RU2658093C1 - Способ построения компактных делителей мощности свч сигналов - Google Patents

Способ построения компактных делителей мощности свч сигналов Download PDF

Info

Publication number
RU2658093C1
RU2658093C1 RU2017106567A RU2017106567A RU2658093C1 RU 2658093 C1 RU2658093 C1 RU 2658093C1 RU 2017106567 A RU2017106567 A RU 2017106567A RU 2017106567 A RU2017106567 A RU 2017106567A RU 2658093 C1 RU2658093 C1 RU 2658093C1
Authority
RU
Russia
Prior art keywords
divider
output channels
power
microwave
tno
Prior art date
Application number
RU2017106567A
Other languages
English (en)
Inventor
Владимир Матвеевич Темнов
Вера Юрьевна Тереханова
Original Assignee
Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" filed Critical Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники"
Priority to RU2017106567A priority Critical patent/RU2658093C1/ru
Application granted granted Critical
Publication of RU2658093C1 publication Critical patent/RU2658093C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Landscapes

  • Microwave Amplifiers (AREA)

Abstract

Изобретение относится к области сверхвысокочастотной радиотехники, в частности к делителям мощности. Способ построения компактных делителей мощности сверхвысокочастотных сигналов основан на объединении транснаправленных ответвителей в делитель, собираемый по квазицепочечной схеме с учетом заданного расположения выходных каналов по критериям минимальных потерь, максимальной развязки между выходными каналами и минимального коэффициента стоячей волны на всех его плечах. При этом выполняют деление сигналов с помощью гибридного транснаправленного ответвителя на две равные части. Дополнительно осуществляют деление мощности на две неравные части с помощью дополнительных транснаправленных ответвителей с сильной и слабой связью. Технический результат - увеличение количества выходных каналов. 9 ил.

Description

Изобретение относится к области сверхвысокочастотной (СВЧ) радиотехники и может быть использовано при построении делителей мощности на два, три и более выходных каналов, согласованных по входу делителей мощности, балансных СВЧ усилителей, фазовращателей, смесителей, мультиплексоров, схем формирования излучения антенных решеток.
Задача построения делителей на полосковых линиях существует давно и предложено множество вариантов ее решения. Так, известен классический делитель мощности на два канала Уилкинсона [1] с равным делением мощности и развязкой между выходными каналами. В [2] предложена схема построения и дана методика расчета модифицированного делителя типа Уилкинсона с неравным делением, уступающего классическому в компактности из-за наличия согласующих отрезков на входе и выходах делителя. В работе [3] рассмотрен способ реализации развязанного делителя типа Уилкинсона с тремя выходными каналами и равномерным делением мощности, содержащего резисторы, которые соединены со схемой навесными мостами или перемычками. Существенным недостатком всех делителей этого типа является использование для обеспечения развязки внутренних резисторов, работающих в режиме четырехполюсника. Такие резисторы вследствие конечности (неточечности) их размеров привносят дополнительные тепловые потери при делении.
Другим типом делителей мощности, свободным от отмеченного выше недостатка, можно считать делители Гайсела, у которых развязывающие резисторы работают в режиме двухполюсника [4]. Они менее компактны по сравнению с делителями Уилкинсона, однако при реализации в интегральном исполнении позволяют при неравном делении на два канала получать существенное различие в уровнях выходных мощностей [5].
К третьему типу устройств, на основе которых разрабатываются делители, можно отнести согласованные четырехплечие устройства в виде направленных ответвителей (НО) и прежде всего шлейфных ответвителей, гибридных колец и НО на связанных микрополосковых линиях передачи. Существует множество схемотехнических приемов уменьшения их габаритных размеров, расширения рабочей полосы частот, улучшения технологичности конструкций [6].
Среди отмеченных следует выделить НО на связанных линиях и прежде всего НО типа Ланге, так как они отличаются малыми габаритами, широкополосностью по согласованию и развязке, а также возможностью объединения в цепочечную схему. Недостатком НО типа Ланге можно считать практическую невозможность реализовывать сильную связь между микрополосковыми линиями, превышающую -3 дБ, нетехнологичность конструкции из-за наличия воздушных проволочных перемычек для обеспечения гальванического контакта между проводниками, а также отсутствие развязки по постоянному току между входным и одним из выходных каналов. К примеру, компактный делитель мощности с равномерным делением между тремя выходными каналами получается соединением по цепочечной схеме двух противонаправленных НО типа Ланге с переходными ослаблениями -4.8 дБ и -3 дБ. Здесь нужно упомянуть и о согласованных по входу делителях мощности при подключении к их выходным плечам одинаковых рассогласованных нагрузок [7].
При построении делителя на большее число каналов целесообразно применять квазицепочечную схему, когда некоторые НО включаются в схему каскадно. В отличие от цепочечной схемы входящие в нее выходные плечи этих НО заменяются другими выходными плечами того же НО, а прежние выходные плечи подключаются к выходным каналам делителя. Эту схему можно считать обобщением цепочечной. Разумеется, что рассматриваемым делителям присущи те же недостатки, что и ответвителям, и к ним еще добавляется повышенная неравномерность деления в полосе частот, превышающая неравномерность каждого из входящих в него НО.
Следовательно, ставя задачу создания простой, компактной, технологичной, максимально приспособленной для объединения в единую схему с полупроводниковыми элементами плоскостной конструкции делителя на заземленной диэлектрической подложке, целесообразно остановиться на ответвителях на связанных линиях передачи.
Относительно недавно был предложен и активно исследуется новый тип компактных НО, который предполагает использование композитных элементов на основе искусственно создаваемых периодических структур. Так, в [8] показана топология, дан расчет схемы и приведены результаты экспериментальной проверки гибридного транснаправленного ответвителя (ТНО), когда в оба плеча вторичного канала ответвляется по -3 дБ падающей мощности. В нем две одинаковые параллельные микрополосковые линии расположены на заземленной диэлектрической подложке и связаны друг с другом не только электромагнитной связью, но дополнительно и электрической связью посредством включаемых между линиями и располагаемых эквидистантно вдоль ответвителя одинаковых конденсаторов С1 малой емкости и малых размеров (фиг. 1).
Этот гибридный ТНО, рассматриваемый как делитель мощности на два выходных канала с одинаковой мощностью, которые подключаются к плечам вторичного канала ТНО, и принимается за прототип. Важное достоинство прототипа хорошо известно: это отсутствие гальванической связи между входным и выходными каналами. Основным же достоинством прототипа является обнаруженная авторами заявки возможность модификации ответвителя: его реализация в виде двух конструкций с неравным делением мощности между плечами вторичного канала. Так, если более половины падающей на плечо а мощности поступает в плечо b, а менее половины - в плечо d (см. фиг. 1), то получаем ТНО с сильной связью, в противном случае - ТНО со слабой связью, при этом плечо с, к которому подключается балластный резистор (равный по величине волновому сопротивлению тракта Z), считается развязанным. К примеру, на фиг. 2а, б показаны топологии ТНО со слабой и сильной связью (обозначаемые как THO1 и ТНO2 и учитывающие особенности установки навесных конденсаторов), когда в плечо b вторичного канала b-d поступают соответственно -4.8 дБ и -1.8 дБ мощности, падающей на плечо а (вход) основного канала а-с, то есть отношение мощностей в плечах вторичного канала составляет 2:1. Это отношение, записанное одним числом (в данном случае 2), будем называть коэффициентом деления, а максимальное его значение, при котором параметры ТНО (ширина полосковых проводников и расстояние между ними) еще удовлетворяют технологическим допускам - предельным коэффициентом деления. На фиг. 2в приведена топология гибридного THO3 с коэффициентом деления 1. Здесь нужно отметить, что понятийная база для описания подобных структур еще не устоялась.
На фиг. 3а, 3б и 3в приведены блок-схемы соответствующих делителей на основе ТНО1, THO2 и THO3, цифрами обозначены номера входных и выходных плеч делителей. Балластный резистор Z конструктивно может быть как внешним, так и внутренним, а функционально - только внутренним. Он обеспечивает согласование с трактом и развязку между выходными плечами 2 и 3 делителя. На фиг. 4а, б, в показаны частотные зависимости модулей элементов |Sij| матрицы рассеяния S рассматриваемых делителей как трехплечих устройств, в которых j и i означают номера плеч, куда поступает и откуда выходит СВЧ сигнал соответственно. Все вычисления проведены с использованием пакета схемотехнического и электродинамического моделирования Microwave Office [9]. Видно, что из трех приведенных вариантов делитель на основе THO2 с сильной связью является наиболее широкополосным по развязке (по уровню -20 дБ). Расчеты проводились при подложке толщиной 2 мм и диэлектрической проницаемости 10; зазоры между связанными линиями, ширины линий и значения емкостей для всех трех случаев получились различными и, соответственно, равными: 3 мм, 0.38 мм и 2.8 пф - для THO1; 0.27 мм, 0.36 мм и 5.9 пф - для THO2; 1.0 мм, 0.45 мм и 4 пф - для THO3.
Существенным недостатком прототипа является малое число его выходных каналов (только два).
Достигаемым техническим результатом предлагаемого изобретения является построение на основе ТНО делителя мощности на несколько (N≥2) выходных каналов по заданному распределению мощностей в них с сохранением развязки по постоянному току между входным и выходными каналами.
Разработка способа построения на основе ТНО делителя мощности на несколько выходных каналов по заданному распределению мощностей в них основана на возможности модификации гибридного ТНО в ответвители с сильной и слабой связью и на объединении их в делитель с помощью квазицепочечной схемы.
Указанный технический результат достигается тем, что при осуществлении способа построения делителя, где требуемое распределение мощности между выходными каналами, развязанными по постоянному току с входным каналом, реализуют с помощью транснаправленных ответвителей (ТНО), каждый из которых представляет собой две микрополосковые линии передачи, расположенные параллельно на заземленной диэлектрической подложке и связанные друг с другом электромагнитной связью и дополнительно электрической связью с помощью одинаковых эквидистантно устанавливаемых конденсаторов малой емкости и малых размеров, согласно изобретению, сначала задают в программном пакете рабочую полосу частот и параметры диэлектрической подложки (толщину подложки, ее диэлектрическую проницаемость), затем вычисляют предельный, общий для всех ТНО, коэффициент деления между выходными плечами при оптимальных характеристиках ТНО по критерию максимальной развязки в заданной полосе частот, после этого, исходя из заданного распределения мощностей в выходных каналах делителя, удобству расположения выходов делителя и компактности схемы в целом, выбирают квазицепочечную схему построения делителя из ТНО, из которой находят коэффициенты деления каждого ТНО с учетом того, что эти коэффициенты не должны превышать их предельных значений, и решают оптимизационную задачу по варьированию геометрических размеров линий и величин емкостей конденсаторов при найденных коэффициентах деления каждого ТНО по критериям максимальной развязки и минимального коэффициента стоячей волны (КСВ) в заданной полосе частот и через матрицы рассеяния ТНО, объединенные квазицепочечной схемой, производят окончательный расчет делителя, включающий в себя дополнительную оптимизацию схемы делителя по тем же, вышеописанным, варьируемым параметрам, но по критериям максимальной развязки между выходными каналами делителя, минимального КСВ на всех его плечах, минимальных потерях в режиме деления при требуемых значениях коэффициентов передачи между входным и выходными плечами в заданной полосе частот.
Достаточность приведенных выше требований вытекает из симметрии входящих в состав делителя ТНО, для которых справедливо утверждение: «если в электрически симметричном восьмиполюснике имеется хотя бы одна пара плеч, полностью развязанных между собой, то это устройство является идеальным направленным ответвителем» [10].
Осуществление способа продемонстрируем на нескольких примерах. Так, фиг. 5а и 5б, на которых изображены блок-схемы соединения двух различных ТНО, иллюстрируют варианты способа построения делителей с равным делением -4.8 дБ на три выходные канала: первый вариант предполагает подачу входного сигнала на делитель через ответвитель со слабой связью (THO1 фиг. 2а), то есть по классической цепочечной схеме, а второй вариант - через ответвитель с сильной связью (ТНО2 фиг. 2б) - по квазицепочечной. На фиг. 6а и 6б показаны частотные зависимости коэффициентов деления и развязок между каналами для первого варианта, а на фиг. 6в и 6г - для второго. Из этих зависимостей видно, что делитель, в котором применен THO2 с сильной связью, является более широкополосным по развязке по сравнению с делителем на основе ТНО1.
На фиг. 7 показана блок-схема делителя на 4 выходных канала с неравным делением мощности, а именно, в пропорции 1:2:3:4. Складывая первые три цифры в пропорции, получаем 6:4, что дает приемлемый коэффициент деления первого ТНО в квазицепочечной схеме, не превышающий предельный. Каждый ТНО представлен прямоугольником, внутри которого показано отношение мощностей, поступающих на выходы второго и четвертого плеч ТНО, соответственно, при условии падения на вход ТНО мощности, равной сумме мощностей на выходах. Из схемы видно, что, с учетом расположения входного плеча делителя, первый ТНО является ответвителем с сильной связью.
Делитель работает следующим образом. Сигнал поступает на вход 1 делителя и после деления в первом ТНО на две части, сигнал меньшей мощности поступает в выходное плечо 5 делителя, а сигнал большей мощности - на гибридный ТНО, после которого, разделившись, он в равных долях идет в выходное плечо 4 делителя и на сильно связанный ТНО с коэффициентом деления 2, откуда в соотношении по мощности 1:2 поступает в плечи 2 и 3 делителя, соответственно. В результате получаем квазицепочечную схему деления, которая делит входной сигнал в заданной пропорции и объединяет воедино один гибридный ТНО и два ТНО с сильной связью с коэффициентами деления 1.5 и 2.
На фиг. 8а показаны частотные зависимости коэффициентов передачи (модули элементов матрицы рассеяния S) при возбуждении делителя со стороны входа (плечо 1), включая плечи с балластными резисторами, на фиг. 8б приведены аналогичные кривые, характеризующие развязку между выходными каналами, а на фиг. 8в изображены зависимости КСВ со стороны входа и всех выходов делителя.
Альтернативный вариант построения показанного на фиг. 7 делителя получается в случае, если первый ТНО с коэффициентом деления 1.5 заменить на ТНО со слабой связью с тем же коэффициентом деления, а вход 1 делителя и балластный резистор Z поменять местами; при этом квазицепочечная схема превращается в цепочечную (фиг. 9).
Таким образом, предложенный способ построения компактных делителей мощности СВЧ сигналов на N≥2 выходных каналов по заданному распределению мощностей в них, основанный на использовании известного способа деления СВЧ мощности на две равные части с помощью гибридного ТНО и способа деления СВЧ мощности на две неравные части с помощью ТНО с сильной и слабой связью путем объединения этих ТНО в делитель, собираемый по квазицепочечной схеме, позволяет создавать простые, компактные, технологичные, приспособленные для объединения в единую схему с полупроводниковыми элементами плоскостные конструкции делителей на заземленной диэлектрической подложке.
Источники информации
1. Cohn S. В. A New Class of Broadband Three-Port TEM-Mode Hybrids (Новый класс широкополосных трехплечих ТЕМ гибридных устройств), IEEE Trans, on Microwave Theory and Techniques, 1968, vol. MTT-16, no. 2, pp. 110-116.
2. Ahn H.-R. and Wolf I. General Design Equations, Small-Sized Impedance Transformers and Their Application to Small-Sized Three-Port 3-dB Power Dividers (Общие расчетные формулы, малогабаритные трансформаторы импеданса и их применение в малогабаритных трехплечих 3 дБ-ных делителях мощности), IEEE Trans, on Microwave Theory and Techniques, 2001, vol. MTT-49, no. 7, pp. 1277-1288.
3. Maurin D. and Wu K. A Compact 1.7-2.1 GHz Three-Way Power Combiner Using Microstrip Technology with Better Than 93.8% Combining Efficiency (Компактные 1,7-2,1 ГГц сумматоры мощности с тремя входами, выполненные по микрополосковой технологии, с КПД выше 93,8%), IEEE Microwave and Guided Wave Letters, vol. 6, No. 2, February 1996, pp. 106-108.
4. Ooi Ban-Leong, Palei W., Leong M.S. Broad-banding technique for in-phase hybrid ring equal power divider // IEEE Trans, on Microwave Theory and Techniques. 2002. V. 50. No. 7. P. 790-794. (Метод создания широкополосного синфазного равноамплитудного делителя мощности на основе гибридного кольца).
5. Андрюшина В.Ю., Темнов В.М. Разработка микрополосковых делителей мощности для передающих ФАР // Электромагнитные волны и электронные системы - 2011 - №6, - Т. 16, С. 67-75.
6. Печурин В.А., Петров А.С. Делители-сумматоры мощности СВЧ-диапазона, Успехи современной радиоэлектроники, 2010, №2, С. 5-42.
7. Темнов В.М. Согласованный делитель мощности сверхвысокочастотных квазигармонических сигналов // Патент на полезную модель №161585, опубл. 27.04.2016. Бюл. №12.
8. Shie С.-I., Cheng J.C., Chou S.-C, and Chiang Y.-C. Transdirectional Coupled-Line Couplers Implemented by Periodical Shunt Capacitors (Транснаправленные ответвители на связанных линиях передачи с периодически включенными шунтирующими конденсаторами), IEEE Trans, on Microwave Theory and Techniques, 2009, vol. 57, No. 12, pp. 2981-2988 (прототип)
9. Разевиг В.Д., Потапов Ю.В., Курушин А.А. Проектирование СВЧ устройств с помощью Microwave Office / Под ред. В.Д. Разевига, М.: СОЛОН-Пресс, 2003, 496 с.
10. Будурис Ж., Шеневье П. Цепи сверхвысоких частот. (Теория и применение): Пер. с франц. / Под ред. проф. А.Л. Зиновьева, М.: «Советское радио», 1979, 288 с.

Claims (1)

  1. Способ построения компактных делителей мощности сверхвысокочастотных (СВЧ) сигналов, основанный на известном способе деления с помощью гибридного транснаправленного ответвителя (ТНО) входной СВЧ мощности на две равные части, отличающийся тем, что дополнительно используются его модификации, обеспечивающие деление СВЧ мощности на две неравные части с помощью ТНО с сильной и слабой связью путем объединения этих ТНО в делитель, собираемый по квазицепочечной схеме с учетом заданного расположения выходных каналов по критериям минимальных потерь, максимальной развязки между выходными каналами и минимального коэффициента стоячей волны на всех его плечах.
RU2017106567A 2017-02-27 2017-02-27 Способ построения компактных делителей мощности свч сигналов RU2658093C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017106567A RU2658093C1 (ru) 2017-02-27 2017-02-27 Способ построения компактных делителей мощности свч сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017106567A RU2658093C1 (ru) 2017-02-27 2017-02-27 Способ построения компактных делителей мощности свч сигналов

Publications (1)

Publication Number Publication Date
RU2658093C1 true RU2658093C1 (ru) 2018-06-19

Family

ID=62620273

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017106567A RU2658093C1 (ru) 2017-02-27 2017-02-27 Способ построения компактных делителей мощности свч сигналов

Country Status (1)

Country Link
RU (1) RU2658093C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723466C1 (ru) * 2019-12-30 2020-06-11 Акционерное общество "Научно-производственная фирма "Техноякс" Смеситель свч

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263559A (en) * 1979-01-26 1981-04-21 Ford Aerospace & Communications Corp. N-way series connected quadrature power divider and combiner
US4612548A (en) * 1984-06-01 1986-09-16 Raytheon Company Multi-port radio frequency networks for an antenna array
US4668953A (en) * 1983-11-25 1987-05-26 Com Dev Ltd. Electrical power dividers
US5206611A (en) * 1992-03-12 1993-04-27 Krytar, Inc. N-way microwave power divider
US5285175A (en) * 1992-09-03 1994-02-08 Rockwell International Tri-phase combiner/splitter system
WO2003065495A1 (en) * 2002-01-31 2003-08-07 Raytheon Company Solid state transmitter circuit
RU161585U1 (ru) * 2014-12-30 2016-04-27 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" (АО"ФНПЦ "ННИИРТ" Согласованный делитель мощности сверхвысокочастотных квазигармонических сигналов

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4263559A (en) * 1979-01-26 1981-04-21 Ford Aerospace & Communications Corp. N-way series connected quadrature power divider and combiner
US4668953A (en) * 1983-11-25 1987-05-26 Com Dev Ltd. Electrical power dividers
US4612548A (en) * 1984-06-01 1986-09-16 Raytheon Company Multi-port radio frequency networks for an antenna array
US5206611A (en) * 1992-03-12 1993-04-27 Krytar, Inc. N-way microwave power divider
US5285175A (en) * 1992-09-03 1994-02-08 Rockwell International Tri-phase combiner/splitter system
WO2003065495A1 (en) * 2002-01-31 2003-08-07 Raytheon Company Solid state transmitter circuit
RU161585U1 (ru) * 2014-12-30 2016-04-27 Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" (АО"ФНПЦ "ННИИРТ" Согласованный делитель мощности сверхвысокочастотных квазигармонических сигналов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Shie, C. I., J. C. Cheng, S. C. Chou, and Y. C. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 2981-2988, 2009. doi:10.1109/TMTT.2009.2034219. *
АНДРЮШИНА В.Ю. ПОСТРОЕНИЕ СОГЛАСОВАННЫХ ДЕЛИТЕЛЕЙ МОЩНОСТИ СВЕРХВЫСОКОЧАСТОТНЫХ СИГНАЛОВ // "Радиотехника" N 1, 2017, стр. 170-176. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2723466C1 (ru) * 2019-12-30 2020-06-11 Акционерное общество "Научно-производственная фирма "Техноякс" Смеситель свч

Similar Documents

Publication Publication Date Title
TWI450494B (zh) 功率放大器系統
Mandal et al. Reduced-length rat-race couplers
Rosenberg et al. Compact multi-port power combination/distribution with inherent bandpass filter characteristics
Ahn et al. Toward integrated circuit size reduction
Shahi et al. Compact wideband Gysel power dividers with harmonic suppression and arbitrary power division ratios
Chou et al. Exact synthesis of unequal power division filtering rat-race ring couplers
Liu et al. Design of a wideband filtering power divider with good in‐band and out‐of‐band isolations
Jeong et al. Frequency selective impedance transformer with high-impedance transforming ratio and extremely high/low termination impedances
RU2658093C1 (ru) Способ построения компактных делителей мощности свч сигналов
US7667556B2 (en) Integrated power combiner/splitter
CN108011168B (zh) 一种可端接复数阻抗的新型Wilkinson功率分配器
Shen et al. Ultra-wideband filtering 180° hybrid coupler with super wide upper stopband using swap phase inverter and electromagnetic bandgap structures on double-sided parallel-strip line
KR102244144B1 (ko) 영도 복합 좌측 우측 전송라인들을 갖는 멀티 대역 전력 분배기
Al-Zayed et al. Seven ports power divider with various power division ratios
Hawatmeh et al. Design and analysis of multi-frequency unequal-split Wilkinson power divider using non-uniform transmission lines
Chen et al. Novel Gysel power dividers based on half-mode substrate integrated waveguide (HMSIW)
Taravati et al. An efficient method of designing dual‐and wide‐band power dividers with arbitrary power division
Sedighy et al. Compact branch line coupler using step impedance transmission lines (SITLs)
Nosrati et al. A novel compact branch‐line coupler using four coupled transmission lines
Banerjee et al. A novel design of a bandwidth enhanced dual-band impedance matching network with coupled line wave slowing
Park Dual-band unequal power divider with simplified structure
Kaur et al. Recent trends and challenges in microwave power dividers
Feng et al. Wideband power dividers with improved upper stopband using coupled lines
RU161585U1 (ru) Согласованный делитель мощности сверхвысокочастотных квазигармонических сигналов
Li et al. A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation