RU2655087C1 - Компактный компрессионный тепловой насос - Google Patents

Компактный компрессионный тепловой насос Download PDF

Info

Publication number
RU2655087C1
RU2655087C1 RU2017115858A RU2017115858A RU2655087C1 RU 2655087 C1 RU2655087 C1 RU 2655087C1 RU 2017115858 A RU2017115858 A RU 2017115858A RU 2017115858 A RU2017115858 A RU 2017115858A RU 2655087 C1 RU2655087 C1 RU 2655087C1
Authority
RU
Russia
Prior art keywords
heat
evaporator
compressor
heat pump
condenser
Prior art date
Application number
RU2017115858A
Other languages
English (en)
Inventor
Николай Васильевич Ясаков
Original Assignee
Николай Васильевич Ясаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Васильевич Ясаков filed Critical Николай Васильевич Ясаков
Priority to RU2017115858A priority Critical patent/RU2655087C1/ru
Application granted granted Critical
Publication of RU2655087C1 publication Critical patent/RU2655087C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Изобретение относится к области теплотехники, в частности - к теплонаносным устройствам. Оно может быть использовано в системах теплоснабжения жилых и производственных объектов, преобразующих тепловой ресурс окружающей среды либо утилизирующих теплоту промышленных сбросов. Конструкция компрессионного теплового насоса с испарителем, компрессором, конденсатором, теплообменниками и дроссельным устройством выполнена в виде единого блока в общем корпусе, причем его испаритель вместе с дроссельным устройством конструктивно объединен с компрессором и имеет развитую поверхность испарения теплоносителя при двухстороннем оребрении теплопроводящих поверхностей. Такая конструкция теплового насоса позволит предельно упростить его, снизить габаритные размеры и массу, а также теплопотери, облегчит освоение производства данного оборудования в широком размерном диапазоне, а также его монтаж и эксплуатацию. 3 ил.

Description

Изобретение относится к области теплотехники, в частности - к теплонаносным устройствам. Оно может быть использовано в системах теплоснабжения жилых и производственных объектов, преобразующих тепловой ресурс окружающей среды либо утилизирующих теплоту промышленных сбросов.
Известно много вариантов теплового насоса, представляющего собой установку, в которой осуществляется обратный цикл Карно и которая переносит тепловую энергию от теплоотдатчика с низкой температурой (обычно окружающей среды) к теплопередатчику с высокой температурой за счет затраты энергии (см. Политехнический словарь, издание 3. М.: Советская энциклопедия, 1989). Существующие тепловые насосы используют температуру охлаждаемой среды, в основном, геотермальных вод (10-40°С), грунта и грунтовой воды (2-5°С), пресной и морской воды (3-7°С), воздуха (от -5°С и выше), сточных вод и тепловых сбросов (от +5°С и выше).
Известна теплонасосная установка, включающая образованный линиями высокого и низкого давления контур, заполненный рабочим веществом - диоксидом углерода (СО2), содержащий регенеративный теплообменник "газ высокого давления - газ низкого давления", испаритель, включающий контур источника низкопотенциальной теплоты, компрессор, линия высокого давления которого подключена противотоком к соединенным последовательно высокотемпературному и низкотемпературному теплообменникам "газ - теплофикационная вода", а линия низкого давления подключена к выходу низкого давления регенеративного теплообменника, при этом выход высокотемпературного теплообменника теплофикационной воды подключен к входу низкотемпературного теплообменника теплофикационной воды, выход низкотемпературного теплообменника теплофикационной воды подключен к входу высокого давления регенеративного теплообменника, а выход испарителя - к входу низкого давления регенеративного теплообменника, а также привод компрессора (см. патент РФ 2034205, МПК F25В 11/00, 1992 г.). Однако известная теплонасосная установка обладает недостаточной энергетической эффективностью передачи теплоты от источника низкого потенциала к теплофикационной воде и воде горячего водоснабжения, не обеспечивает автоматическое поддержание заданного давления рабочего вещества в линии высокого давления установки, не обеспечивает оптимальную дозированную подачу жидкого диоксида углерода (СО2) в испаритель, а также имеет недостаточную долговечность теплообменников горячего водоснабжения.
Весьма оригинальной конструкцией варианта рассматриваемых устройств является тепловой насос (см. патент РФ №2116586, МПК F25B 30/02, 1998 г.), в котором, как и в других подобных устройствах, последовательно соединены испаритель, компрессор и конденсатор. Компрессор имеет привод от электродвигателя, а конденсатор снабжен патрубком для слива конденсата. Испаритель состоит из замкнутой емкости с размещенными в ней устройством для мелкодисперсного распыления воды низкопотенциального контура и паросборником. Испаритель через рециркуляционный насос включен в низкопотенциальный контур. Конденсатор через рециркуляционный насос включен в высокопотенциальный контур. Устройство для мелкодисперсного распыления состоит из центрального раздающего трубопровода для подачи воды низкопотенциального контура и сообщенных с ним кольцевых трубопроводов с распыливающими форсунками. Кольцевые трубопроводы установлены с шагом на центральном трубопроводе, а форсунки каждого кольцевого трубопровода имеют различную длину.
Данный тепловой насос наряду с высокой эффективностью его работы вследствие использования в качестве хладагента водяного пара, имеющего по сравнению с другими хладагентами наибольшую скрытую теплоту испарения, обеспечивает полную экологическую безопасность при любых аварийных ситуациях.
В тепловом насосе (по патенту РФ №2238488, МПК F25B 30/02, 2004 г.), состоящем из конденсатора и испарителя, каждый из которых выполнен в виде теплообменника типа труба в трубе, компрессора и дросселирующего устройства, внешний и внутренний трубопроводы теплообменника выполнены в виде спиралей, имеющих форму винтовой линии с одинаковым средним диаметром и шагом витков спирали, причем патрубок ввода нагреваемой жидкости расположен со стороны выхода теплоносителя, а патрубок вывода нагреваемой жидкости расположен со стороны входа теплоносителя. При этом конденсатор и испаритель могут быть размещены следующим образом: конденсатор над испарителем, а компрессор внутри испарителя.
Из всех рассмотренных аналогов наибольшим сходством с заявляемым обладает этот тепловой насос, который можно принять за прототип.
Не останавливаясь на присущих каждому аналогу собственных недостатках устройств, следует отметить их общий недостаток - сложность и громоздкость конструкции, негативно сказывающиеся на стоимости изготовления, монтажа и обслуживания, величине потерь энергии, безопасности эксплуатации.
Задачей при разработке заявляемого устройства стало создание теплового насоса с плотной компоновкой его элементов в общем корпусе и без указанных недостатков.
Ее решением стала предлагаемая конструкция компрессионного теплового насоса, содержащего испаритель, компрессор, конденсатор, теплообменники и дроссельное устройство, в которой все компоненты насоса составляют единый блок, размещенный в общем корпусе (за исключением приводного двигателя), при этом - согласно изобретению - его испаритель, компрессор, конденсатор с теплообменником и дроссельное устройство представляют собой единую конструкцию, а испаритель имеет развитую поверхность испарения теплоносителя в виде системы распределительных каналов по внутреннему оребрению днища испарителя.
Представленная совмещенная конструкция с развитой поверхностью испарения позволяет предельно снизить габаритные размеры и массу теплового насоса, а также его теплопотери, упростить конструкцию, что создаст возможность освоить производство данного оборудования с определенным размерным рядом, облегчить монтаж и эксплуатацию.
Описание заявляемого теплового насоса поясняется изображением его общего вида, показанного на фиг. 1, разреза внутреннего ребра низкотемпературного теплообменника - фиг. 2, дроссельного устройства с конденсатосборником - фиг. 3.
Заявляемый компрессионный тепловой насос (КТН) имеет корпус 1 (фиг. 1), его верхняя часть оснащена высокотемпературным теплообменником 2 и имеет наружную теплоизоляцию, показанную штрихпунктирной линией. Нижней частью корпуса 1 является испаритель с низкотемпературным теплообменником 3. Последний оснащен внешним оребрением 4 и внутренними - радиальными - ребрами 5 с каналами сброса конденсата (фиг. 2). Внутри верхней части корпуса 1 установлен компрессор 6, например, осевой с приводом от электродвигателя (стандартной частоты или высокочастотного).
При использовании первичного теплового ресурса воздушной среды либо воды малых рек привод компрессора может иметь ветродвигатель или гидротурбину.
Между корпусом компрессора и стенкой корпуса 1 КТН расположен конденсатор 7 паров хладагента, ребра которого расположены по винтовой линии, совпадающей по направлению с траекторией движения вихревого потока хладагента. Поверхность корпуса компрессора, являющаяся внутренней стенкой конденсатора 7, теплоизолирована. Внизу конденсатора 7 по всему периметру его кольцеобразного днища расположены отверстия 8, над которыми может устанавливаться регулирующее их просвет кольцо (на фиг. 3 оно показано в тонких линиях). Эти отверстия являются дросселями контура циркуляции хладагента. Под днищем имеется конденсатосборник 9 с кольцевой щелью 10 для сброса конденсата на стенку испарителя.
Работа КТН в принципе не отличается от функционирования известных тепловых насосов. Пары хладагента сжимаются компрессором 6, далее их вихревой поток обтекает оребренную поверхность конденсатора 7, где тепло через стенку теплообменника 2 передается протекающему по нему теплоносителю. Сбросивший температуру хладагент при высоком давлении конденсируется и проходит через дроссельные отверстия 8 в конденсатосборник 9 и далее через кольцевой зазор 10 в испаритель. Стекая тонкой пленкой по его внутренней стенке, он частично попадает в распределительные каналы радиальных ребер 5, смачивает поверхность последних и, таким образом, использует максимальную площадь теплообмена с внешним теплоносителем через теплообменник 3 с наружным оребрением 4. Испаренный в результате такого теплообмена в условиях низкого (ниже атмосферного) давления хладагент снова попадает в компрессор.
При использовании тепла промышленных сбросов и других источников с передачей теплоносителя по трубопроводу внешнее оребрение теплообменника 3 имеет оболочку (на фиг. 1 показана тонкой линией).
Описанный КТН в виде единого блока в общем корпусе упрощает его изготовление, установку и эксплуатацию, позволяет использовать его в самых разных условиях, и это обеспечит ему должную востребованность.

Claims (1)

  1. Компрессионный тепловой насос, содержащий испаритель, компрессор, конденсатор, теплообменники и дроссельное устройство, отличающийся тем, что его испаритель, компрессор, конденсатор с теплообменником и дроссельное устройство представляют собой единую конструкцию, а испаритель имеет развитую поверхность испарения теплоносителя в виде системы распределительных каналов по внутреннему оребрению днища испарителя.
RU2017115858A 2017-05-04 2017-05-04 Компактный компрессионный тепловой насос RU2655087C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017115858A RU2655087C1 (ru) 2017-05-04 2017-05-04 Компактный компрессионный тепловой насос

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017115858A RU2655087C1 (ru) 2017-05-04 2017-05-04 Компактный компрессионный тепловой насос

Publications (1)

Publication Number Publication Date
RU2655087C1 true RU2655087C1 (ru) 2018-05-23

Family

ID=62202405

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017115858A RU2655087C1 (ru) 2017-05-04 2017-05-04 Компактный компрессионный тепловой насос

Country Status (1)

Country Link
RU (1) RU2655087C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759403C1 (ru) * 2020-12-02 2021-11-12 Николай Васильевич Ясаков Кондиционер с теплообменом в грунтах и водной среде

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93946U1 (ru) * 2008-05-22 2010-05-10 Государственное образовательное учреждение высшего профессионального образования "Камская государственная инженерно-экономическая академия" Тепловой насос
RU128922U1 (ru) * 2012-09-21 2013-06-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" Холодильная машина
CN103438491A (zh) * 2013-08-28 2013-12-11 南通大学 带有热水自循环系统的采用热泵的热水供应和加热系统
US20160168777A1 (en) * 2014-12-10 2016-06-16 Electrolux Appliances Aktiebolag Vented Dryer With Modular Heat Pump Subassembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93946U1 (ru) * 2008-05-22 2010-05-10 Государственное образовательное учреждение высшего профессионального образования "Камская государственная инженерно-экономическая академия" Тепловой насос
RU128922U1 (ru) * 2012-09-21 2013-06-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" Холодильная машина
CN103438491A (zh) * 2013-08-28 2013-12-11 南通大学 带有热水自循环系统的采用热泵的热水供应和加热系统
US20160168777A1 (en) * 2014-12-10 2016-06-16 Electrolux Appliances Aktiebolag Vented Dryer With Modular Heat Pump Subassembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2759403C1 (ru) * 2020-12-02 2021-11-12 Николай Васильевич Ясаков Кондиционер с теплообменом в грунтах и водной среде

Similar Documents

Publication Publication Date Title
US20160195314A1 (en) Heat pump, small power station and method of pumping heat
US9534509B2 (en) Cogeneration device including hydrocondenser
US11204190B2 (en) Evaporator with integrated heat recovery
KR20150089110A (ko) 가변용량 orc 분산발전시스템
KR100999400B1 (ko) 지열을 이용한 히트펌프 시스템
US11293666B2 (en) Superhigh temperature heat pump system and method capable of preparing boiling water not lower than 100° C
CN101776401B (zh) 自然通风直接水膜蒸发空冷凝汽系统
JP2015502482A (ja) 空気熱エネルギーを利用して仕事、冷却、および水を出力するための低温状態エンジン
JP2023075231A (ja) 統合された熱回収を備えた蒸発器
US8424306B2 (en) Air-water power generation system
KR20150022311A (ko) 히트펌프 발전 시스템
RU2655087C1 (ru) Компактный компрессионный тепловой насос
CN108662802A (zh) 绿色热泵制冷制热系统、制冷制热方法及空调
CN110567190A (zh) 一种蒸汽压缩型吸收式热泵
WO2019214605A1 (zh) 水源热泵
US20150369084A1 (en) System for preheating boiler feedwater and cooling condenser water
CN110567189B (zh) 一种蒸汽压缩型吸收式热泵
Mendrinos et al. Geothermal binary plants: water or air cooled
RU2125165C1 (ru) Энергетическая установка
US10655923B1 (en) Special cooling coating design for fossil fuel, nuclear, geothermal, and solar heat driven power plants; for HVAC cooling applications; and for heat rejection systems
JP5262428B2 (ja) ヒートポンプシステム
RU2238488C2 (ru) Тепловой насос
WO2022210416A1 (ja) 熱電発電システム
CN220083363U (zh) 一种换热系统
Chiasson Waste heat rejection methods in geothermal power generation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190505