RU2654321C1 - Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников - Google Patents

Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников Download PDF

Info

Publication number
RU2654321C1
RU2654321C1 RU2016129647A RU2016129647A RU2654321C1 RU 2654321 C1 RU2654321 C1 RU 2654321C1 RU 2016129647 A RU2016129647 A RU 2016129647A RU 2016129647 A RU2016129647 A RU 2016129647A RU 2654321 C1 RU2654321 C1 RU 2654321C1
Authority
RU
Russia
Prior art keywords
coordinates
spacecraft
navigation satellites
antennas
outputs
Prior art date
Application number
RU2016129647A
Other languages
English (en)
Other versions
RU2016129647A (ru
Inventor
Михаил Васильевич Михайлов
Сергей Николаевич Рожков
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2016129647A priority Critical patent/RU2654321C1/ru
Publication of RU2016129647A publication Critical patent/RU2016129647A/ru
Application granted granted Critical
Publication of RU2654321C1 publication Critical patent/RU2654321C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к области навигационного приборостроения и может найти применение в системах навигации космических аппаратов (КА) по сигналам навигационных спутников (НС), входящих в состав Глобальных Спутниковых Навигационных Систем (ГСНС), например по сигналам НС ГЛОНАСС или GPS. Технический результат - повышение точности определения координат КА при произвольном угловом маневрировании КА. Для этого в способе определения координат КА по сигналам навигационных спутников, включающем излучение радиосигналов от навигационных спутников с известными параметрами орбиты в известные моменты времени, прием радиосигналов от навигационных спутников антеннами, установленными на космическом аппарате, от i навигационных спутников, находящихся в полях зрения соответствующих антенн, определение дальности di между i навигационными спутниками и КА по разности времени приема и излучения радиосигнала, определение координат КА по измеренным дальностям и координатам
Figure 00000024
навигационных спутников в моменты измерений как координаты точки, лежащей одновременно на n сферах с центрами в точках
Figure 00000024
в отличие от известного, определяют векторы от центра масс КА до антенн в связанной с космическим аппаратом системе координат, определяют ориентацию космического аппарата в гринвичской системе координат, определяют векторы от центра масс КА до антенн в гринвичской системе координат, определяют проекции этих векторов на направления от КА на навигационные спутники, суммируют эти проекции с измеренными дальностями соответствующих антенн, по полученным суммам определяют координаты КА. При этом в устройство определения координат космического аппарата по сигналам навигационных спутников, включающее m антенн, выходы которых подключены к соответствующим входам m блоков формирования дальностей и координат навигационных спутников, а также блок определения координат КА, дополнительно введены блок ориентации и задатчик координат антенн, выходы которых подключены к соответствующим входам преобразователя координат антенн, выходы которого подключены к первым входам формирователя поправок дальностей, ко вторым входам которого подключен первый выход блока формирования дальностей и координат навигационных спутников, выходы формирователя поправок дальностей подключены к входам m сумматоров, ко вторым входам которых подключены вторые выходы блока формирования дальностей и координат навигационных спутников, выходы сумматоров подключены к первым входам блока определения координат КА, ко вторым входам которого подключены первые выходы блока формирования дальностей и координат навигационных спутников, выход блока определения координат КА является выходом заявляемого устройства. Таким образом, повышение точности обеспечивается за счет увеличения количества измерений от навигационных спутников за счет использования для определения координат КА сигналов всех НС, попадающих в поля зрения всех антенн, а также за счет приведения измерений от координат нескольких антенн к одной общей координате, совпадающей с центром масс КА. 2 н.п. ф-лы, 7 ил.

Description

Предлагаемое изобретение относится к навигации космического аппарата (КА) по сигналам навигационных спутников (НС), входящих в состав Глобальных Спутниковых Навигационных Систем (ГСНС), например, по сигналам НС ГЛОНАСС или GPS.
В настоящее время па многих КА установлена аппаратура спутниковой навигации (АСН), определяющая текущие координаты КА по сигналам НС, например, на американском сегменте Международной космической станции (АС МКС) установлена ACН SIGI, работающая по сигналам GPS, рассматриваемая в качестве аналога.
Известен способ - аналог определения координат КА по сигналам НС, включающий излучение радиосигналов от HC с известными параметрами орбиты в известные моменты времени, прием радиосигналов от n НС антеннами (Ан), установленными на КА, от HCi, находящихся в полях зрения соответствующих антенн, определение дальности между НСi и КA по разности времен приема и излучения радиосигнала, определение координат КА по измеренным дальностям di и координатам
Figure 00000001
HCi как координат точки, лежащей одновременно на n сферах радиуса di с центрами в точках
Figure 00000001
(см. фиг. 1). Способ-аналог реализуется на АС МКС с помощью устройства ACH SIGI (см. фиг. 2), включающего четыре антенны 1.1, 1.2, 1.3, 1.4 для приема сигналов НС GPS, формирующих СВЧ-сигналы, передаваемые НС GPS, которые по СВЧ-кабелю поступают в блок формирования дальностей и координат НС (БФДК НС) 2.1, 2.2, 2.3, 2.4, формирующие на выходе сигналы дальностей di от КА до HC и сигналы
Figure 00000001
координат HC (i-1… n, где n - число НС, сигналы которых принимает Ан), поступающие в блоки определения координат КА (БОК КА) 3.1, 3.2, 3.3, 3.4, определяющие по дальностям di и координатам НС
Figure 00000001
сигналы вектора координат КА, являющиеся выходами устройства-аналога ACH SIGI (см. например, Н.В. Михайлов. Автономная навигация космических аппаратов при помощи спутниковых радионавигационных систем. Политика, С-Петербург 2014, раздел 7.1)
Способ-аналог реализуется следующим образом. Для измерения дальности di формируемые НС сигналы промодулированы специальным модулирующим сигналом, позволяющим по текущей модуляции принятого сигнала определить момент времени излучения этого сигнала НС. Считая, для простоты, что часы НС и часы приемника сигнала абсолютно точные, определяют дальность от НС до КА по формуле:
Figure 00000002
где
Figure 00000003
- время приема i-го сигнала;
tui - время излучения сигнала i-го НС;
с - скорость света.
Для определения координат НС в любой требуемый момент времени в структуру сигнала НС закладывается так называемый сигнал данных, содержащий необходимую потребительскую информацию для решения навигационной задачи, в том числе и данные об эфемеридах НС. Эфемериды НС - это набор параметров, позволяющих вычислить координаты НС на любой момент времени. Например, для НС ГЛОНАСС эфемериды включают [1]:
toe - опорное время эфемерид;
Figure 00000004
- координаты НС в момент toe;
Figure 00000005
- скорость НС в момент toe.
В навигационном приемнике в процессе обработки принятого от НС сигнала выделяются массивы данных, в том числе и массив эфемерид НС. Определение вектора координат НС в момент tП осуществляется путем интегрирования уравнений движения НС ГЛОНАСС от момента toe, для которого известен вектор состояния
Figure 00000004
,
Figure 00000005
, до момента tП. В простейшем случае, если toe-tП мало (например, меньше 1 с), то интегрирование может быть выполнено по формуле:
Figure 00000006
где
Figure 00000007
- известный вектор ускорения НС в точке
Figure 00000008
[1].
Аналогичные действия выполняются для всех НС, сигналы которых попадают в поле зрения антенн. В результате формируется массив di,
Figure 00000001
, где i=1…n, n - число НС, видимых антенными. По значениям di и
Figure 00000001
определяют
Figure 00000009
. В плоском случае определение координат
Figure 00000009
иллюстрирует фиг. 1, на которой вектор
Figure 00000009
является общей точкой пересечения всех n окружностей радиуса di с центрами в точках
Figure 00000001
.
В пространственном случае координаты
Figure 00000009
определяются как решение системы n нелинейных уравнений:
Figure 00000010
Блок-схема устройства-аналога, иллюстрирующая его работу, приведена на фиг. 2.
Устройство-аналог включает:
- четыре антенны (Ан), установленных на поверхности КА 1.1-1.4;
- четыре блока формирования дальностей и координат (БФДК) 2.1-2.4 НС, на входы которых поступают СВЧ-сигналы от соответствующих антенн, а на выходах формируются сигналы дальностей di от КА до i-го НС и координат
Figure 00000001
i-го НС;
- четыре блока определения координат (БОК) 3.1-3.4 КА, на входы которых поступают сигналы di и
Figure 00000001
от соответствующих УФДК НС, а на выходах формируются сигналы
Figure 00000009
Аппаратура БФДК НС представляет собой так называемые корреляторы, выпускаемые во всем мире миллионными тиражами и обеспечивающими первичную обработку сигналов НС. Они производят первичные измерения, в том числе, измерения дальности и дешифровку информационных сигналов, в том числе, эфемерид, формируя векторы
Figure 00000001
.
БОК КА аппаратно представляет собой процессор, формирующий по векторам координат
Figure 00000001
НС, например, по алгоритму (2), вектор
Figure 00000009
путем решения системы (3).
Система SIGI АС МКС включает четыре одинаковых контура Ан-БФДК НС-БОК КА, так как антенны сильно затенены элементами конструкции МКС, и в зависимости от ориентации МКС, ориентации солнечных батарей и тепловых радиаторов станции, от положения НС на небесной сфере в поле зрения антенн могут попадать разное количество НС, в результате на выходах БОК КА формируются разные векторы
Figure 00000009
. В бортовой вычислительной системе (БВС) МКС значения векторов
Figure 00000009
проходят специальную обработку, результатом которой является гарантированное формирование осредненного вектора
Figure 00000009
.
Недостатком аналога является то, что оси визирования всех антенн SIGI параллельны друг другу и их суммарное поле зрения равно полю зрения одной антенны. Поэтому с точки зрения рассматриваемого способа и системы, реализующей этот способ, наличие четырех контуров формирования вектора
Figure 00000009
равносильны работе одного контура, так как все остальные контуры в точности повторяют работу первого контура. Однако ситуация меняется, когда антенны, установленные на внешней поверхности КА, направлены в различных направлениях. В этом случае в их поле зрения попадают разные НС и разное их количество, что существенно влияет на работу системы и ее качество. Например, антенны АСН-М Российского сегмента МКС имеют разные направления, что дает ей существенные функциональные преимущества при угловых маневрах, когда из всех антенн с разным числом видимых НС можно выбрать антенну с максимальным числом НС. Способ определения координат КА по сигналам НС и устройство определения координат КА по сигналам НС, реализующее этот способ в АСН-М, рассматриваются в качестве прототипа.
Способ-прототип определения координат КА по сигналам НС включает измерение дальностей dij от КА до НСij с известными параметрами орбиты объединенных в одну j-ю группу, попадающую в поле зрения антенны с максимальным числом НС, по разности времен приема и излучения радиосигнала определение координат
Figure 00000011
по измеренным дальностям dij и координатам
Figure 00000012
НС, как координат точки, лежащей одновременно на n сферах радиуса di с центрами в точках
Figure 00000001
. (См. например, В.Н. Бранец, Е.А. Микрин, В.Н. Платонов, С.Н. Евдокимов, М.В. Михайлов, С.Н. Рожков, Р.Ф. Муртазин, Б.В. Шебшаевич, В. Пантер, Дж. Клабб «Навигационное обеспечение международной космической станции» Сборник трудов X Санкт-Петербургской международной конференции по интегрированным навигационным системам 2003, стр. 7).
Устройство определения координат КА по сигналам НС, реализующее рассмотренный выше способ и принятое авторами в качестве прототипа включает m Анj приема сигналов НС, формирующих СВЧ-сигналы, передаваемые НС по СВЧ-кабелям в m соответствующих БФДК НСj, формирующих на выходе сигналы дальностей dij от Aнj до НСij и координат
Figure 00000012
НСj, поступающие в устройство выбора ведущей антенны (УВВА), определяющее Анj с максимальным числом видимых НС, передающую измерения dij и Хij от этого Ан в БОК КА, определяющее координаты КА по измерениям антенны с максимальным числом видимых НС. (См. например, B.Н. Бранец, Е.А. Микрин, В.Н. Платонов, С.Н. Евдокимов, М.В. Михайлов, C.Н. Рожков, Р.Ф. Муртазин, Б.В. Шебшаевич, В. Пантер, Дж. Клабб «Навигационное обеспечение международной космической станции» Сборник трудов X Санкт-Петербургской международной конференции по интегрированным навигационным системам 2003, стр. 7).
Блок-схема устройства-прототипа, приведенная на фиг. 3, включает:
- четыре Ан 1.1, 1.2, 1.3, 1.4, установленных на поверхности КА;
- четыре БФДК НС 2.1, 2.2, 2.3, 2.4, на входы которых поступают СВЧ-сигналы от соответствующих Ан, а на выходах формируются сигналы дальностей dij от j-й Ан до НСij и координат i-го НС;
- УВВА 4, определяющее по числу измерений dij номер Ан с максимальным числом видимых НС и передающее данные, полученные от соответствующего БФДК (2), в БОК (3) КА;
- БОК 3 КА определяет координаты
Figure 00000013
КА по измерениям от Ан с максимальным числом НС. Выход БОК 3 является выходом устройства-прототипа.
Аппаратно Ан прототипа аналогичны Ан аналога, БФДК НС прототипа аналогичен БФДК НС аналога.
УВВА представляет собой логическое устройство, определяющее по размерности передаваемого массива измерений dij номер Анj, для которого эта размерность максимальна, и передающее в БОК КА данные от БФДК НС, соответствующего этим Ан.
БОК КА прототипа аналогичен БОК КА аналога.
Недостатком прототипа является невозможность осуществлять измерения орбиты при угловых маневрах КА из-за уменьшения числа видимых НС в поле зрения каждой отдельной Ан, низкая точность измерений из-за уменьшения числа видимых НС и отклонений координат антенн АСН от центра масс (ЦМ) КА.
Отмеченные недостатки способа и устройства прототипа обусловлены малым числом НС, попадающим в поле зрения каждой из Ан. Это количество НС существенно зависит от углового положения КА. Например, на Российском сегменте МКС поле зрения одной из Ан при орбитальной ориентации МКС направлено в зенит. В этом случае в поле зрения обычно одновременно попадает от семи до двенадцати НС GPS, но при развороте, например, по крену на 90° число видимых НС сокращается до трех. При таком числе НС одномоментное определение координат МКС либо невозможно, либо осуществляется с большой ошибкой. Но на МКС имеются и другие Ан, развернутые на ~35° по крену относительно зенитной антенны. В поле зрения этой антенны при развороте МКС па 90° будут попадать от четырех до восьми НС. В прототипе в такой ситуации определение орбиты будет выполняться по НС, попадающим в поле зрения этой Ан. При указанном числе НС вектор координат МКС может определяться по одномоментным измерениям, хотя и с меньшей точностью, чем в случае направления Ан в зенит. При большем угле разворота МКС по крену в поле зрения каждой из антенн будет попадать недостаточное число НС для определения вектора координат МКС. Кроме того, при переходе к измерениям от другой антенны меняются координаты Ан. А в прототипе измеряемыми координатами КА являются координаты Ан, формирующего измерения, а не координаты центра масс КА, которые, вообще говоря, и являются координатами КА, так как во всех баллистических расчетах определяется именно движение центра масс КА. Несовпадение координат Ан с координатами центра масс КА вносит дополнительную ошибку в решение навигационной задачи.
Технический результат заключается в повышении точности определения координат КА при произвольном угловом маневрировании КА за счет увеличения количества измерений от навигационных спутников за счет использования для определения координат КА сигналов всех НС, попадающих в поля зрения всех антенн, а также за счет приведения измерений от координат нескольких антенн к одной общей координате, совпадающей с центром масс КА.
Технический результат достигается тем, что в способе определения координат КА по сигналам навигационных спутников, включающем излучение радиосигналов от навигационных спутников с известными параметрами орбиты в известные моменты времени, прием радиосигналов от навигационных спутников антеннами, установленными на космическом аппарате, от i навигационных спутников, находящихся в полях зрения соответствующих антенн, определение дальности di между i навигационными спутниками и космическим аппаратом по разности времени приема и излучения радиосигнала, определение координат космического аппарата по измеренным дальностям и координатам
Figure 00000014
навигационных спутников в моменты измерений, как координаты точки, лежащей одновременно на n сферах с центрами в точках
Figure 00000014
, в отличие от известного, определяют векторы от центра масс космического аппарата до антенн в связанной с космическим аппаратом системе координат, определяют ориентацию космического аппарата в гринвичской системе координат, определяют векторы от центра масс космического аппарата до антенн в гринвичской системе координат, определяют проекции этих векторов на направления от космического аппарата на навигационные спутники, суммируют эти проекции с измеренными дальностями соответствующих антенн, по полученным суммам определяют координаты космического аппарата.
Технический результат достигается тем, что в устройство определения координат космического аппарата по сигналам навигационных спутников, включающее m антенн, выходы которых подключены к соответствующим входам m блоков формирования дальностей и координат навигационных спутников, а также блок определения координат космического аппарата, в отличие от известного, дополнительно введены блок ориентации и задатчик координат антенн, выходы которых подключены к соответствующим входам преобразователя координат антенн, выходы которого подключены к первым входам формирователя поправок дальностей, ко вторым входам которого подключены первые выходы блоков формирования дальностей и координат навигационных спутников, выходы формирователей поправок дальностей подключены к входам m сумматоров, ко вторым входам которых подключены вторые выходы блоков формирования дальностей и координат навигационных спутников, выходы сумматоров подключены к первым входам блока определения координат космического аппарата, ко вторым входам которого подключены первые выходы блоков формирования дальностей и координат навигационных спутников, выход блока определения координат космического аппарата является выходом заявляемого устройства.
Суть изобретения поясняется графическими материалами, на которых приведены:
на фиг. 1 - графическая интерпретация решения задачи навигации по измеренным дальностям di и координатам навигационных спутников
Figure 00000014
;
на фиг. 2 - блок схема устройства аналога;
на фиг. 3 - блок-схема устройства-прототипа;
на фиг. 4 - блок схема предлагаемого устройства;
на фиг. 5 - геометрическая интерпретация предлагаемого способа;
на фиг. 6 - графики максимальной и минимальной видимости навигационных спутников при различной ориентации КА для предложенного решения;
на фиг. 7 - графики максимальной и минимальной видимости навигационных спутников при различной ориентации КА для прототипа.
Предлагаемое устройство демонстрирует фиг. 4, на которой приведена блок-схема устройства. Для упрощения схемы на фиг. 4 представлен вариант АСН, включающий только два антенных контура.
Устройство определения координат космического аппарата по сигналам навигационных спутников (см. фиг. 4), включает в предлагаемом примере m=2 антенн (Ан) 1.1, 1.2, выходы которых подключены к соответствующим входам m блоков формирования дальностей и координат (БФДК) навигационных спутников 2.1, 2.2, а также блок определения координат (БОК) космического аппарата 3, блок ориентации (БО) 5 и задатчик координат антенн (ЗКА) 6, выходы которых подключены к соответствующим входам преобразователя координат антенн (ПКА) 7, выходы которого подключены к первым входам формирователей поправок дальностей (ФПД) 8.1, 8.2, ко вторым входам которых подключены соответственно первые выходы блоков формирования дальностей и координат (БФДК) навигационных спутников 2.1, 2.2, выходы формирователей поправок дальностей (ФПД) 8.1, 8.2 подключены к входам m сумматоров (С) 9.1, 9.2, ко вторым входам которых подключены вторые выходы блоков формирования дальностей и координат (БФДК) навигационных спутников 2.1, 2.2, выходы сумматоров (С) 9.1, 9.2 подключены к первым входам блока определения координат (БОК) космического аппарата 3, ко вторым входам которого подключены первые выходы блоков формирования дальностей и координат (БФДК) навигационных спутников 2.1, 2.2, выход блока определения координат (БОК) космического аппарата 3 является выходом заявляемого устройства.
Рассмотрим функционирование предлагаемого устройства.
Предлагаемое устройство для m=2 включает антенны 1.1, 1.2 приема сигналов навигационных спутников, формирующих СВЧ-сигналы, передаваемые по СВЧ-кабелям в два соответствующих блока формирования дальности и координат навигационных спутников БФДК НС 2.1, 2.2, формирующих на выходе сигналы дальностей dij от Анi до НСij и сигналы координат
Figure 00000015
соответствующих НС, блок определения координат космического аппарата (БОК КА) 3, блок определения ориентации космического аппарата (БО) 5, формирует на выходе матрицу AГ-С перехода из гринвичской системы координат (ГСК) в связанную с КА систему координат (ССК), задатчик координат антенн (ЗКА) 6, формирует векторы координат
Figure 00000016
Ан в ССК, преобразователь координат антенн (ПКА) 7, на первый вход которого поступают координаты антенн в ССК от ЗКА 6, а на второй вход матрица АГ-С от БО 5, на выходе ПКА 7 формирует векторы координат
Figure 00000016
Ан в ГСК, поступающие на первые входы формирователей поправки дальности (ФПД) 8.1, 8.2, на вторые входы которых поступают векторы координат
Figure 00000015
i-го НС j-й Ан, формируемые БФДК 2.1.2.2 НС, на выходах ФПД 8.1,8.2 формируют поправки Δdij дальностей dij i-го НС j-й Ан, поступающую па первый вход сумматора С 9.1, 9.2, на вторые входы которых поступают значения дальности dij i-го НС j-й Ан, формируемая БФДК 2.1, 2.2 НС, на выходе сумматоров формируются значения дальности Dij i-го НС j-й Ан, приведенная к ЦМ КА, поступающая на первый вход БОК КА (3), на второй вход которого поступает вектор координат
Figure 00000015
i-го НС j-й Ан, формируемый БФДК (2) НС, параллельно на входы БОК 3 КА поступают сигналы Dij и векторов координат
Figure 00000017
, соответствующие всем НС от всех Ан (1), на выходе БОК КА формируется уточненный по измерениям всех Ан вектор координат КА, соответствующий его центру масс.
На кораблях «Союз» и «Прогресс» установлено четыре антенны в общем случае может быть любое количество антенн.
По сути предлагаемое техническое решение осуществляет преобразование полей зрения всех антенн, установленных в разных точках поверхности КА в поле зрения одной антенны, установленной в ЦМ КА, равное сумме полей зрения всех антенн, а измерения всех антенн приводятся к одной общей координате - ЦМ КА, что существенно повышает точность измерений. Сказанное иллюстрирует фиг. 5, на которой для плоского случая изображен КА в виде круга, на поверхности которого установлены две антенны Ан1 и Ан2.
В соответствии с прототипом по измерениям от антенн определяются дальности до НС d1, d2, d3 и векторы направлений на НС1, НС2, НС3 в ГСК. По измерениям каждой из антенн определяются координаты КА, соответствующие координатам Ан. В соответствии с предложенным решением задаются векторы координат антенн и координат ЦМ КА в ССК
Figure 00000018
,
Figure 00000019
,
Figure 00000020
, разности координат
Figure 00000021
и
Figure 00000022
c помощью матрицы ориентации АГ-С преобразуются в ГСК, относительно которой известны векторы НС1, НС2, НС3. Формируются проекции П1, П2, П3 векторов
Figure 00000021
и
Figure 00000022
на соответствующие направления НС1, НС2, НС3. Проекции П1, П2, П3 представляют собой поправки к дальностям d1, d2, d3 для условной антенны, установленной в ЦМ КА. По преобразованным дальностям (т.е. по дальностям от ЦМ КА до НС) и координатам НС осуществляется определение координат ЦМ КА (то есть координаты условной антенны).
Учитывая, что НС находятся в верхней полусфере относительно плоскости местного горизонта, поля зрения антенн близки к полусфере, то при разнесенном пространственном и угловом расположении антенн при любой ориентации КА в поле зрения условной антенны всегда будет находиться достаточное число НС для определения координат ЦМ КА с высокой точностью.
В качестве иллюстрации эффективности предложенного решения можно привести АСН, разрабатываемую для кораблей «Союз» и «Прогресс». На этих КА установлены четыре антенны под некоторыми углами по отношению оси «Y» КА, направленной в зенит в орбитальной системе координат. В результате оси Ан образуют некий пространственный «ежик», при котором максимальное число видимых всеми антеннами НС обеспечивается в ОСК КА (ось «Y» направлена в зенит), а минимальное, когда КА находится в перевернутом положении относительно ОСК (ось «Y» направлена в надир). Достигаемый положительный эффект демонстрируют графики видимости НС для прототипа (фиг. 6) и предлагаемого решения (фиг. 7). На фиг. 7 приведены графики видимости НС ГЛОНАСС+GPS для АСН КА «Прогресс» на суточном интервале полета для «лучшей» (верхний график) и «худшей» (нижний график) ориентации КА с точки зрения видимости НС.
Из приведенных графиков видно, что для «лучшей» ориентации среднее число видимых НС составляет 25-28 спутников, а в «худшей» 18-20 спутников. Это означает, что при любой ориентации КА число видимых НС составляет, по крайней мере, 18-20 спутников, что достаточно для определения вектора координат с высокой точностью.
Для сравнения на фиг. 6 приведены аналогичные графики для прототипа - АСН-М Российского сегмента МКС. Здесь также «лучшая» ориентация МКС для обеспечения видимости НС - ОСК с осью «Y», направленной в зенит, «худшая» - с осью «Y», направленной в надир. Из приведенных графиков следует, что в «лучшей» ориентации МКС число видимых НС ГЛОНАСС+GPS лежит в диапазоне 15-25 НС, в «худшей» - в диапазоне 1-6 НС.
Сравнение результатов показывает, что предложенное решение обеспечивает видимость достаточного количества НС при любой ориентации КА, тогда как прототип обеспечивает достаточную видимость НС в малой окрестности углов поворота МКС относительно ОСК. При больших углах поворота необходимая видимость НС не обеспечивается.
При одной и той же ориентации предложенное решение обеспечивает увеличение числа видимых НС в 2-4 раза. Так, при угле крена 180°, как следует из графиков, приведенных на фиг. 6, видимость НС прототипом на суточном интервале в среднем составляет 2-6 НС, тогда как предложенное решение обеспечивает среднее число видимых НС - 15-20 (см. фиг. 7). В этом случае прототип не может обеспечить формирование координат, а в предложенном решении координаты формируются ежесекундно без сбоев и с высокой точностью.
Список литературы
1. Глобальная Навигационная Спутниковая Система ГЛОНАСС ИКД ГЛОНАСС, Навигационный радиосигнал в диапазонах L1, L2, (редакция 5.1) М., 2008.
2. Н.В. Михайлов. Автономная навигация космических аппаратов при помощи спутниковых радионавигационных систем. Политехника, Санкт-Петербург 2014, раздел 7.1
3. В.Н. Бранец, Е.А. Микрин, В.Н. Платонов, С.Н. Евдокимов, М.В. Михайлов, С.Н. Рожков, Р.Ф. Муртазин, Б.В. Шебшаевич, В. Пантер, Дж. Клабб «Навигационное обеспечение международной космической станции» Сборник трудов X Санкт-Петербургской международной конференции по интегрированным навигационным системам 2003, стр. 7.

Claims (2)

1. Способ определения координат космического аппарата по сигналам навигационных спутников, включающий излучение радиосигналов от навигационных спутников с известными параметрами орбиты в известные моменты времени, прием радиосигналов от навигационных спутников антеннами, установленными на космическом аппарате, от i навигационных спутников, находящихся в полях зрения соответствующих антенн, определение дальности di между i навигационными спутниками и космическим аппаратом по разности времени приема и излучения радиосигнала, определение координат космического аппарата по измеренным дальностям и координатам
Figure 00000023
навигационных спутников в моменты измерений как координаты точки, лежащей одновременно на n сферах с центрами в точках
Figure 00000023
, отличающийся тем, что определяют векторы от центра масс космического аппарата до антенн в связанной с космическим аппаратом системе координат, определяют ориентацию космического аппарата в гринвичской системе координат, определяют векторы от центра масс космического аппарата до антенн в гринвичской системе координат, определяют проекции этих векторов на направления от космического аппарата на навигационные спутники, суммируют эти проекции с измеренными дальностями соответствующих антенн, по полученным суммам определяют координаты космического аппарата.
2. Устройство определения координат космического аппарата по сигналам навигационных спутников, реализующее способ по п. 1, включающее m антенн, выходы которых подключены к соответствующим входам m блоков формирования дальностей и координат навигационных спутников, а также блок определения координат космического аппарата, отличающееся тем, что в устройство дополнительно введены блок ориентации и задатчик координат антенн, выходы которых подключены к соответствующим входам преобразователя координат антенн, выходы которого подключены к первым входам формирователей поправок дальностей, ко вторым входам которых подключены первые выходы блоков формирования дальностей и координат навигационных спутников, выходы формирователей поправок дальностей подключены к входам m сумматоров, ко вторым входам которых подключены вторые выходы блоков формирования дальностей и координат навигационных спутников, выходы сумматоров подключены к первым входам блока определения координат космического аппарата, ко вторым входам которого подключены первые выходы блоков формирования дальностей и координат навигационных спутников, выход блока определения координат космического аппарата является выходом заявляемого устройства.
RU2016129647A 2016-07-19 2016-07-19 Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников RU2654321C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016129647A RU2654321C1 (ru) 2016-07-19 2016-07-19 Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016129647A RU2654321C1 (ru) 2016-07-19 2016-07-19 Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Publications (2)

Publication Number Publication Date
RU2016129647A RU2016129647A (ru) 2018-01-24
RU2654321C1 true RU2654321C1 (ru) 2018-05-17

Family

ID=61024046

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129647A RU2654321C1 (ru) 2016-07-19 2016-07-19 Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников

Country Status (1)

Country Link
RU (1) RU2654321C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687512C1 (ru) * 2018-08-07 2019-05-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ определения диаграммы направленности антенны навигационного спутника
RU2692701C1 (ru) * 2018-12-03 2019-06-26 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат воздушных целей в многопозиционной системе наблюдения "навигационные спутники - воздушные цели - приемник"
RU2726916C1 (ru) * 2019-11-18 2020-07-16 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения ориентации космического аппарата по сигналам навигационных спутников
RU2732520C1 (ru) * 2019-07-23 2020-09-18 Войсковая часть 13991 Устройство для определения пространственной ориентации ракеты космического назначения "союз-2"
RU2751121C1 (ru) * 2020-11-03 2021-07-08 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") Способ определения формы амплитудной диаграммы направленности антенной системы навигационного космического аппарата

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117439656B (zh) * 2023-12-08 2024-02-23 成都时代宇辰科技有限公司 一种victs卫星通信天线绝对坐标系自动校正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227547A1 (de) * 1982-07-23 1984-02-02 Teldix Gmbh, 6900 Heidelberg Navigationsanlage
RU2353902C2 (ru) * 2007-05-11 2009-04-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения географических координат изображений объектов на поверхности планеты при съемке с пилотируемого космического аппарата
RU2587539C2 (ru) * 2014-08-28 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.Н. Королева" Способ определения координат фотографируемых с космического аппарата земных объектов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227547A1 (de) * 1982-07-23 1984-02-02 Teldix Gmbh, 6900 Heidelberg Navigationsanlage
RU2353902C2 (ru) * 2007-05-11 2009-04-27 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Способ определения географических координат изображений объектов на поверхности планеты при съемке с пилотируемого космического аппарата
RU2587539C2 (ru) * 2014-08-28 2016-06-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.Н. Королева" Способ определения координат фотографируемых с космического аппарата земных объектов

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Бранец B.Н., Микрин Е.А., Платонов В.Н. и др. Навигационное обеспечение международной космической станции. Сборник трудов X С-Петербургской международной конференции по интегрированным навигационным системам 2003, стр. 7. Шебшаевич В.С. Сетевые спутниковые радионавигационные системы. - М.: Радио и связь, 1993 г., с.295-296, 305-309. *
Интеллектуальная система сбора и обработки данных в интерактивных системах программного управления, рис. 6.1 - 6.3, с.144 - 148 / В кн.: Интеллектуальные интерактивные системы и технологии управления удаленным доступом / Ботуз С.П. - М.: СОЛОН-ПРЕСС, 2014. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687512C1 (ru) * 2018-08-07 2019-05-14 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ определения диаграммы направленности антенны навигационного спутника
RU2692701C1 (ru) * 2018-12-03 2019-06-26 Акционерное общество научно-внедренческое предприятие "ПРОТЕК" Способ определения координат воздушных целей в многопозиционной системе наблюдения "навигационные спутники - воздушные цели - приемник"
RU2732520C1 (ru) * 2019-07-23 2020-09-18 Войсковая часть 13991 Устройство для определения пространственной ориентации ракеты космического назначения "союз-2"
RU2726916C1 (ru) * 2019-11-18 2020-07-16 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ определения ориентации космического аппарата по сигналам навигационных спутников
RU2751121C1 (ru) * 2020-11-03 2021-07-08 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Физико-Технических И Радиотехнических Измерений" (Фгуп "Вниифтри") Способ определения формы амплитудной диаграммы направленности антенной системы навигационного космического аппарата

Also Published As

Publication number Publication date
RU2016129647A (ru) 2018-01-24

Similar Documents

Publication Publication Date Title
RU2654321C1 (ru) Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
CA2837179C (en) Determining spatial orientation information of a body from multiple electromagnetic signals
Guo et al. Space electronic reconnaissance: localization theories and methods
CN111102981B (zh) 一种基于ukf的高精度卫星相对导航方法
RU2517800C1 (ru) Способ обзора небесной сферы с космического аппарата для наблюдения небесных объектов и космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения тел солнечной системы, реализующая указанный способ
CN110823191B (zh) 混合基线双天线斜视干涉sar洋流测量性能确定方法及系统
US6594582B1 (en) GPS compound eye attitude and navigation sensor and method
US6906664B2 (en) Method and system using a GPS-based phased-array scheme for three-axis attitude determination
RU2654883C2 (ru) Способ определения временной привязки производимых с космического аппарата снимков земной поверхности
RU2706636C1 (ru) Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
RU2640167C1 (ru) Многофункциональный космический аппарат
RU2723199C1 (ru) Способ и система определения ориентации космического аппарата в пространстве с автономной коррекцией эффекта аберрации света
US6782320B1 (en) Method and system of single-antenna determination of position, time, and attitude of a moving object by satellite navigation
RU2712365C1 (ru) Способ определения координат космического аппарата по сигналам навигационных спутников и устройство определения координат космического аппарата по сигналам навигационных спутников
Yang et al. Availability analysis of GNSS signals above GNSSs constellation
Fateev et al. The use of GNSS technologies for high-precision navigation geostationary spacecraft
Kartsan et al. Radar sensing of the sea surface using small spacecraft
Hu et al. An antenna beam steering strategy for sar echo simulation in highly elliptical orbit
Bogatyrev et al. The algorithm of relative orientation for formation flight of a group of nanosatellites based on the radionavigation ranging method
RU2573420C1 (ru) Способ калибровки радиолокационной станции с использованием космического аппарата с эталонными отражательными характеристиками
RU2821640C1 (ru) Способ определения угловой ориентации летательного аппарата
RU2711834C1 (ru) Способ определения орбиты космического аппарата с аппаратурой для съёмки подстилающей поверхности
RU2729339C1 (ru) Способ определения орбиты космического аппарата
RU2726916C1 (ru) Способ определения ориентации космического аппарата по сигналам навигационных спутников
US10585179B2 (en) Systems, methods, and apparatuses for determining the distance between two positions