RU2653699C2 - Комплекс мониторинга систем постоянного оперативного тока - Google Patents

Комплекс мониторинга систем постоянного оперативного тока Download PDF

Info

Publication number
RU2653699C2
RU2653699C2 RU2016108459A RU2016108459A RU2653699C2 RU 2653699 C2 RU2653699 C2 RU 2653699C2 RU 2016108459 A RU2016108459 A RU 2016108459A RU 2016108459 A RU2016108459 A RU 2016108459A RU 2653699 C2 RU2653699 C2 RU 2653699C2
Authority
RU
Russia
Prior art keywords
monitoring
measuring
current
voltage
complex
Prior art date
Application number
RU2016108459A
Other languages
English (en)
Other versions
RU2016108459A (ru
Inventor
Иван Владимирович Бровкин
Николай Владимирович Тингаев
Олег Евгеньевич Наумов
Тимур Петрович Максимов
Григорий Викторович Цепилов
Original Assignee
Закрытое акционерное общество "Межрегиональное производственное объединение технического комплектования "ТЕХНОКОМПЛЕКТ" (ЗАО "МПОТК "ТЕХНОКОМПЛЕКТ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "Межрегиональное производственное объединение технического комплектования "ТЕХНОКОМПЛЕКТ" (ЗАО "МПОТК "ТЕХНОКОМПЛЕКТ") filed Critical Закрытое акционерное общество "Межрегиональное производственное объединение технического комплектования "ТЕХНОКОМПЛЕКТ" (ЗАО "МПОТК "ТЕХНОКОМПЛЕКТ")
Priority to RU2016108459A priority Critical patent/RU2653699C2/ru
Publication of RU2016108459A publication Critical patent/RU2016108459A/ru
Application granted granted Critical
Publication of RU2653699C2 publication Critical patent/RU2653699C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

Использование: в области электротехники. Технический результат заключается в расширении функциональных возможностей комплекса. Комплекс мониторинга систем постоянного оперативного тока представляет собой совокупность функциональных блоков, в состав комплекса входят: блок индикации для обработки и отображения информации, управления комплексом в целом и функциональными блоками в отдельности, а также для хранения уставок и ведения журнала событий; устройство сбора информации для приема команд управления от блока индикации и передачи их в функциональные блоки, приема данных от функциональных блоков и передачи их в блок индикации; блок контроля аккумуляторной батареи с датчиками для измерения и контроля тока аккумуляторной батареи, асимметрии напряжений батареи и пульсаций тока, а также совместно с датчиком температуры для измерения и контроля температуры аккумуляторной батареи; блок контроля напряжения и тока с датчиками для измерения и контроля напряжения и тока, а также пульсаций напряжения и тока; блок контроля дискретных сигналов для оценки логического состояния вспомогательных контактов автоматических выключателей, контакторов, предохранителей; блок тестового воздействия с блоком контроля изоляции для измерения и контроля полного сопротивления изоляции сети и отдельных сопротивлений, сопротивления изоляции сети по полюсам, измерения и контроля напряжений полюсов относительно земли, а также осуществления тестового воздействия на сеть в соответствии с алгоритмом измерения сопротивления изоляции, а также опционально -уравнительные резисторы для создания требуемого сопротивления полюсов относительно земли, при этом состав и количество функциональных блоков определяются набором режимных параметров, которые требуется контролировать, и схемой системы постоянного оперативного тока. 4 ил.

Description

Изобретение относится к электротехнике, а именно к устройствам контроля состояния систем постоянного оперативного тока.
Известен ряд устройств контроля сопротивления изоляции электрических сетей постоянного тока, описанный в патентах: РФ №2284537, кл. G01R 31/08, заявка от 10.05.2006 г., опубликовано 27.09.2006 г.; РФ №2411526, кл. G01R 27/18, заявка от 20.08.2008 г., опубликовано 10.02.2011 г.; РФ №2460082, кл. G01R 31/02, G01R 27/02, заявка от 25.03.2011 г., опубликовано 27.08.2012 г.; РФ №2480776, кл. G01R 31/02, заявка от 19.10.2011 г., опубликовано 27.04.2013 г. Эти устройства, однако, предназначены для контроля лишь одного параметра сети постоянного тока - сопротивления изоляции, и не в состоянии обеспечить ее комплексный мониторинг.
Известен микроконтроллерный комплекс автоматизации и мониторинга МКА RIDUS, описанный в научно-техническом журнале «ЭЛЕКТРОЭНЕРГИЯ. Передача и распределение», №6, 2011 г. Комплекс предназначен для измерения и контроля аналоговых и дискретных величин в системах постоянного и переменного тока. Комплекс МКА RIDUS включает в себя графическую панель индикации RIDUS VIS, микроконтроллерный модуль автоматизации RIDUS MCU и совокупность модулей контроля рабочих параметров системы (напряжение, ток, температура и т.п.) Недостатком данного комплекса является отсутствие модуля контроля сопротивления изоляции цепей постоянного тока, вследствие чего для реализации данной функции необходимо использовать оборудование сторонних производителей.
Задачей предлагаемого изобретения является обеспечение комплексного контроля состояния систем постоянного оперативного тока с измерением и контролем сопротивления изоляции как в целом по системе, так и по отдельным присоединениям, а также других режимных параметров.
Поставленная задача решается созданием комплекса мониторинга систем постоянного оперативного тока, представляющего собой совокупность функциональных блоков, причем состав и количество функциональных блоков определяется набором режимных параметров, которые требуется контролировать, и схемой системы постоянного оперативного тока.
Отличительные особенности комплекса:
- возможность работы в сетях постоянного тока, имеющих большую протяженность;
- интеллектуальный алгоритм измерительного воздействия, снижающий вероятность ложного срабатывания реле и дискретных входов микропроцессорных защит;
- измерение полного сопротивления изоляции сети, сопротивления изоляции сети по полюсам и полного сопротивления изоляции присоединений;
- возможность корректных измерений при любом снижении сопротивления изоляции, включая симметричное снижение изоляции на положительном и отрицательном полюсе сети;
- возможность работы комплекса с уже существующим Т-образным мостом в системе, возможность применения резисторов, удерживающих потенциалы сети при снижении сопротивления изоляции;
- возможность применения шунтов и датчиков тока для измерения и контроля тока;
- контроль асимметрии напряжения элементов аккумуляторной батареи при симметричном и несимметричном отводе от аккумуляторной батареи.
Комплекс мониторинга систем постоянного оперативного тока характеризуется следующими признаками:
- наличие совокупности функциональных блоков, состав и количество которых определяются набором режимных параметров, которые требуется контролировать, и схемой системы оперативного тока;
- функция измерения полного сопротивления изоляции сети, сопротивления изоляции сети по полюсам и полного сопротивления изоляции отдельных присоединений.
Совокупность перечисленных признаков отсутствует в известных решениях, поэтому предлагаемое изобретение соответствует критерию «новизна».
Структура комплекса изображена на фиг. 1, где обозначены:
1 - блок индикации (БИ);
2 - источник питания (ИП);
3 - устройство сбора информации (УСИ);
4 - функциональные блоки.
Блок индикации БИ предназначен для обработки и отображения информации, управления комплексом в целом и функциональными блоками в отдельности, а также для хранения уставок и ведения журнала событий. В качестве БИ в комплексе применяется промышленный сенсорный цветной жидкокристаллический дисплей.
Источник питания ИП обеспечивает стабилизированным напряжением +24 В электронную часть блоков УСИ, БИ и функциональных блоков.
Устройство сбора информации УСИ служит для приема команд управления от БИ и передачи команд управления в функциональные блоки, приема данных от функциональных блоков и передачи их в БИ, а также связи комплекса с автоматизированной системой управления технологическим процессом (АСУ ТП). Для связи с БИ используется интерфейс RS-232, для связи с функциональными блоками реализована шина CAN. Связь комплекса с АСУ ТП осуществляется по протоколу Modbus RTU посредством гальванически развязанного интерфейса RS-485.
К функциональным блокам, входящим в состав комплекса, относятся:
- блок контроля аккумуляторной батареи (БКАБ);
- блок контроля напряжения и тока (БКНТ);
- блок контроля дискретных сигналов (БКДС);
- блок тестового воздействия (БТВ);
- блок контроля изоляции (БКИ).
Количество функциональных блоков может варьироваться в зависимости от размера и структуры контролируемой системы постоянного тока, а также функциональных возможностей, которые требуется обеспечить.
Блок контроля аккумуляторной батареи 6 (см. фиг. 2) предназначен для измерения и контроля напряжения и тока аккумуляторной батареи (АБ) 9, асимметрии напряжений батареи и пульсаций тока, а также совместно с датчиком температуры 5 - для измерения и контроля температуры батареи. Измерение и контроль тока производится посредством датчиков тока 7 либо внешних измерительных шунтов 8 с номинальным выходным напряжением 75 мВ.
Блок контроля напряжения и тока БКНТ 9 (см. фиг. 3) предназначен для измерения и контроля напряжения и тока, а также пульсаций напряжения и тока. Каждый БКНТ имеет два входа для приема сигнала от датчиков тока 7, два гальванически развязанных входа для подключения внешних измерительных шунтов 8 с номинальным выходным напряжением 75 мВ, а также два гальванически развязанных входа для измерения напряжения постоянного тока в диапазоне от нуля до 300 В.
Блок контроля дискретных сигналов БКДС служит для оценки логического состояния вспомогательных контактов автоматических выключателей, контакторов, предохранителей. Один блок БКДС контролирует до 16 дискретных сигналов и передает информацию о них по шине CAN. В состав комплекса может входить до 12 блоков БКДС, большее количество может быть реализовано по требованию заказчика.
Блоки тестового воздействия БТВ и контроля изоляции БКИ необходимы для измерения и контроля полного сопротивления изоляции сети и отдельных сопротивлений, сопротивления изоляции сети по полюсам, измерения и контроля напряжений полюсов относительно земли, а также осуществления тестового воздействия на сеть в соответствии с реализованным алгоритмом измерения сопротивления изоляции. Схема подключения БТВ и БКИ к системе постоянного тока, включающей в себя зарядно-выпрямительное устройство (ЗВУ) 14, аккумуляторную батарею 9, шины постоянного тока и совокупность потребительских присоединений с датчиками дифференциального тока 10 показана на фиг. 4.
Блок тестового воздействия 12 входит в комплекс в единственном числе. Он имеет два режима работы: активный (включен по умолчанию) и пассивный. В активном режиме блок с помощью встроенных реле по разработанному уникальному алгоритму подключает между положительным или отрицательным полюсом и землей высокоточный электронный потенциометр. До и после подключения электронного потенциометра между полюсами и землей измеряется напряжение полюсов относительно земли. Полученные данные используются при расчете общего сопротивления изоляции сети и сопротивлений изоляции полюсов сети. К разъемам БТВ можно подключить два датчика дифференциального тока для контроля сопротивления изоляции двух присоединений или сопротивления изоляции шин. Для увеличения количества контролируемых присоединений используется блок контроля изоляции 11, к которому подключаются последующие датчики дифференциального тока 10, расположенные на контролируемых присоединениях.
В пассивном режиме БТВ измеряет и контролирует напряжение полюсов относительно земли, а полученные данные выводятся на БИ в реальном времени, что облегчает персоналу поиск присоединений со сниженным сопротивлением изоляции методом поочередного отключения присоединений.
Блок контроля изоляции, помимо функции измерения и контроля сопротивлений изоляции, также контролирует исправность подключенных к нему датчиков дифференциального тока 10, установленных на присоединениях. Один блок БКИ может обслуживать до восьми датчиков. Количество блоков БКИ в составе комплекса может быть от нуля до 10 (большее количество может быть реализовано по требованию заказчика).
В состав комплекса могут быть включены два уравнительных резистора 13, создающих сопротивление полюсов относительно земли 30 кОм. Уравнительные резисторы располагаются в распределительном щите контролируемой сети. Использование этих резисторов вместо эквивалентного по величине сопротивления Т-образного моста позволяет снизить тепловыделение в три раза, уменьшить габариты и массу резисторов.
Минимальный обязательный набор блоков, входящих в комплекс, включает в себя БИ, ИП и УСИ; состав и количество остальных блоков определяется требуемыми функциональными возможностями.
В полной комплектации рассматриваемый комплекс позволяет реализовать все необходимые функции измерения и контроля системы постоянного оперативного тока, а именно:
- измерение и контроль напряжения и пульсаций напряжения на шинах секций сети постоянного тока;
- измерение и контроль потенциалов полюсов сети относительно земли;
- измерение и контроль напряжения аккумуляторной батареи;
- измерение и контроль асимметрии напряжения элементов аккумуляторной батареи;
- измерение и контроль тока и пульсаций тока аккумуляторной батареи;
- измерение и контроль температуры аккумуляторной батареи;
- измерение и контроль токов и пульсаций токов сборных шин и зарядного устройства;
- измерение и контроль сопротивлений изоляции полюсов сети и полного сопротивления изоляции сети;
- измерение и контроль сопротивлений изоляции присоединений;
- контроль направления тока аккумуляторной батареи;
- оценку полной емкости сети относительно земли;
- контроль дискретных сигналов;
- отображение информации мониторинга и контроля на экране блока индикации;
- самодиагностику комплекса;
- формирование обобщенных сигналов о неисправностях в сети и комплексе;
- передачу результатов мониторинга и контроля на верхний уровень АСУ по протоколу Modbus RTU;
- ведение журнала событий;
- обновление программного обеспечения посредством интерфейса USB 2.0 и Ethernet.
Изобретение реализовано в виде опытного образца комплекса мониторинга систем оперативного тока КМСОТ-М «Дубна».

Claims (1)

  1. Комплекс мониторинга систем постоянного оперативного тока, представляющий собой совокупность функциональных блоков, отличающийся тем, что в состав комплекса входят: блок индикации для обработки и отображения информации, управления комплексом в целом и функциональными блоками в отдельности, а также для хранения уставок и ведения журнала событий; устройство сбора информации для приема команд управления от блока индикации и передачи их в функциональные блоки, приема данных от функциональных блоков и передачи их в блок индикации; блок контроля аккумуляторной батареи с датчиками для измерения и контроля тока аккумуляторной батареи, асимметрии напряжений батареи и пульсаций тока, а также совместно с датчиком температуры для измерения и контроля температуры аккумуляторной батареи; блок контроля напряжения и тока с датчиками для измерения и контроля напряжения и тока, а также пульсаций напряжения и тока; блок контроля дискретных сигналов для оценки логического состояния вспомогательных контактов автоматических выключателей, контакторов, предохранителей; блок тестового воздействия с блоком контроля изоляции для измерения и контроля полного сопротивления изоляции сети и отдельных сопротивлений, сопротивления изоляции сети по полюсам, измерения и контроля напряжений полюсов относительно земли, а также осуществления тестового воздействия на сеть в соответствии с алгоритмом измерения сопротивления изоляции, а также опционально-уравнительные резисторы для создания требуемого сопротивления полюсов относительно земли, при этом состав и количество функциональных блоков определяются набором режимных параметров, которые требуется контролировать, и схемой системы постоянного оперативного тока.
RU2016108459A 2016-03-09 2016-03-09 Комплекс мониторинга систем постоянного оперативного тока RU2653699C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016108459A RU2653699C2 (ru) 2016-03-09 2016-03-09 Комплекс мониторинга систем постоянного оперативного тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016108459A RU2653699C2 (ru) 2016-03-09 2016-03-09 Комплекс мониторинга систем постоянного оперативного тока

Publications (2)

Publication Number Publication Date
RU2016108459A RU2016108459A (ru) 2017-09-14
RU2653699C2 true RU2653699C2 (ru) 2018-05-14

Family

ID=59893415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016108459A RU2653699C2 (ru) 2016-03-09 2016-03-09 Комплекс мониторинга систем постоянного оперативного тока

Country Status (1)

Country Link
RU (1) RU2653699C2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109009A1 (en) * 2004-11-19 2006-05-25 Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh Method and device for the detection of fault current arcing in electric circuits
RU2411526C2 (ru) * 2008-08-20 2011-02-10 Закрытое акционерное общество "Межрегиональное Производственное Объединение Технического Комплектования "Технокомплект" Способ контроля сопротивления изоляции разветвленных сетей постоянного тока и устройство для его осуществления
RU2480776C1 (ru) * 2011-10-19 2013-04-27 Закрытое акционерное общество "Межрегиональное Производственное Объединение Технического Комплектования "Технокомплект" Способ контроля сопротивления изоляции разветвленных сетей постоянного тока и устройство для его осуществления
RU2554574C2 (ru) * 2013-03-14 2015-06-27 Светлана Михайловна Рассальская Система мониторинга высоковольтного электротехнического оборудования (вэо)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109009A1 (en) * 2004-11-19 2006-05-25 Esw-Extel Systems Wedel Gesellschaft Fuer Ausruestung Mbh Method and device for the detection of fault current arcing in electric circuits
RU2411526C2 (ru) * 2008-08-20 2011-02-10 Закрытое акционерное общество "Межрегиональное Производственное Объединение Технического Комплектования "Технокомплект" Способ контроля сопротивления изоляции разветвленных сетей постоянного тока и устройство для его осуществления
RU2480776C1 (ru) * 2011-10-19 2013-04-27 Закрытое акционерное общество "Межрегиональное Производственное Объединение Технического Комплектования "Технокомплект" Способ контроля сопротивления изоляции разветвленных сетей постоянного тока и устройство для его осуществления
RU2554574C2 (ru) * 2013-03-14 2015-06-27 Светлана Михайловна Рассальская Система мониторинга высоковольтного электротехнического оборудования (вэо)

Also Published As

Publication number Publication date
RU2016108459A (ru) 2017-09-14

Similar Documents

Publication Publication Date Title
CA2707552C (en) Battery system and management method
CA2634309C (en) Battery system and management method
CN102707113B (zh) 用于检测电功率的盗用和状态的系统、方法及设备
KR100930132B1 (ko) 모니터링 기능이 구비된 태양광 접속반
JP5220775B2 (ja) 電力計測装置及び電力計測システム
US10116149B1 (en) Automatic control system for a rechargeable battery system
KR20210120107A (ko) 통합 전기 패널
US10408911B2 (en) Network configurable system for a power meter
US20200112199A1 (en) Integrated electrical management system and architecture
TW201722014A (zh) 電源分配器與故障檢測方法
KR101081929B1 (ko) 분전반 통합 감시 시스템
CN103698651A (zh) 一种监察直流绝缘母线互窜的方法及装置
JP6494448B2 (ja) 配電線異常監視システム
CN106787152A (zh) 监控配电电源系统及供电系统
CN110297188B (zh) 蓄电池监测系统
RU2653699C2 (ru) Комплекс мониторинга систем постоянного оперативного тока
CN206293878U (zh) 一种智能检测剩余电流的动作保护装置
CN109143114B (zh) 一种直流互窜故障检测装置与方法
CN104410103A (zh) 船用柴油发电机组保护与并车控制装置
CN203720293U (zh) 一种监察直流绝缘母线互窜的装置
US12003095B2 (en) Abnormality detecting system for a solar power grid
CN106546825B (zh) 智能无线传输微型开口自校零漂微机绝缘综合检测系统
CN107732864A (zh) 智能空气开关系统、移动终端及服务器
CN208707380U (zh) 供电系统
CN104795895A (zh) 一种登记式智能限电系统及控制方法