RU2655513C2 - Способ гидроразрыва углеводородного пласта - Google Patents

Способ гидроразрыва углеводородного пласта Download PDF

Info

Publication number
RU2655513C2
RU2655513C2 RU2016140355A RU2016140355A RU2655513C2 RU 2655513 C2 RU2655513 C2 RU 2655513C2 RU 2016140355 A RU2016140355 A RU 2016140355A RU 2016140355 A RU2016140355 A RU 2016140355A RU 2655513 C2 RU2655513 C2 RU 2655513C2
Authority
RU
Russia
Prior art keywords
fluid
suspension
squeezing
fracture
injection
Prior art date
Application number
RU2016140355A
Other languages
English (en)
Other versions
RU2016140355A (ru
Inventor
Андрей Александрович Осипцов
Наталья Анатольевна Лебедева
Дин Виллберг
ДЕРОШ Жан
Сергей Андреевич Боронин
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2016140355A priority Critical patent/RU2655513C2/ru
Priority to US15/783,697 priority patent/US20180106139A1/en
Publication of RU2016140355A publication Critical patent/RU2016140355A/ru
Application granted granted Critical
Publication of RU2655513C2 publication Critical patent/RU2655513C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин. Для осуществления гидроразрыва пласта в пробуренную в пласте скважину закачивают жидкость гидроразрыва под высоким давлением. Затем в скважину и образовавшуюся трещину гидроразрыва закачивают суспензию жидкости гидроразрыва, смешанной с частицами проппанта, при этом суспензия имеет показатель консистенции выше 0,1 Па⋅сn 2 при индексе течения n2<1 и предел текучести выше 5 Па. Затем осуществляют закачку в скважину продавочной жидкости с индексом течения n1≤1 и показателем консистенции ниже 0,01 П⋅сn 1. Достигаемый технический результат - снижение риска смыкания трещины гидроразрыва при ограничении объема продавочной жидкости. 4 з.п. ф-лы, 1 табл., 3 ил.

Description

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для повышения производительности как вновь вводимых, так и действующих добывающих и нагнетательных скважин.
Широко известны способы интенсификации добычи нефти или газа посредством гидравлического разрыва углеводородного пласта. Обычно трещину разрыва создают посредством нагнетания чистой жидкости гидроразрыва под высоким давлением через скважину в горную породу. Затем открытую трещину заполняют суспензией жидкости, смешанной с песком (частицами проппанта), которая в дальнейшем удерживает трещину открытой. И, наконец, в скважину закачивают небольшое количество чистой жидкости для очистки ствола скважины от твердых частиц, и часть этого количества жидкости может перейти в трещину. Этот последний этап называется закачкой продавочной жидкости.
Практика закачки продавочной жидкости, т.е. смещения суспензии гидроразрыва из ствола скважины в трещину маловязкой жидкостью, обычно применяется при заканчивании горизонтальных скважин, пробуренных в пластах нетрадиционного газа, методом многостадийного гидроразрыва. Она обеспечивает очистку от твердых частиц (проппанта) для последующих операций или стадий и позволяет предотвратить вынос твердых частиц из трещины при пуске скважины. Однако закачка продавочной жидкости может негативно сказаться на общей производительности трещин при сочетании следующих факторов: во-первых, проппант может быть вытеснен довольно далеко от скважины внутрь трещины, так что трещина окажется неподкрепленной возле скважины и может сомкнуться (закрыться) там в любой момент срока эксплуатации скважины, когда давления жидкости будет недостаточно, чтобы удерживать трещину открытой (от начала добычи до последующего момента в процессе эксплуатации скважины). Кроме того, после остановки закачки смыкание трещины происходит достаточно долго в малопроницаемых коллекторах (отток жидкости в породу через стенки трещины занимает много времени). В процессе закрытия трещины суспензия может оплывать на дно трещины под действием силы тяжести, в то время как чистая жидкость поднимает наверх, оставляя значительную часть прискважинной зоны без опоры и перекрывая доступ к верхней части коллектора.
Из уровня техники известны способы усовершенствования операции гидроразрыва с закачкой продавочной жидкости. Так, в патенте US 7104325 предлагается уплотнение фазы, закачиваемой перед закачкой продавочной жидкости посредством добавления проппанта с покрытием из смолы.
В патенте US 3752233 предусмотрено добавление гидразина в фазу продавочной жидкости для восстановления проницаемости, при котором на проницаемость отрицательно влияет высокий молекулярный вес полимера в жидкости разрыва.
В патенте US 2859819 заявлена последняя фаза чистой маловязкой жидкости (продавочной жидкости) для уноса частиц из ствола скважины в трещину для очистки скважины.
Во всех известных способах сохраняется риск закрытия/смыкания трещины из-за возможности образования незакрепленной области в прискважинной зоне трещины.
Технический результат, достигаемый при реализации изобретения, заключается в существенном снижении риска смыкания трещины и потери гидравлической связи между скважиной и трещиной за счет уменьшения свободной от частиц проппанта незакрепленной области в прискважинной зоне трещины.
В соответствии с предлагаемым способом в пробуренную в пласте скважину закачивают жидкость гидроразрыва под высоким давлением с образованием трещины гидроразрыва. Затем в скважину и образовавшуюся трещину гидроразрыва закачивают суспензию жидкости гидроразрыва, смешанной с частицами проппанта, при этом суспензия имеет показатель консистенции выше 0,1 Па⋅сn при любом индексе течения n и предел текучести выше 5 Па. Затем осуществляют закачку в скважину продавочной жидкости с показателем консистенции ниже 0,01 Па⋅сn.
В соответствии с одним из вариантов осуществления изобретения продавочная жидкость может содержать химический разжижитель, способный вступать в реакцию с жидкостью суспензии, обеспечивающую превращение суспензии в степенной линейный гель без предела текучести.
Оптимальные параметры суспензии и продавочной жидкости определяют на основе численного моделирования операции закачки продавочной жидкости.
В соответствии с еще одним вариантом осуществления изобретения регулируют диаметр созданной продавочной жидкостью и свободной от частиц проппанта области в прискважинной зоне внутри трещины путем регулирования скорости закачки продавочной жидкости. Продавочную жидкость закачивают с скоростью выше, чем пороговая скорость uс на поверхности раздела суспензии и продавочной жидкости, в случае, когда показатель поведения продавочной жидкости больше, чем показатель поведения жидкости разрыва, или со скоростью ниже, чем пороговая скорость uс на поверхности раздела суспензии и продавочной жидкости, в случае, когда показатель поведения продавочной жидкости меньше, чем показатель поведения жидкости разрыва.
Изобретение поясняется чертежами, где на фиг. 1 приведено схематическое изображение горизонтальной скважины, пересекающей поперечную трещину гидроразрыва, с продавочной жидкостью, вытесняющей суспензию; на фиг. 2 приведены результаты моделирования для вытеснения суспензии продавочной жидкостью в правой половине трещины; на фиг. 3 показана зависимость отношения эффективных вязкостей жидкостей от локальной линейной скорости в трещине разрыва.
Настоящее изобретение направлено на оптимизацию площади того участка трещины, который может остаться незакрепленным, прежде чем произойдет существенное смыкание трещины при снижении давления в пласте. Изобретение обеспечивает надежный ограничитель для объемов продавочной жидкости. В основу настоящего изобретения положено математическое моделирование этого процесса и параметрическое изучение различных стратегий закачки продавочной жидкости, при этом особое внимание уделяется вытеснению суспензии продавочной жидкостью, изменению объема и скорости закачки продавочной жидкости, а также реологическому контрасту между суспензией и продавочной жидкостью. Форму свободной от частиц проппанта области можно регулировать скоростью закачки продавочной жидкости на основе критериев неустойчивости Сэффмана-Тейлора, применяемых к поверхности раздела фаз между продавочной жидкостью и суспензией с частицами проппанта. Было обнаружено, что (i) при формировании "пальцев" продавочной жидкости на поверхности раздела продавочная жидкость - суспензия в прискважинной зоне можно сохранять большие столбы суспензии, которые могут удерживать трещину открытой; (ii) оплывание суспензии с проппантом можно уменьшить с помощью реологии с пределом текучести для суспензии и/или высокой вязкости базовой жидкости, использованной для приготовления суспензии (вязкость базовой жидкости характеризуется показателем консистенции в случае степенной реологии); (iii) для некоторого расстояния от перфораций существует пороговая скорость закачки (рассчитывается на основании реологических свойств жидкости), определяющая неустойчивость поверхности раздела между продавочной жидкостью и жидкостями разрыва.
Изобретение заключается в следующем.
Оптимизирована операция гидроразрыва в субгоризонтальной скважине, пробуренной в пласте нетрадиционного газа или нефти.
Эта оптимизация сосредоточена на последней стадии обработки операции гидроразрыва, когда после закачки суспензии жидкости с частицами для расклинивания трещины (проппанта) вводят небольшое количество чистой жидкости для очистки скважины от частиц проппанта и вытеснения всех частиц в трещины (стадия "закачки продавочной жидкости").
Свойства суспензии и продавочной жидкости регулируют таким образом, чтобы уменьшить до минимума свободную от проппанта область в прискважинной зоне трещины и тем самым снизить риск смыкания и потери гидравлической связи между скважиной и трещиной.
Более конкретно, суспензия, закачиваемая непосредственно перед стадией закачки продавочной жидкости, должна иметь реологические свойства согласно модели Хершеля-Балкли (разжижение при сдвиге в сочетании с пределом текучести), при этом показатель консистенции должен быть выше 0,1 Паn сn, а предел текучести выше 5 Па.
В пределах указанного диапазона свойств вытеснение суспензии чистой "продавочной" жидкостью вызывает развитие маленьких "пальцев" продавочной жидкости, проникающих в суспензию (в отличие от крупных "островов" чистой жидкости в тех случаях, когда суспензия имеет более низкую консистенцию или предельное напряжение сдвига), что уменьшает площадь, не подкрепленную проппантом, и минимизирует риск смыкания трещины в прискважинной зоне (см. фиг. 1). На фиг. 2 приведены результаты моделирования для вытеснения суспензии продавочной жидкостью в правой половине трещины, где серым цветом в виде полукруга слева показана незакрепленная полость в непосредственной близости от скважины.
Продавочная жидкость может содержать примесь химических веществ, которые выступают в качестве "разжижителя" для сшитого геля, содержащего частицы (суспензии). В результате реакции этого разжижителя с суспензией нарушаются поперечные связи между молекулами полимера в несущей жидкости суспензии, предел текучести исчезает, и частицы перемещаются из суспензии в языки продавочной жидкости. Следовательно, языки продавочной жидкости, которые первоначально не имели поддержки, в итоге заполняются некоторым количеством проппанта, и уменьшается риск смыкания трещины внутри этих языков. В качестве разжижителей могут быть использованы окислители, энзимы или кислоты.
Точные значения свойств суспензии и продавочной жидкости в указанном диапазоне можно определить путем численного моделирования операции закачки продавочной жидкости. Численное моделирование основано на реализации математической модели для многофазного течения в трещине. Оптимальные свойства можно получить из анализа незакрепленных участков, вычисленных в процессе моделирования для различных значений свойств суспензии и продавочной жидкости в указанном диапазоне.
Когда реология и жидкости разрыва, и продавочной жидкости является степенной, или когда продавочная жидкость является ньютоновской жидкостью (например, водой), а жидкость гидроразрыва является степенной, существует некий порог линейной скорости внутри трещины, определяющий неустойчивость фронта в процессе закачки продавочной жидкости. Следовательно, можно регулировать форму области закачки продавочной жидкости внутри трещины разрыва. В частности, можно инициировать неустойчивость и развитие вязких языков на определенном расстоянии от ствола скважины, обеспечивая этим следующие эффекты: (i) уменьшение выноса проппанта в скважину путем полного вытеснения жидкости гидроразрыва в определенной (небольшой) области трещины гидроразрыва вблизи перфораций; и (ii) инициирование неустойчивости на границе раздела между продавочной жидкостью и жидкостью гидроразрыва на определенном расстоянии от перфораций, чтобы вызвать развитие столбов проппанта и уменьшить развитие чрезмерной незакрепленной (не содержащей проппант) зоны.
Регулирование процесса вытеснения и формы области с продавочной жидкостью внутри трещины гидроразрыва описывается разницей эффективных вязкостей жидкостей в пласте, которые зависят от локальной линейной скорости внутри трещины разрыва. Далее это будет описано более подробно.
На первом этапе в пробуренную в пласте скважину закачивают жидкость гидроразрыва под высоким давлением. В качестве жидкости гидроразрыва могут быть использованы линейные или сшитые гели с плотностью 1000 кг/м3 и вязкостью 0,01 Па⋅с для линейного геля или 0,1 Па⋅с для сшитого геля. Например, могут быть использованы линейные гели на водной основе и сшитые гели, которые получают из линейных путем добавления в него сшивателя, например, на основе бората. Примером используемого геля является гель на водной основе следующего состава: 1 л воды, 20 г КСl, 4 г гуара, 0,14 г борной кислоты и 0,14 г гидроокиси натрия.
На следующем этапе в скважину и образовавшуюся трещину гидроразрыва закачивают суспензию жидкости гидроразрыва, смешанной с частицами проппанта, а затем - продавочную жидкость. В качестве продавочной жидкости может быть использована пресная или пластовая вода.
Пусть первая жидкость является продавочной жидкостью, определяемой степенной реологией с показателем консистенции K1 и индексом течения n1, а вторая жидкость является жидкостью, осуществляющей гидроразрыв, с реологией, определяемой параметрами K2 и n2. Эффективная вязкость жидкости, протекающей по трещине гидроразрыва, определяется следующим образом:
Figure 00000001
Это выражение получено на основе отношения между усредненной по ширине скоростью внутри трещины гидроразрыва и градиентом давления в приближении тонкого слоя (приближение "смазки") для 3D уравнений Навье-Стокса. Здесь
Figure 00000002
- локальная (средняя по ширине трещины) скорость сдвига с привлечением локальной усредненной по ширине скорости u и ширины трещины w. Параметры K и n - это показатель консистенции и индекс течения.
Рассмотрим вытеснение второй жидкости, заполняющей трещину гидроразрыва, первой жидкостью, поступающей в поперечную трещину через перфорации. Вблизи перфораций поток радиальный, поэтому уравнение сохранения массы дает следующее выражение для скорости:
Figure 00000003
Здесь, r0 - радиус скважины, r - расстояние между осью скважины и определенным местом внутри трещины, u0 - скорость в перфорациях (для простоты предположим, что перфорации распределены равномерно по обсадной колонне скважины).
Неустойчивость на границе раздела этих жидкостей возникает, когда локальная эффективная вязкость первой жидкости меньше, чем локальная эффективная вязкость второй жидкости. Это условие можно выразить следующим образом:
Figure 00000004
Неравенство (3) дает следующую пороговую скорость uс на поверхности раздела:
Figure 00000005
Так что, если
Figure 00000006
, и если
Figure 00000007
.
В частности, если первая жидкость ньютоновская
Figure 00000008
, а вторая жидкость не ньютоновская (степенная), то критерий неустойчивости формулируется следующим образом (0<n2<1):
Figure 00000009
При постоянной скорости закачки линейная скорость уменьшается обратно пропорционально расстоянию до оси скважины (см. уравнение (2)). Следовательно, уравнения (5) (и (4) в случае n1>n2) и (2) можно объединить, чтобы вычислить скорость в перфорациях u0, определяющую возникновение неустойчивости на определенном расстоянии до оси R скважины. Альтернативно, если задать внешний радиус свободной от частиц проппанта полости R, то можно найти скорость в перфорациях u0 (которая связана со скоростью закачки), необходимую для создания этой полости. В обоих случаях используется следующее соотношение:
Figure 00000010
Ниже приводится зависимость отношения эффективных вязкостей первой жидкости и второй жидкости для различных жидкостей (см. таблицу 1) и вычисленные пороговые значения линейной скорости (фиг. 3). Далее (для таблицы и фиг. 3) стоит пояснить, что сшитый гель и линейный гель являются суспензией с проппантом, а вода - продавочной жидкостью.
Figure 00000011
На фиг. 3 кривая 1 обозначает воду, вытесняющую линейный гель 1; кривая 2 - воду, вытесняющую линейный гель 2; кривая 3 - линейный гель 1, вытесняющий сшитый гель. Реологические параметры этих жидкостей приведены в таблице 1. Критическая скорость uc, определяющая начало образования вязких языков, определяется из μ12=1.

Claims (8)

1. Способ гидроразрыва углеводородного пласта, в соответствии с которым:
- осуществляют закачку жидкости гидроразрыва под высоким давлением в пробуренную в пласте скважину с образованием трещины гидроразрыва,
- закачивают в скважину и образовавшуюся трещину гидроразрыва суспензию жидкости гидроразрыва, смешанной с частицами проппанта, при этом суспензия имеет показатель консистенции выше 0,1 Па⋅сn 2 при индексе течения n2<1 и предел текучести выше 5 Па,
- осуществляют закачку в скважину продавочной жидкости с индексом течения n1≤1 и показателем консистенции ниже 0,01 П⋅сn 1.
2. Способ по п. 1, в соответствии с которым продавочная жидкость содержит химический разжижитель, способный вступать в реакцию с жидкостью суспензии, обеспечивающую превращение суспензии в степенной линейный гель без предела текучести.
3. Способ по п. 1, в соответствии с которым оптимальные параметры суспензии и продавочной жидкости определяют на основе численного моделирования операции закачки продавочной жидкости.
4. Способ по п. 1, в соответствии с которым регулируют диаметр созданной продавочной жидкостью и свободной от частиц проппанта области в прискважинной зоне внутри трещины путем регулирования скорости закачки продавочной жидкости.
5. Способ по п. 4, в соответствии с которым продавочную жидкость закачивают с скоростью выше, чем пороговая скорость uс на поверхности раздела суспензии и продавочной жидкости, в случае, когда показатель поведения продавочной жидкости больше, чем показатель поведения жидкости гидроразрыва, или со скоростью ниже, чем пороговая скорость uс на поверхности раздела суспензии и продавочной жидкости, в случае, когда показатель поведения продавочной жидкости меньше, чем показатель поведения жидкости гидроразрыва.
RU2016140355A 2016-10-13 2016-10-13 Способ гидроразрыва углеводородного пласта RU2655513C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2016140355A RU2655513C2 (ru) 2016-10-13 2016-10-13 Способ гидроразрыва углеводородного пласта
US15/783,697 US20180106139A1 (en) 2016-10-13 2017-10-13 Method for hydraulic fracturing of a hydrocarbon formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016140355A RU2655513C2 (ru) 2016-10-13 2016-10-13 Способ гидроразрыва углеводородного пласта

Publications (2)

Publication Number Publication Date
RU2016140355A RU2016140355A (ru) 2018-04-13
RU2655513C2 true RU2655513C2 (ru) 2018-05-28

Family

ID=61904304

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016140355A RU2655513C2 (ru) 2016-10-13 2016-10-13 Способ гидроразрыва углеводородного пласта

Country Status (2)

Country Link
US (1) US20180106139A1 (ru)
RU (1) RU2655513C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796589C2 (ru) * 2018-12-21 2023-05-26 Шлюмбергер Текнолоджи Б.В. Способы образования барьеров прискважинных зон и снижения обратной промывки проппантов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111444612B (zh) * 2020-03-26 2021-04-16 北京科技大学 一种致密油藏水平井多级压裂流场形态模拟方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859819A (en) * 1953-09-08 1958-11-11 California Research Corp Hydraulic fracturing with overflushing
SU1803546A1 (ru) * 1991-04-04 1993-03-23 Nii Khim Pri Nizhegorodskom G Состав для гидравлического. разрыва пласта
RU2164290C2 (ru) * 1997-12-30 2001-03-20 Константинов Сергей Владимирович Способ гидравлического разрыва пласта
RU2258136C1 (ru) * 2003-12-30 2005-08-10 Открытое акционерное общество "Газпром" Жидкость-песконоситель для гидравлического разрыва пласта
RU2496977C2 (ru) * 2008-02-27 2013-10-27 Шлюмберже Текнолоджи Б.В. Способ улучшения обработки подземного пласта через скважину и способ гидроразрыва пласта через скважину
RU2500714C1 (ru) * 2012-04-26 2013-12-10 Общество с ограниченной ответственностью "ФОРЭС-Химия" Способ приготовления жидкости для обработки подземных формаций при гидроразрыве пласта
RU2523316C1 (ru) * 2010-05-18 2014-07-20 Шлюмбергер Текнолоджи Б.В. Способ гидравлического разрыва пласта
RU2575947C2 (ru) * 2011-11-04 2016-02-27 Шлюмбергер Текнолоджи Б.В. Моделирование взаимодействия трещин гидравлического разрыва в системах сложных трещин

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859819A (en) * 1953-09-08 1958-11-11 California Research Corp Hydraulic fracturing with overflushing
SU1803546A1 (ru) * 1991-04-04 1993-03-23 Nii Khim Pri Nizhegorodskom G Состав для гидравлического. разрыва пласта
RU2164290C2 (ru) * 1997-12-30 2001-03-20 Константинов Сергей Владимирович Способ гидравлического разрыва пласта
RU2258136C1 (ru) * 2003-12-30 2005-08-10 Открытое акционерное общество "Газпром" Жидкость-песконоситель для гидравлического разрыва пласта
RU2496977C2 (ru) * 2008-02-27 2013-10-27 Шлюмберже Текнолоджи Б.В. Способ улучшения обработки подземного пласта через скважину и способ гидроразрыва пласта через скважину
RU2523316C1 (ru) * 2010-05-18 2014-07-20 Шлюмбергер Текнолоджи Б.В. Способ гидравлического разрыва пласта
RU2575947C2 (ru) * 2011-11-04 2016-02-27 Шлюмбергер Текнолоджи Б.В. Моделирование взаимодействия трещин гидравлического разрыва в системах сложных трещин
RU2500714C1 (ru) * 2012-04-26 2013-12-10 Общество с ограниченной ответственностью "ФОРЭС-Химия" Способ приготовления жидкости для обработки подземных формаций при гидроразрыве пласта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796589C2 (ru) * 2018-12-21 2023-05-26 Шлюмбергер Текнолоджи Б.В. Способы образования барьеров прискважинных зон и снижения обратной промывки проппантов

Also Published As

Publication number Publication date
RU2016140355A (ru) 2018-04-13
US20180106139A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
US3378074A (en) Method for fracturing subterranean formations
US3592266A (en) Method of fracturing formations in wells
RU2688700C2 (ru) Способ планирования эксплуатационных и нагнетательных скважин
EA002464B1 (ru) Новые жидкости и способы для максимальной очистки трещины от жидкости
NO163976B (no) Fremgangsm te for hydraulisk frakturering av en undsformasjon.
US9194222B2 (en) System and method for improved propped fracture geometry for high permeability reservoirs
CN109996930B (zh) 处理井底地层带的方法
WO2010068128A1 (en) Hydraulic fracture height growth control
CN112240191A (zh) 一种页岩气压裂加砂方法
CN111236913A (zh) 致密油藏水平井逆混合压裂泵注方法
US2811207A (en) Method of vertically fracturing formations in wells
NO20171403A1 (en) Engineering methodology to treat severe loss zones with thixotropic cement system
WO2019070166A1 (ru) Способ глушения нефтяных и газовых скважин
RU2655513C2 (ru) Способ гидроразрыва углеводородного пласта
Karadkar et al. In-Situ Pore Plugging Using Nanosilica-Based Fluid System for Gas Shutoff to Maximize Oil Production
US3552494A (en) Process of hydraulic fracturing with viscous oil-in-water emulsion
RU2442888C1 (ru) Способ кислотной обработки пласта
US4434848A (en) Maximizing fracture extension in massive hydraulic fracturing
Sun et al. Case study of soft particle fluid to improve proppant transport and placement
US2796131A (en) Process for improving the oil-water ratio of oil and gas wells
US20180282615A1 (en) System and Methods for Delivery of Multiple Highly Interactive Stimulation Treatments In Single Dose and Single Pumping Stage
RU2660810C2 (ru) Гелевые композиции для применения в гидроразрыве пластов
US11215034B2 (en) Controlling redistribution of suspended particles in non-Newtonian fluids during stimulation treatments
US3164208A (en) Increasing permeability of subsurface formations
CN106321053A (zh) 一种油气井增产方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201014