RU2655681C1 - Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов - Google Patents

Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов Download PDF

Info

Publication number
RU2655681C1
RU2655681C1 RU2017130445A RU2017130445A RU2655681C1 RU 2655681 C1 RU2655681 C1 RU 2655681C1 RU 2017130445 A RU2017130445 A RU 2017130445A RU 2017130445 A RU2017130445 A RU 2017130445A RU 2655681 C1 RU2655681 C1 RU 2655681C1
Authority
RU
Russia
Prior art keywords
spark
spark gap
component
vir
diagnosed
Prior art date
Application number
RU2017130445A
Other languages
English (en)
Inventor
Алексей Николаевич Звеков
Original Assignee
Алексей Николаевич Звеков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Николаевич Звеков filed Critical Алексей Николаевич Звеков
Priority to RU2017130445A priority Critical patent/RU2655681C1/ru
Application granted granted Critical
Publication of RU2655681C1 publication Critical patent/RU2655681C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q23/00Testing of ignition installations
    • F23Q23/08Testing of components
    • F23Q23/10Testing of components electrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

Изобретение относится к области контроля и диагностики систем искрового зажигания двигателя внутреннего сгорания (ДВС). Технический результат заключается в обеспечении постоянного контроля воздействия высоковольтной энергии на диагностируемый компонент системы электроискрового зажигания. Указанный технический результат достигается тем, что предложен способ диагностики компонентов вторичной электрической цепи системы зажигания бензинового ДВС непрерывной последовательностью искровых разрядов, заключающийся в том, что подают последовательность импульсов высокого напряжения заданной частоты на диагностируемый токоведущий или диэлектрический компонент и соединенный последовательно с ним искровой разрядник (ИР), а также на параллельно подключенный к ним байпас, представляющий из себя второй искровой разрядник (ВИР), с регулируемым искровым промежутком. За счет этого получают непрерывную интегральную индикацию искровых разрядов в ИР или ВИР в зависимости от технического состояния диагностируемого компонента и размера искрового промежутка ВИР, что позволяет достоверно определить техническое состояние диагностируемого компонента и поставить точный технический диагноз. 11 ил.

Description

Способ диагностики компонентов вторичной электрической цепи (со стороны вторичной обмотки катушки зажигания) системы электроискрового зажигания (СЭЗ) автомобильного бензинового двигателя внутреннего сгорания (ДВС) непрерывной последовательностью искровых разрядов (НПИР) согласно действующей рубрики Международной патентной классификации МПК-2016.01 относится к классу F02P 17/04 - динамическая проверка систем электроискрового зажигания в ДВС с индуктивными накопителями энергии, работающих без самовоспламенения от сжатия.
Область техники, к которой относится изобретение
Способ диагностики НПИР относится к области техники проверок СЭЗ автомобильных бензиновых ДВС, наиболее распространенных в настоящее время. В ходе эксплуатации ДВС компоненты вторичной электрической цепи СЭЗ непрерывно подвергаются воздействию высокого напряжения (ВН), которое приводит к постепенному ухудшению как диэлектрических, так и проводящих свойств составляющих их материалов, что усугубляется влагой и загрязнениями, поступающими из окружающей среды, и высокой температурой ДВС, в результате чего возникают электрические пробои диэлектрика и обрывы токоведущего слоя. Вследствие этого в цилиндре происходят пропуски искрообразования, а следовательно, и воспламенения топливовоздушной смеси (ТВС). При переходе высоковольтной (ВВ) энергии вследствие пробоев диэлектрика на свечу зажигания другого цилиндра нарушается угол опережения зажигания (УОЗ), что вызывает не только значительное снижение характеристик цилиндра, но и детонацию, которая может привести к его разрушению.
Прохождение вторичного тока осуществляется по соединениям, выполненным путем обжимки и соприкосновения проводников, а также по бесконтактным участкам (зазорам), где образуются паразитные искровые разряды. Это приводит к повышению температуры данных участков, повреждению токоведущего ферритового слоя и изоляторов, выгоранию материала и росту зазоров, снижению энергии искрового разряда свечи зажигания, в результате чего ухудшается качество воспламенения ТВС либо пропуски воспламенения, прежде всего, в цилиндрах, имеющих высокую компрессию.
Ухудшение характеристик цилиндра вследствие дефекта компонента СЭЗ приводит к снижению крутящего момента и мощности ДВС, интенсификации его износа, перерасходу топлива и нарушениям экологии в силу изменения концентрации отработавших газов и выхода несгоревшего топлива, которое вызывает перегрев, сокращение срока службы и разрушение каталитического нейтрализатора отработавших газов, опасность пожара, нарушение показаний датчиков концентрации кислорода, что в свою очередь искажает коррекцию топливодозирования. Это напрямую негативно влияет на функционирование ДВС и экологию, поэтому вопросы совершенствования средств и способов диагностики компонентов СЭЗ являются весьма актуальными.
Уровень техники
Аналогичные способы диагностики компонентов вторичной электрической цепи СЭЗ высоким напряжением с использованием последовательности искровых разрядов (ПИР) в качестве индикатора технического состояния компонента применяются давно и широко посредством различных устройств, к которым относятся высоковольтные искровые разрядники (ИР), приборы для проверки свечей зажигания, тестеры систем зажигания и др. Они достаточно просты и доступны, широко распространены, производятся промышленно и подробно описаны в многочисленных источниках информации, посвященных диагностике и ремонту СЭЗ:
- http://motor-master.ru/component/content/article/10-diag/46-vysokovoltnyj-razryadnik;
- http://injectorservice.com.ua/spark_gap_al23.php#spark_gap;
- http://www.ardio.ru/razryad.php;
- http://maslov.com.ru/Web-pageR.htm;
- http://www.autoscaners.ru/catalogue/?catalogue_id=razryadnik_vysokovoltnyy_r4_8c;
- http://www.autoscanere.ru/catalogue/?catalogue_id=razryadnik_tester_ir_2;
- http://eksacom.ru/shop/testery_zazhiganiya;
- http://eksacom.ru/shop/p4-8s_razryadnik_vysokovol%60tnyj_chetyrexkanal%60nyj_r4-8s;
- http: //eksacom.ru/shop/ir-2_razryadnik-ester_katushek_zazhiganiya_i_modulej_zazhiganiya;
- http://eksacom.ru/shop/mm-tk-01_tester_katushek_zazhiganiya_komplekt_avtonomnyj;
- https://hz.ra.aliexpress.com/wholesale?catId=0&initiative_id=SB_20170806220752&Search Text=тестеры+зажигания и мн. др.
Указанные устройства объединяет такой способ диагностики компонентов вторичной электрической цепи СЭЗ, когда диагностируемый компонент 1 (фиг. 1), к которому последовательно подсоединен искровой разрядник (ИР) 2 с регулируемым искровым промежутком 3 между электродами 4, подвергают воздействию ВВ энергии путем подачи на него последовательности импульсов ВН 5 заданной частоты от высоковольтного импульсного генератора (ВИГ) 6. В ИР 2 получают непрерывную или прерывающуюся последовательность искровых разрядов или отсутствие искровых разрядов, на основании чего оценивают техническое состояние диагностируемого компонента. Однако практика показывает, что для достоверной оценки технического состояния компонента СЭЗ в большом ряде случаев наличие одного ИР 2 оказывается недостаточным, вводит диагноста в заблуждение и приводит к постановке ошибочного технического диагноза.
Так, фактором, существенно снижающим достоверность диагностирования с помощью одного ИР токоведущего компонента СЭЗ на предмет проводимости, является весьма затруднительная визуальная фиксация в искровом промежутке 3 ИР 2 пропуска одного или нескольких искровых разрядов из множества поданных на компонент, особенно при высокой частоте их следования.
В диэлектрических же компонентах СЭЗ участок пробоя диэлектрика составляет, как правило, незначительную долю от общей площади диэлектрика, в силу чего диагностирование компонента с помощью одного ИР на предмет пробоя проходит в условиях практически постоянного отсутствия искровых разрядов в ИР; вместе с тем, отсутствие/перебои искровых разрядов характерно не только для отсутствия дефекта компонента, но и для отсутствия/перебоев ВВ энергии. Такая двойственность порождает неопределенность, которая значительно затрудняет постановку правильного технического диагноза.
В отличие от аналогов способ диагностики НПИР предполагает подачу импульсов ВН не только на диагностируемый компонент и последовательно соединенный с ним ИР, но и на байпасный искровой разрядник (БИР), благодаря чему интегрально в двух разрядниках искровые разряды индицируются непрерывно, полностью исключаются объективные причины их пропусков диагностом и обеспечивается постоянный контроль воздействия ВВ энергии на диагностируемый компонент. Способ диагностики НПИР не известен из уровня техники, он для специалиста не следует из уровня техники явным образом, и может быть применен в отрасли автомобильного сервиса. В силу этого способ диагностики НПИР является новым, промышленно применимым изобретением.
Раскрытие изобретения
Способ диагностики компонентов вторичной электрической цепи СЭЗ непрерывной последовательностью искровых разрядов заключается в том, что последовательность импульсов ВН 5 (фиг. 2) заданной частоты подается от ВИГ 6 не только на диагностируемый компонент 1 СЭЗ и последовательно соединенный с ним ИР 2 с регулируемым искровым промежутком 3 между электродами 4, но и на подключенный импульсный генератор (ВИГ) 6. В ИР 2 получают непрерывную или прерывающуюся последовательность искровых разрядов или отсутствие искровых разрядов, на основании чего оценивают техническое состояние диагностируемого компонента. Однако практика показывает, что для достоверной оценки технического состояния компонента СЭЗ в большом ряде случаев такие разряды и их отсутствие вводят диагноста в заблуждение и приводят к постановке ошибочного технического диагноза.
Так, фактором, существенно снижающим достоверность диагностирования токоведущего компонента СЭЗ на предмет проводимости с помощью одного ИР, является весьма затруднительная визуальная фиксация в искровом промежутке 3 ИР 2 пропуска одного или нескольких искровых разрядов из множества поданных на компонент, особенно при высокой частоте их следования.
В диэлектрических же компонентах СЭЗ участок пробоя диэлектрика составляет, как правило, незначительную долю от общей площади диэлектрика, в силу чего диагностирование компонента с помощью одного ИР на предмет пробоя проходит в условиях практически постоянного отсутствия искровых разрядов в ИР; вместе с тем отсутствие/перебои искровых разрядов характерны не только для отсутствия дефекта компонента, но и для отсутствия/перебоев ВВ энергии в силу других причин, например дефекта ВИГ. Такая двойственность порождает неопределенность, которая значительно затрудняет постановку правильного технического диагноза.
В отличие от аналогов способ диагностики НПИР предполагает непрерывную индикацию искровых разрядов, чем полностью исключаются объективные причины их пропусков диагностом и обеспечивается постоянный контроль воздействия ВВ энергии на диагностируемый компонент. Способ диагностики НПИР не известен из уровня техники, он для специалиста не следует из уровня техники явным образом и может быть применен в отрасли автомобильного сервиса. В силу этого способ диагностики НПИР является новым, промышленно применимым изобретением.
Раскрытие изобретения
Суть способа диагностики НПИР заключается в использовании эффекта байпаса для диагностики компонентов вторичной электрической цепи СЭЗ. Байпас (англ. bypass, букв. - обход) - обводной участок трубопровода, подсоединенный параллельно основному участку, служащий для управления технологическим процессом при неисправности арматуры или приборов, установленных на основном трубопроводе, а также при необходимости их срочной замены без остановки технологического процесса (Новый политехнический словарь / Гл. ред. А.Ю. Ишлинский. - М.: Большая Российская энциклопедия, 2000. - 671 с.: ил. ISBN 5-85270-322-2, с. 39). Байпас в электронике - функция в электронном устройстве, позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. В устройствах обработки функция «байпас» позволяет включать или исключать те или иные блоки цепи обработки и сравнивать различные варианты выходного сигнала по отношению к входному /…/, что может быть полезным при неисправности компонентов /…/ для целей проверки … (https://ru.wikipedia.org/wiki/Байпас).
В способе диагностики НПИР в качестве байпаса применен второй ИР (ВИР). В результате такого схемного решения последовательность импульсов ВН 5 (фиг. 2) заданной частоты подается от ВИГ 6 не только на диагностируемый компонент 1 ЭСЗ и последовательно соединенный с ним ИР 2 с регулируемым искровым промежутком 3 между электродами 4, но и на подключенный параллельно с ними ВИР 7 с регулируемым искровым промежутком 8 между электродами 9. Принцип функционирования основан на том, что искровые разряды возникают в той цепи, где в данный момент выше проводимость; при исчезновении искровых разрядов в искровом промежутке 3 искровые разряды тут же появляются в искровом промежутке 8 и наоборот, чем обеспечивается непрерывная интегральная индикация искровых разрядов в ИР 2 и ВИР 7.
При диагностировании работоспособного токоведущего компонента 1 (фиг. 3) искровой разряд индицируется в искровом промежутке 3 ИР 2, что является диагностическим признаком отсутствия дефекта проводника компонента; если же проводимость компонента нарушена, искровой разряд индицируется в искровом промежутке 8 ВИР 7 (фиг. 4), что является диагностическим признаком наличия дефекта проводника. Для оценки степени обрыва токоведущего слоя в ИР 2 устанавливают величину искрового промежутка 3, равную 1 мм, а размер искрового промежутка 8 ВИР 7 первоначально устанавливают 1 мм, а затем плавно увеличивают его. Суммарная величина обрывов токоведущего слоя проводника компонента примерно равна размеру искрового промежутка 8 минус 1 мм в момент перехода искрового разряда с искрового промежутка 8 на искровой промежуток 3 (фиг. 3).
При диагностировании работоспособного диэлектрического компонента СЭЗ 1 (фиг. 4) на предмет пробоя диэлектрика искровой разряд индицируется в искровом промежутке 8 ВИР 7, что является диагностическим признаком отсутствия дефекта диэлектрика; если же диэлектрические свойства компонента нарушены, в искровом промежутке 8 исчезают искровые разряды, но индицируются в искровом промежутке 3 ИР 2 (фиг. 3), что является диагностическим признаком электрического пробоя диэлектрика компонента. До начала диагностирования размер искровых промежутков 3 ИР 2 и 8 ВИР 7 устанавливают 1 мм, что примерно соответствует напряжению электрического пробоя 1 кВ, так, чтобы в ВИР 7 были устойчивые, без пропусков искровые разряды (фиг. 4). Затем плавно увеличивают искровой промежуток 8. В момент перехода искрового разряда на искровой промежуток 3 (фиг. 3) напряжение пробоя диэлектрика в киловольтах примерно равно размеру искрового промежутка 8 в миллиметрах. Если же искровой разряд не перешел на искровой промежуток 3, а остался устойчивым в искровом промежутке 8 (фиг. 4) даже при достижении максимального размера промежутка 25÷30 мм и более, это является достоверным диагностическим признаком отсутствия дефекта диэлектрика.
Технический результат при применении способа диагностики НПИР объективно проявляется в следующих технических эффектах, явлениях и свойствах: обеспечивается интегральная непрерывная индикация искровых разрядов, что, в свою очередь, обеспечивает точный и полный анализ технического состояния компонентов ЭСЗ, быструю постановку достоверного технического диагноза и локализацию дефекта.
Достигнутый технический результат находится в прямой причинно-следственной связи с такими существенными признаками способа диагностики двумя искровыми разрядами, как принципы функционирования, анализа и постановки технического диагноза.
Краткое описание чертежей
Фиг. 1 - электрическая цепь диагностики компонента СЭЗ. Схема функциональная: 1 - компонент СЭЗ; 2 - ИР; 3 - искровой промежуток; 4 - электроды ИР; 5 - последовательность импульсов ВН; 6 - ВИГ.
Фиг. 2 - электрические цепи диагностики компонента СЭЗ. Схема функциональная: 1 - компонент СЭЗ; 2 - ИР; 3 - искровой промежуток; 4 - электроды ИР; 5 - последовательность импульсов ВН; 6 - ВИГ; 7 - ВИР; 8 - искровой промежуток ВИР; 9 - электроды ВИР.
Фиг. 3 - диагностика работоспособного токоведущего компонента СЭЗ и дефектного диэлектрического компонента СЭЗ: 1 - компонент СЭЗ; 2 - ИР; 3 - искровой промежуток; 6 - ВИГ; 7 - ВИР; 8 - искровой промежуток ВИР; 10 - искровой разряд.
Фиг. 4 - диагностика работоспособного диэлектрического компонента СЭЗ и дефектного токоведущего компонента СЭЗ: 1 - компонент СЭЗ; 2 - ИР; 3 - искровой промежуток; 6 - ВИГ; 7 - ВИР; 8 - искровой промежуток ВИР; 10 - искровой разряд.
Фиг. 5 - ВВТ, практическая конструкция: 4 - электрод ИР; 7 - ВИР; 11 - ВВТ; 12 - щуп; 13 - клемма «земля»; 14 - штурвал ИР; 15 - выходная клемма ВИГ; 16 - ВВ кабель; 17 - свечной бокс; 18 - манометр; 19 - сетчатые экраны; 20 - кабель для подключения диагностируемых катушек и модулей зажигания.
Фиг. 6 - практическое диагностирование токоведущего компонента СЭЗ: 1 - токоведущий компонент - ферритовый проводник ВВ свечного кабеля; 4 - электроды ИР; 7 - ВИР; 8 - искровой промежуток ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп; 16 - ВВ кабель ВИГ.
Фиг. 7 - практическое диагностирование диэлектрического компонента СЭЗ: 1 - диэлектрический компонент - диэлектрическая оболочка ВВ свечного кабеля; 4 - электрод ИР; 7 - ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп.
Фиг. 8 - практическое диагностирование токоведущего компонента СЭЗ: 1 - токоведущий компонент - свечной контакт крышки распределителя зажигания; 4 - электроды ИР; 7 - ВИР; 8 - искровой промежуток ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп; 16 - ВВ кабель ВИГ.
Фиг. 9 - практическое диагностирование диэлектрического компонента СЭЗ: 1 - диэлектрический компонент - крышка распределителя зажигания; 4 - электрод ИР; 7 - ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп; 16 - ВВ кабель ВИГ.
Фиг. 10 - практическое диагностирование диэлектрического компонента СЭЗ: 1 диэлектрический компонент - диэлектрик бегунка распределителя зажигания; 4 - электрод ИР; 7 - ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп; 16 - ВВ кабель ВИГ.
Фиг.11 - практическое диагностирование диэлектрического компонента СЭЗ: 1 - диэлектрический компонент - диэлектрик бегунка распределителя зажигания; 4 - электроды ИР; 7 - ВИР; 8 - искровой промежуток ВИР; 9 - электроды ВИР; 10 - искровой разряд; 12 - щуп; 16 - ВВ кабель ВИГ.
Осуществление изобретения
Способ диагностики НПИР реализован в практической конструкции высоковольтного тестера (ВВТ) 11 (фиг. 5). Искровой разрядник ВВТ образуют электрод 4 щупа 12 и ближайшая к нему точка диагностируемого компонента СЭЗ. Щуп 12 соединен с клеммой «земля» 13. Байпасный искровой разрядник 7 встроен внутрь корпуса ВВТ, размер его искрового промежутка регулируется вращением штурвала 14. К выходной клемме 15 высоковольтного импульсного генератора, встроенного внутрь корпуса ВВТ, посредством высоковольтного кабеля 16 подсоединяют диагностируемый компонент СЭЗ. Кроме того, ВВТ включает в себя: свечной бокс 17 для проверки искрообразования свечей зажигания под давлением, манометр 18, воздушный компрессор (встроен внутрь корпуса ВВТ), сетчатые экраны 19, кабель 20 для подключения диагностируемых катушек и модулей зажигания.
Практическое применение способа диагностики НПИР показано на фиг. 6-11.
Практическое диагностирование токоведущего компонента СЭЗ-ферритового проводника ВВ свечного кабеля 1 (фиг. 6). Импульсы ВН подают посредством ВВ кабеля 16 на один из контактов свечного кабеля 1. Искровой разряд 10 возникает в искровом промежутке ИР между электродами 4, один из которых электрод заземленного щупа 12, другой - контакт диагностируемого свечного кабеля. В искровом промежутке 8 ВИР 7 искровой разряд не возникает. Технический диагноз: ферритовый проводник ВВ свечного кабеля работоспособен.
Практическое диагностирование диэлектрического компонента СЭЗ - диэлектрической оболочки ВВ свечного кабеля 1 (фиг. 7). Импульсы ВН подают посредством ВВ кабеля 16 на один из контактов свечного кабеля 1. Приложенным к оболочке диагностируемого кабеля 1 электродом 4 заземленного щупа 12 обходят кабель 1 по всей длине. Искровой разряд 10 возникает в искровом промежутке ВИР 7 между электродами 9. В искровом промежутке между электродом щупа 4 и токоведущим слоем кабеля 1 искровой разряд не возникает. Технический диагноз: диэлектрическая оболочка ВВ свечного кабеля работоспособна.
Практическое диагностирование токоведущего компонента СЭЗ - свечного контакта крышки распределителя зажигания 1 (фиг. 8). Импульсы ВН подают посредством ВВ кабеля 16 на выходное гнездо одного из цилиндров крышки 1. Искровой разряд 10 возникает в искровом промежутке ИР между электродами 4, один из которых электрод заземленного щупа 12, другой - контактная площадка того же цилиндра крышки 1. В искровом промежутке 8 ВИР 7 искровой разряд не возникает. Технический диагноз: данный свечной контакт крышки 1 работоспособен.
Практическое диагностирование диэлектрического компонента СЭЗ - диэлектрика крышки распределителя зажигания 1 (фиг. 9). Импульсы ВН подают посредством ВВ кабеля 16 на один из выходных контактов крышки 1. Приложенным к поверхности крышки 1 электродом 4 заземленного щупа 12 обходят крышку 1 по всей площади снаружи и внутри, а также по контактным площадкам и другим выходным контактам. Искровой разряд 10 возникает в искровом промежутке ВИР 7 между электродами 9. В искровом промежутке между электродом щупа 4 и крышкой 1 искровой разряд не возникает. Технический диагноз: диэлектрик крышки распределителя зажигания 1 работоспособен.
Практическое диагностирование диэлектрического компонента СЭЗ - диэлектрика бегунка 1 распределителя зажигания (фиг. 10). Импульсы ВН подают посредством ВВ кабеля 16 на гнездо бегунка 1, предназначенное для насадки бегунка на вал распределителя зажигания. Электрод 4 заземленного щупа 12 подносят к контактной площадке бегунка 1 на расстояние 1÷2 мм. Искровой разряд 10 возникает в искровом промежутке ВИР 7 между электродами 9. В искровом промежутке между электродом щупа 4 и контактной площадкой бегунка 1 искровой разряд не возникает. Технический диагноз: диэлектрик бегунка 1 распределителя зажигания работоспособен.
Практическое диагностирование диэлектрического компонента СЭЗ - диэлектрика бегунка 1 распределителя зажигания (фиг. 11). Импульсы ВН подают посредством ВВ кабеля 16 на гнездо бегунка 1, предназначенное для насадки бегунка на вал распределителя зажигания. Электрод 4 заземленного щупа 12 подносят к центральной контактной площадке бегунка 1 на расстояние 1÷2 мм, которая является вторым электродом 4. Искровой разряд 10 возникает в искровом промежутке ИР между электродами 4. В искровом промежутке 8 ВИР 7 искровой разряд не возникает. Технический диагноз: диэлектрик бегунка 1 распределителя зажигания неработоспособен, имеет дефект - ВВ пробой на «массу» двигателя через вал распределителя зажигания.
Полученные данные в ходе многолетнего практического применения способа диагностики компонента СЭЗ непрерывной последовательностью искровых разрядов подтвердили соответствие технического результата заявленному назначению изобретения: данный способ обеспечивает высокую достоверность и эффективность диагностики, позволяющую быстро локализовать дефект.

Claims (1)

  1. Способ диагностики компонентов вторичной электрической цепи системы электроискрового зажигания автомобильного бензинового двигателя внутреннего сгорания непрерывной последовательностью искровых разрядов (НПИР), заключающийся в том, что подают последовательность импульсов высокого напряжения заданной частоты на диагностируемый компонент и соединенный последовательно с ним искровой разрядник (ИР), регулируют в процессе диагностики искровой промежуток ИР, в котором индицируется непрерывная или прерывающаяся последовательность искровых разрядов или отсутствуют искровые разряды, отличающийся тем, что к диагностируемому компоненту и последовательно соединенному с ним ИР, имеющему искровой промежуток 1 мм, параллельно подключают байпас, представляющий из себя второй искровой разрядник (ВИР), и плавно увеличивают в процессе диагностики его искровой промежуток с 1 мм до 25÷30 мм, за счет чего НПИР индицируется в ИР или ВИР, при этом при диагностировании работоспособного или дефектного токоведущего компонента НПИР индицируется в ИР или ВИР соответственно и суммарную величину обрывов токоведущего слоя диагностируемого компонента определяют как размер искрового промежутка ВИР минус 1 мм в момент перехода искрового разряда с искрового промежутка ВИР на искровой промежуток ИР, а при диагностировании работоспособного или дефектного диэлектрического компонента НПИР индицируется в ВИР или ИР соответственно и напряжение пробоя диэлектрика диагностируемого компонента в киловольтах определяют как размер искрового промежутка ВИР в миллиметрах в момент перехода искрового разряда с искрового промежутка ВИР на искровой промежуток ИР, на основании чего достоверно оценивают техническое состояние диагностируемого компонента и ставят точный технический диагноз.
RU2017130445A 2017-08-28 2017-08-28 Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов RU2655681C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017130445A RU2655681C1 (ru) 2017-08-28 2017-08-28 Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017130445A RU2655681C1 (ru) 2017-08-28 2017-08-28 Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов

Publications (1)

Publication Number Publication Date
RU2655681C1 true RU2655681C1 (ru) 2018-05-29

Family

ID=62560043

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017130445A RU2655681C1 (ru) 2017-08-28 2017-08-28 Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов

Country Status (1)

Country Link
RU (1) RU2655681C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032842A (en) * 1976-01-28 1977-06-28 Champion Spark Plug Company Spark plug tester ignition system
SU1749535A1 (ru) * 1989-02-16 1992-07-23 Киевский Автомобильно-Дорожный Институт Им.60-Летия Великой Октябрьской Социалистической Революции Способ определени параметров элементов искровых систем двигател внутреннего сгорани с двухвыводной катушкой зажигани
US5196798A (en) * 1991-06-17 1993-03-23 Pedro Baeza Automotive ignition coil tester
RU2008127380A (ru) * 2005-12-05 2010-01-20 Рено С.А.С. (Fr) Способ и устройство диагностики катушки зажигания двигателя внутреннего сгорания

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032842A (en) * 1976-01-28 1977-06-28 Champion Spark Plug Company Spark plug tester ignition system
SU1749535A1 (ru) * 1989-02-16 1992-07-23 Киевский Автомобильно-Дорожный Институт Им.60-Летия Великой Октябрьской Социалистической Революции Способ определени параметров элементов искровых систем двигател внутреннего сгорани с двухвыводной катушкой зажигани
US5196798A (en) * 1991-06-17 1993-03-23 Pedro Baeza Automotive ignition coil tester
RU2008127380A (ru) * 2005-12-05 2010-01-20 Рено С.А.С. (Fr) Способ и устройство диагностики катушки зажигания двигателя внутреннего сгорания

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Разрядник высоковольтный Р4-8С, Паспорт КДНР.431321.007 ПС, ООО НПП НТС, Самара, 2012. *

Similar Documents

Publication Publication Date Title
US9249773B2 (en) Apparatus and method for static testing a spark plug assembled in an internal combustion engine including cracked ceramic insulator detection
CN105842586B (zh) 火花塞用绝缘体的检查方法
RU2558751C1 (ru) Способ контроля емкостной системы зажигания двигателей летательных аппаратов
US4004213A (en) Spark gap detector
US6426626B1 (en) Apparatus and method for testing an ignition coil and spark plug
CN101551302B (zh) 一种火花塞点火性能和耐电压性能测试仪及测试方法和用途
RU2655681C1 (ru) Способ диагностики компонентов системы зажигания непрерывной последовательностью искровых разрядов
RU2338080C2 (ru) Способ контроля емкостной системы зажигания реактивных двигателей
US4306187A (en) Apparatus for visually monitoring ignition voltages
Doi et al. Development of spark plug for ion current misfire detection system
CN106733732B (zh) 一种航空沿面电嘴筛选工装及方法
RU2678872C1 (ru) Тестер свечей зажигания
US10186846B2 (en) System and method for testing breakdown voltage/dielectric strength of spark plug insulators
RU2697216C1 (ru) Разрядник бегущего разряда и способ диагностики системы электроискрового зажигания бегущим разрядом
US6655367B2 (en) Plug-hole-installed ignition coil unit for internal combustion engines
Sebok et al. Non-Destructive Measurement for High-Voltage Transformer of Ignition System
JP2022516005A (ja) 火花点火器の寿命検出
Sebok et al. Thermal and voltage diagnostics of automotive ignition system
CN114264697B (zh) 一种火花塞陶瓷体缺陷在线检测装置及检测方法
US2458974A (en) Method of and apparatus for testing ignition
Korenciak et al. Analysis of automotive ignition systems in laboratory conditions
Nikjoo et al. Effect of high voltage impulses on surface discharge characteristics of polyethylene
US2192932A (en) Method and apparatus for testing spark plugs
KR200343634Y1 (ko) 점화 시스템 검사 장치
SU849359A1 (ru) Способ контрол бесперебойностииСКРООбРАзОВАНи СВЕчи зАжигАНи