module Sputter/Carbon Coater System (SPI Inc., USA). Анализ химического состава образцов проводился методом рентгеновского микроанализа с помощью приставки Genesis ХМ 2 (EDAX, USA) к сканирующему электронному микроскопу Quanta 200 3D.
При оценке структуры и химического состава полученного образца в указанном оборудовании было показано, что пленка толщиной 180 нм содержит фтор и углерод в атомном соотношении 0,74.
Образцы для исследования инкубировались в жидкой питательной среде, содержащей грибы Candida albicans в течение 5 суток при комнатной температуре. После 5-суточного срока инкубации образцы фторуглеродных материалов фиксировались в 10%-ном нейтральном водном растворе формалина, извлекались из питательной среды, высушивались при комнатной температуре в течение 10 минут.
Было установлено, что на поверхности полученных образцов отсутствует адгезия клеток Candida albicans.
Испытания опытных образцов нанокомпозитного материала с биологической активностью, обработанных по описанному способу, показали достижение заданных показателей назначения, что позволяет рекомендовать его для серийного производства на предприятиях по изготовлению элементов политроники и для поставок в лечебные учреждения.
Опытные образцы биоактивного полимерного материала, поверхность которого подвергли травлению с последующей модификацией посредством осаждения фтора и углерода при формировании пленки покрытия, были испытаны действием микроорганизмов и грибов.
Результаты испытаний подтвердили, что предложенный нанокомпозитный материал является основой для разработки нового поколения материалов, характеризующихся комплексом качеств и свойств:
- повышенное антимикробное действие, исключающее колонизацию поверхности микрофлорой;
- супергидрофобность, существенно уменьшающая влаго- и паропроницаемость, при снижении энергии поверхности до 30 мН/м;
- оптическая прозрачность материала в видимом спектральном диапазоне, составляющая не менее 90%.
Как показали испытания образцов материалов по изобретению, нанесение на наструктурированную поверхность полимерной подложки фторуглеродной пленки увеличило гидрофобность материала, то есть уменьшило паровлагопроницаемость, увеличило пропускание в видимом оптическом диапазоне, а также исключило адгезию грамм-отрицательных и грамм-положительных микроорганизмов и грибов, биодеструкцию поверхности, вздутия на поверхности подложки и др
Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явным образом не следует для специалиста по пленочным нанокомпозитным материалам с биологической активностью, показал, что оно неизвестно, а с учетом возможности промышленного серийного изготовления этого материала на действующем ионно-плазменном оборудовании, можно сделать вывод о его соответствии условиям патентоспособности.
Claims (1)
- Нанокомпозитный материал с биологической активностью, включающий подложку из политетрафторэтилена или полиэтилентерефталата, имеющую наноструктурированную поверхность в результате ее травления потоками ионов тетрафторметана, при этом рельеф поверхности подложки модифицирован углеродсодержащей пленкой, полученной ионно-стимулированным осаждением в вакууме из плазмообразующей газовой среды, отличающийся тем, что углеродсодержащая пленка получена из октафторциклобутана, дополнительно содержит фтор и выполнена толщиной 20-200 нм, при этом атомное содержание фтора и углерода в ней находится в соотношении 0,6-0,8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145941A RU2658843C2 (ru) | 2016-11-23 | 2016-11-23 | Нанокомпозитный материал с биологической активностью |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016145941A RU2658843C2 (ru) | 2016-11-23 | 2016-11-23 | Нанокомпозитный материал с биологической активностью |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2016145941A3 RU2016145941A3 (ru) | 2018-05-24 |
RU2016145941A RU2016145941A (ru) | 2018-05-24 |
RU2658843C2 true RU2658843C2 (ru) | 2018-06-25 |
Family
ID=62202246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016145941A RU2658843C2 (ru) | 2016-11-23 | 2016-11-23 | Нанокомпозитный материал с биологической активностью |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2658843C2 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2028347C1 (ru) * | 1992-03-24 | 1995-02-09 | Вера Васильевна Ефанова | Теплостойкая антиобрастающая полимерная композиция для покрытий |
EA200501562A1 (ru) * | 2003-05-16 | 2006-04-28 | Блу Мембрейнз Гмбх | Медицинские имплантаты, содержащие биосовместимые покрытия |
RU2348666C2 (ru) * | 2007-03-16 | 2009-03-10 | Вера Матвеевна Елинсон | Способ получения нанокомпозитных полимерных материалов с биологической активностью и нанокомпозитные полимерные материалы, полученные этим способом |
JP2012188635A (ja) * | 2011-03-10 | 2012-10-04 | Ishihara Chem Co Ltd | ナノコンポジット、ナノ分散液、その製造方法及び該分散液からなる各種剤 |
CN104449282A (zh) * | 2014-10-23 | 2015-03-25 | 安徽省实防新型玻璃科技有限公司 | 一种抗菌防污玻璃门用水性涂料及其制备方法 |
-
2016
- 2016-11-23 RU RU2016145941A patent/RU2658843C2/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2028347C1 (ru) * | 1992-03-24 | 1995-02-09 | Вера Васильевна Ефанова | Теплостойкая антиобрастающая полимерная композиция для покрытий |
EA200501562A1 (ru) * | 2003-05-16 | 2006-04-28 | Блу Мембрейнз Гмбх | Медицинские имплантаты, содержащие биосовместимые покрытия |
RU2348666C2 (ru) * | 2007-03-16 | 2009-03-10 | Вера Матвеевна Елинсон | Способ получения нанокомпозитных полимерных материалов с биологической активностью и нанокомпозитные полимерные материалы, полученные этим способом |
JP2012188635A (ja) * | 2011-03-10 | 2012-10-04 | Ishihara Chem Co Ltd | ナノコンポジット、ナノ分散液、その製造方法及び該分散液からなる各種剤 |
CN104449282A (zh) * | 2014-10-23 | 2015-03-25 | 安徽省实防新型玻璃科技有限公司 | 一种抗菌防污玻璃门用水性涂料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Рекомендации по поиску и по отбору патентных документов, относящихся к нанотехнологиям, в отечественном патентном фонде, ФГУ ФИПС, Москва, 2009, с. 2, с. 26. * |
Also Published As
Publication number | Publication date |
---|---|
RU2016145941A3 (ru) | 2018-05-24 |
RU2016145941A (ru) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100341565B1 (ko) | 젖음성이 우수한 표면을 갖는 불소계 수지 | |
Shakoury et al. | Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted | |
ES2778173T3 (es) | Una superficie biocida sintética que comprende un conjunto de nanopuntas | |
Matin et al. | Surface-modified reverse osmosis membranes applying a copolymer film to reduce adhesion of bacteria as a strategy for biofouling control | |
Kolářová et al. | Effect of plasma treatment on cellulose fiber | |
Liu et al. | Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer | |
Rtimi et al. | TiON and TiON-Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light | |
Palumbo et al. | Superhydrophobic and superhydrophilic polycarbonate by tailoring chemistry and nano‐texture with plasma processing | |
Curry et al. | Highly oriented MoS 2 coatings: tribology and environmental stability | |
Hirasawa et al. | Superhydrophilic co-polymer coatings on denture surfaces reduce Candida albicans adhesion—An in vitro study | |
US20120223011A1 (en) | Superhydrophobic/amphiphilic(oleophilic) surface with nano structure and the fabrication method thereof | |
Bayat et al. | Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity | |
Bazaka et al. | Effect of titanium surface topography on plasma deposition of antibacterial polymer coatings | |
RU2348666C2 (ru) | Способ получения нанокомпозитных полимерных материалов с биологической активностью и нанокомпозитные полимерные материалы, полученные этим способом | |
Piferi et al. | Hydrophilicity and Hydrophobicity Control of Plasma‐Treated Surfaces via Fractal Parameters | |
Smirnov et al. | Surface modification of polystyrene thin films by RF plasma treatment | |
Ostrikov et al. | Bactericidal effects of plasma-modified surface chemistry of silicon nanograss | |
Horiuchi et al. | Contamination-free transmission electron microscopy for high-resolution carbon elemental mapping of polymers | |
Jahangiri et al. | Improvement of performance of polyamide reverse osmosis membranes using dielectric barrier discharge plasma treatment as a novel surface modification method | |
Slepička et al. | Honeycomb‐like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment | |
RU2658843C2 (ru) | Нанокомпозитный материал с биологической активностью | |
Grytsenko et al. | Protective applications of vacuum-deposited perfluoropolymer films | |
RU2632297C2 (ru) | Нанокомпозитный материал с биологической активностью | |
Marguier et al. | Bacterial Colonization of Low‐Wettable Surfaces is Driven by Culture Conditions and Topography | |
Bazaka et al. | A study of a retention of antimicrobial activity by plasma polymerized terpinen-4-ol thin films |