RU2653324C2 - Беспилотный летательный аппарат и способ его эксплуатации - Google Patents

Беспилотный летательный аппарат и способ его эксплуатации Download PDF

Info

Publication number
RU2653324C2
RU2653324C2 RU2015120459A RU2015120459A RU2653324C2 RU 2653324 C2 RU2653324 C2 RU 2653324C2 RU 2015120459 A RU2015120459 A RU 2015120459A RU 2015120459 A RU2015120459 A RU 2015120459A RU 2653324 C2 RU2653324 C2 RU 2653324C2
Authority
RU
Russia
Prior art keywords
internal combustion
combustion engine
drive
electric motor
engine
Prior art date
Application number
RU2015120459A
Other languages
English (en)
Other versions
RU2015120459A (ru
Inventor
Юрген ШТАЙНВАНДЕЛЬ
Флориан ШТАГЛИАНО
Ян ВАН-ТОР
Original Assignee
Эрбас Дифенс Энд Спейс Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрбас Дифенс Энд Спейс Гмбх filed Critical Эрбас Дифенс Энд Спейс Гмбх
Publication of RU2015120459A publication Critical patent/RU2015120459A/ru
Application granted granted Critical
Publication of RU2653324C2 publication Critical patent/RU2653324C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/026
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control; Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plant to propellers or rotors; Arrangements of transmissions
    • B64D35/08Transmitting power from power plant to propellers or rotors; Arrangements of transmissions characterised by the transmission being driven by a plurality of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D41/00Power installations for auxiliary purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/11Propulsion using internal combustion piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/33Supply or distribution of electrical power generated by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/60Take-off or landing of UAVs from a runway using their own power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • B64U30/297Tilting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

Изобретение относится к области авиации, в частности к конструкциям больших беспилотных летательных аппаратов. Беспилотный летательный аппарат (10) имеет привод (12), который содержит двигатель (28) внутреннего сгорания, выполненный в виде дизельного двигателя и снабженный нагнетательным устройством (30) для наддува двигателя. Устройство содержит несколько последовательно включенных турбин, работающих на отработавших газах, и механический нагнетатель (76). Летательный аппарат (10) имеет систему (50) управления, обеспечивающую возможность осуществления наддува двигателя с использованием и без использования энергии отработавших газов и с использованием механической энергии, получаемой от двигателя внутреннего сгорания или от электропривода. Способ эксплуатации летательного аппарата (10) характеризуется тем, что наддувом двигателя (28) внутреннего сгорания привода (12) и/или взаимодействием двигателя (28) внутреннего сгорания и электродвигателя (36, М) гибридного привода (32) управляют в зависимости от высоты, угла к вертикали взлета или захода на посадку, требуемой скорости, допустимого выделения тепла, уровня шума и/или температуры. Обеспечивается возможность применения летательного аппарата на высотах более 4000 м. 2 н. и 14 з.п. ф-лы, 18 ил.

Description

Изобретение относится к беспилотному летательному аппарату, а также к способу его эксплуатации.
Беспилотный летательный аппарат, также называемый дроном или БПЛА, представляет собой летательный аппарат беспилотного воздушного сообщения, который может быть применен, например, для мониторинга, обследования, разведки, в качестве беспилотной мишени, с измерительными целями или также, при оснащении его оружием, прежде всего, в районах боевых действий. Дроны могут быть применены, например, в военных целях, в разведывательных целях или в гражданских целях. Дрон летает в беспилотном режиме либо с помощью автоматизированного посредством компьютерной программы управления, либо с помощью управления посредством радиосигналов с земли или, соответственно, по спутниковому радио. В зависимости от использования и оборудования, дроны могут нести полезные нагрузки, как, например, ракеты для военного нападения.
В обыкновенном словоупотреблении для таких летательных аппаратов принято сокращение БПЛА, означающее "беспилотный летательный аппарат". Дополнительно принято сокращение БАС, означающее "беспилотная авиационная система". Данный термин охватывает совокупную систему в составе летающего дрона, наземной станции для взлета и, в соответствующих случаях, для приземления, а также станции для управления полетом и его мониторинга.
Исчерпывающее описание БАС и различных БПЛА приведено в издании Reg Austin: "Unmanned Aircraft Systems - UAVS design, development and deployment", Wiley Verlag, 2010. Настоящее раскрытие основано на данных этой публикации, эта публикация инкорпорирована в него посредством ссылки.
Из DE 102010021022 А1 известен БПЛА в форме летательного аппарата с поворотным крылом.
БПЛА с гибридной системой известны из US 8128019 В2, а также из ЕР 2196392 А2. Обе эти публикации относятся к мини-БПЛА, которые пехотные войска могут брать с собой на поле боя и которые могут летать с очень малыми мощностями на незначительной высоте. При этом двигатель внутреннего сгорания приводится в действие с постоянным числом оборотов, дополнительный электродвигатель приводится в действие переменным образом, что позволяет при простой и легкой конструкции выполнять регулирование мощности.
Более крупные БПЛА с максимальным взлетным весом от примерно 70 кг до примерно 1000 кг приводятся в действие в настоящее время только посредством двигателей с поступательно движущимися поршнями, причем, как правило, используются двигатели внутреннего сгорания с принудительным зажиганием. Еще более крупные БПЛА имеют, как правило, газовые турбовинтовые двигатели, позволяющие вырабатывать соответствующие мощности.
Изобретение обращено, прежде всего, к таким более крупным БПЛА с максимальным взлетным весом примерно от 70 кг, и имеет своей целью создание для беспилотного летательного аппарата малозатратного, но весьма разнообразно приспосабливаемого для различных функций полета привода.
Эта цель достигнута посредством беспилотного летательного аппарата с признаками по п. 1 формулы изобретения.
Выгодные варианты осуществления изобретения являются предметом зависимых пунктов формулы изобретения. Выгодный способ эксплуатации приведен в дополнительном независимом пункте формулы изобретения.
Объектом изобретения является беспилотный летательный аппарат, привод которого содержит двигатель внутреннего сгорания, выполненный в виде дизельного двигателя и снабженный нагнетательным устройством для наддува двигателя, выполненным с возможностью многоступенчатого наддува, содержащим несколько последовательно включенных турбин, работающих на отработавших газах, и дополнительно содержащим по меньшей мере один механический нагнетатель, причем беспилотный летательный аппарат имеет систему управления, обеспечивающую возможность осуществления наддува двигателя с использованием и без использования энергии отработавших газов и с использованием механической энергии, получаемой от двигателя внутреннего сгорания или от электропривода.
Является предпочтительным, что привод представляет собой гибридный привод, который содержит электродвигатель и устройство хранения энергии для сохранения электрической энергии для приведения в действие электродвигателя дополнительно к двигателю внутреннего сгорания.
Является предпочтительным, что гибридный привод имеет выполненное с возможностью переключения сцепное устройство, с помощью которого двигатель внутреннего сгорания и/или электродвигатель могут быть выборочно соединены с движителем.
Является предпочтительным, что двигатель внутреннего сгорания и электродвигатель выполнены с возможностью выборочного параллельного или последовательного приведения в действие.
Является предпочтительным, что нагнетательное устройство содержит по меньшей мере первый нагнетатель и второй нагнетатель, прежде всего для многоступенчатого наддува.
Является предпочтительным, что нагнетательное устройство содержит по меньшей мере один нагнетатель, приводимый в действие посредством энергии отработавших газов.
Является предпочтительным, что по меньшей мере один механический нагнетатель приводится в действие посредством выходного вала двигателя внутреннего сгорания и/или посредством электродвигателя.
Является предпочтительным, что механический нагнетатель приводится в действие посредством электродвигателя гибридного привода.
Является предпочтительным, что система управления обеспечивает возможность управления нагнетательным устройством и/или гибридным приводом в зависимости от различных параметров при полетной эксплуатации.
Является предпочтительным, что система управления выполнена для управления нагнетательным устройством и/или гибридным приводом, прежде всего для включения и отключения первой и/или второй ступени наддува двигателя или включения и отключения электродвигателя, в зависимости по меньшей мере от одного из таких параметров, как высота, угол к вертикали взлета или захода на посадку, требуемая скорость, допустимое выделение тепла, допустимый уровень шума и/или температура.
Является предпочтительным, что двигатель внутреннего сгорания представляет собой роторно-поршневой двигатель.
Является предпочтительным, что летательный аппарат имеет максимальный взлетный вес более 70 кг, и прежде всего более 250 кг.
Объектом изобретения является также способ эксплуатации описанного выше беспилотного летательного аппарата, характеризующийся тем, что наддувом двигателя внутреннего сгорания привода и/или взаимодействием двигателя внутреннего сгорания и электродвигателя гибридного привода управляют в зависимости по меньшей мере от одного из таких параметров, как высота, угол к вертикали взлета или захода на посадку, требуемая скорость, допустимое выделение тепла, допустимый уровень шума и/или температура.
Является предпочтительным, что при превышении или снижении ниже предварительно заданных предельных значений по меньшей мере для одного параметра подключается или выключается:
- первая ступень наддува,
- вторая ступень наддува,
- механический нагнетатель,
- электрический нагнетатель,
- первый нагнетатель, работающий на отработавших газах,
- второй нагнетатель, работающий на отработавших газах, или
- электродвигатель, дополнительно к работающему двигателю внутреннего сгорания,
и/или
- двигатель внутреннего сгорания, дополнительно к работающему электродвигателю.
БПЛА в различных конфигурациях находят свое применение для самых разнообразных приложений в военной и в гражданской областях. В отношении энергетической эффективности чисто электрические приводы могли бы быть наиболее выгодными. Чисто электрические приводы могли бы быть также, прежде всего, при военных использованиях выгодными, принимая во внимание тепловую или акустическую сигнатуру. Другими словами, преимущество электрического привода для БПЛА при военном использовании состоит в том, что достигается возможность особо тихой полетной эксплуатации и/или полетной эксплуатации с незначительными тепловыми эмиссиями таким образом, что уменьшена опасность обнаружения БПЛА.
В настоящее время, однако, чисто электрические приводы подходят только для незначительных мощностей и незначительных времен полета. Например, чисто электрический привод мог бы быть применим для тактических БПЛА примерно до 70 кг максимального взлетного веса при временах полета от 20 минут до максимально 3 часов. Типичные приводные мощности составили бы в таком случае от 2 до 20 кВт. Однако при этом проблема состоит в плотности хранения энергии современных батарей.
Для обеспечения возможности использования преимуществ электрического привода также и для более крупных БПЛА, а также для большей высоты полета и более протяженных расстояний, прежде всего, для БПЛА САДПП-класса (средневысотный аппарат с длительной продолжительностью полета) или также ВАДПП-класса (высотный аппарат с длительной продолжительностью полета), изобретение предусматривает использование двигателей внутреннего сгорания, которые питаются дизельным топливом или керосином, и имеют наддув.
Наиболее предпочтительно, эти двигатели внутреннего сгорания являются частью гибридного привода, прежде всего предусмотрен дизель-электрический гибридный привод.
Дизельные и керосиновые двигатели могут быть применены универсально, например, также как приводы БПЛА корабельного базирования. Соответствующие двигатели имеют менее значительную потребность в топливе, чем двигатели внутреннего сгорания с принудительным зажиганием или газовые турбины, а также лучшие показатели работы в диапазоне частичных нагрузок.
Для энергетической и системно-технической оптимизации согласно изобретению предусмотрен наддув посредством нагнетательного устройства.
Поскольку при этом для нагнетателей используется энергия отработавших газов двигателей внутреннего сгорания, как например, энергия отработавших газов дизельных двигателей, то является возможным существенное уменьшение тем самым тепловой сигнатуры.
Предпочтительно, такой дизельный или керосиновый двигатель внутреннего сгорания с наддувом скомбинирован с электрическими компонентами в приводном механизме для БПЛА. Это предлагает, прежде всего, следующие преимущества:
- чисто электрический режим возможен, например, в области контроля эмиссии. Подлет может быть произведен при задействовании двигателя внутреннего сгорания, между тем как в области контроля эмиссии осуществляется чисто или в значительной степени чисто электрический режим для уменьшения тепловой и акустической сигнатуры и для повышения, таким образом, безопасности летательного аппарата.
- усиленный привод возможен посредством подключение электродвигателя в механическую трансмиссию. Такой усиленный привод может применяться, например, для взлетной фазы и/или для этапа приземления при критических условиях среды или для бегства или в прочих ситуациях, где имеется нужда в необычно высоких мощностях.
- такой привод можно применять для всех принимающихся в расчет конфигураций БПЛА. БПЛА может иметь, например, вертолетную конфигурацию, квадрокоптерную конфигурацию, конфигурацию с поворотным крылом и/или конфигурацию с поворотными винтами.
Прежде всего, согласно варианту осуществления изобретения могут приводиться в действие БПЛА с приводом пропеллером и/или с приводом пропеллером в кольцевом обтекателе или с несущими винтами класса мощности от 30 кВт до 400 кВт на отдельный двигатель внутреннего сгорания. При необходимости в более высокой мощности могут быть применены, например, несколько двигателей внутреннего сгорания. Наиболее предпочтительными к использованию являются дизельные и роторно-поршневые керосиновые двигатели.
Такой роторно-поршневой двигатель построен очень компактно и, также и при использовании с дизельным топливом или керосином, относительно легко. Кроме того, он легко может быть создан с несколькими степенями мощности. Для нижней степени мощности, например, предусмотрен однороторный роторно-поршневой двигатель, при большей степени мощности прибавляется к использованию последующий ротор и т.д.
Особо предпочтительный вариант осуществления относится к объединению такого двигателя внутреннего сгорания с электродвигателем и электрическим энергетическим накопителем в гибридный привод, который, предпочтительно, предусмотрен в виде параллельного гибрида при условии предусмотрения самых различных решений по наддуву двигателя внутреннего сгорания.
Предпочтительно, БПЛА предусмотрен с использованием горючего "тяжелое топливо" и с наддувом. Под "тяжелым топливом", прежде всего, в США понимают дизельное и/или керосиновое горючее.
Дизельные двигатели с наддувом известны, само собой разумеется, в автомобильной технике. В качестве примера известного дизельного двигателя с наддувом можно назвать, например, трехцилиндровый турбодизельный двигатель легкового автомобиля "Smart", который доступен на рынке также как отдельный двигатель. Согласно изобретению дизельный двигатель с наддувом или керосиновый двигатель с наддувом применены для беспилотного летательного аппарата. Это представляет интерес, прежде всего, при применении БПЛА корабельного базирования.
Наиболее предпочтительным является использование наддува двигателя внутреннего сгорания. Например, предусмотрен наддув при использовании энергии отработавших газов. В данном случае применимы, прежде всего, соединенные с работающими на отработавших газах турбинами нагнетатели - "турбонагнетатели". Прежде всего, энергия отработавших газов используется двухступенчатым образом посредством последовательно включенных работающих на отработавших газах турбин. За счет использования энергии отработавших газов достигают уменьшения температуры выхлопных газов. Вследствие этого уменьшена сигнатура для инфракрасного обнаружения БПЛА.
Другими преимуществами приводимых в действие дизельным топливом или керосином двигателей по сравнению с двигателями внутреннего сгорания с принудительным зажиганием или газовыми турбинами являются более высокая эффективность и лучшие показатели работы в диапазоне частичных нагрузок, кроме того, такие двигатели являются более долговечными. Дизельные двигатели выдают их номинальную мощность при более низком числе оборотов.
Наиболее предпочтительно, предусмотрены, по меньшей мере, первый нагнетатель и второй нагнетатель, что делает возможным, по меньшей мере, двухступенчатый наддув.
Для более незначительных высот и более незначительной мощности двигатель внутреннего сгорания может работать без наддува. Для несколько более высоких мощностей подключается первая ступень наддува. Для еще более высоких мощностей может быть подключена вторая ступень. Прежде всего, двухступенчатый наддув интересен при последующем использовании энергии отработавших газов. Такой двухступенчатый наддув интересен для более высоких высот свыше примерно 4000 м, и может быть применено также для высот примерно от 10000 м до 12000 м.
Другим интересным решением является механический наддув. Таким образом, является предпочтительным, что двигатель внутреннего сгорания имеет в качестве нагнетателя по меньшей мере один механический нагнетатель. Преимущество механического наддува состоит в том, что двигатель не должен работать против давления отработавших газов. Предпочтительно, механический наддув является отключаемым. Привод механического нагнетателя может производиться, например, посредством приводного вала двигателя внутреннего сгорания и/или посредством электрического привода. Наиболее предпочтительным в качестве электрического привода является применение электродвигателя гибридного привода.
Таким образом, многоступенчатый наддув является возможным как с использованием энергии отработавших газов, так и без него, при использовании механической энергии от двигателя внутреннего сгорания или от электропривода.
Наиболее предпочтительно, предусмотрена система управления, которая управляет различными разновидностями приводов - электродвигателем и/или двигателем внутреннего сгорания, и/или различными нагнетательными системами в зависимости от различных параметров при полетной эксплуатации БПЛА.
Возможные параметры в данном случае являются различными высотами. Они могут регистрироваться, например, посредством датчика давления. В таком варианте осуществления изобретения БПЛА имеет датчик давления, сигналы которого применены для управления приводом. Другими возможными параметрами являются, например, крутой подъем и/или скоростной полет. Другой параметр может быть представлен мощностью для взлета и/или наземного режима. С помощью такой концепции привода как БПЛА САДПП-класса, так и БПЛА ВАДПП-класса могут быть приведены в действие с большим функциональным разнообразием и с большим диапазоном возможностей использования.
Согласно другому аспекту изобретения предложен БПЛА с гибридным приводом, причем БПЛА приводится в действие после приземления в качестве мобильного модуля питания. БПЛА, предпочтительно, прилетает к требуемому месту производства работ и быстро приводится там в готовность, в противоположность аварийным агрегатам наземного базирования.
За счет своей повышенной гибкости использования БПЛА может прилетать, прежде всего, к местам производства работ, которые не могут быть достигнуты по наземной дороге или могут быть достигнуты с большим трудом, и обеспечивать там электроснабжение. В качестве источника первоначального энергоснабжения служит двигатель внутреннего сгорания, который для предоставления требуемой мощности приводит в действие генератор. В другом варианте осуществления электрический энергетический накопитель может быть исключен таким образом, что вес может быть сэкономлен. БПЛА описан как выше, так и в дальнейшем.
Варианты осуществления изобретения разъяснены в последующем посредством приложенных чертежей более подробно. При этом показано:
Фиг. 1 - схематическое представление первого варианта осуществления беспилотного летательного аппарата с приводом,
Фиг. 2 - схематическое представление второго варианта осуществления беспилотного летательного аппарата с приводом,
Фиг. 3 - схематическое представление третьего варианта осуществления летательного аппарата с приводом,
Фиг. 4 - схематическое представление первого варианта осуществления привода для беспилотных летательных аппаратов согласно фиг. 1-3,
Фиг. 5 - схематическое представление первого варианта осуществления привода в первом режиме работы,
Фиг. 6 - схематическое представление первого варианта осуществления привода согласно фиг. 4 во втором режиме работы,
Фиг. 7 - схематическое представление первого варианта осуществления привода согласно фиг. 4 в третьем режиме работы,
Фиг. 8 - схематическое представление второго варианта осуществления привода для одного из беспилотных летательных аппаратов согласно фиг. 1-3,
Фиг. 9 - схематическое представление второго варианта осуществления привода согласно фиг. 8 в первом режиме работы,
Фиг. 10 - схематическое представление второго варианта осуществления привода согласно фиг. 8 во втором режиме работы,
Фиг. 11 - схематическое представление второго варианта осуществления привода согласно фиг. 8 в третьем режиме работы,
Фиг. 12 - схематическое представление третьего варианта осуществления привода для одного из беспилотных летательных аппаратов согласно фиг. 1-3,
Фиг. 13 - схематическое представление третьего варианта осуществления привода на фиг. 12 в первом режиме работы,
Фиг. 14 - схематическое представление третьего варианта осуществления привода на фиг. 12 во втором режиме работы,
Фиг. 15 - схематическое представление третьего варианта осуществления привода на фиг. 12 в третьем режиме работы,
Фиг. 16 - схематическое представление третьего варианта осуществления привода на фиг. 12 в четвертом режиме работы,
Фиг. 17 - схематическое представление третьего варианта осуществления привода на фиг. 12 в пятом режиме работы, и
Фиг. 18 - схематическая диаграмма для представления системы управления приводом беспилотного летательного аппарата на основе различных параметров при полетной эксплуатации.
На фиг. 1-3 схематически представлены три различных варианта осуществления беспилотных летательных аппаратов 10 с указанием соответствующего привода 12. Беспилотные летательные аппараты 10 называют также дронами или также, в профессиональном языке, БПЛА. Они являются частью системы беспилотного авиационного сообщения, называемой БАС, посредством которой могут быть выполнены военные и гражданские операции, такие как, прежде всего, разведывательные полеты, миссии мониторинга или измерительные миссии. БАС имеет наряду с представленными беспилотными летательными аппаратами 12 также непредставленные, но достаточно известные системные компоненты, такие как, например, наземный пульт управления, с которого БПЛА телеуправляемо обслуживается, и соответствующие коммуникативные устройства для коммуникации между беспилотным летательным аппаратом 10 и пультом управления. За дальнейшими подробностями по БАС рекомендуется обращение к ранее упомянутой публикации Reg Austin "Unmanned Aircraft Systems - UAS design, development and deployment", Wiley Verlag 2010.
На фиг. 1 представлен первый БПЛА 14, который предусмотрен в форме приводимого в действие двигателем планера с фиксированными несущими поверхностями 16, с обыкновенным хвостовым оперением 18 и с движителем 18, в данном случае, выполненным в форме пропеллера 20, например, на вертикальном стабилизаторе 22. Конструкция этого первого БПЛА 14 основана на конструкции снабженного электрическим вспомогательным приводом планера "e-Genius", который был разработан институтом авиастроения университета Штутгарта и совершил свой первый полет 25 мая 2011.
В отличие от известного туристического мотопланера с электроприводом "e-Genius", первый БПЛА 14 не оснащен пассажирской кабиной, вместо этого, предназначенное для пилота и пассажира пространство использовано для крепления компонентов БАС и ее полезного груза для реализации требуемой миссии БПЛА.
Относительно представленного на фиг. 2 второго БПЛА 24 речь идет о БПЛА в вертолетном исполнении, который приводится в действие также с помощью привода 12. В качестве движителя 18 в данном случае предусмотрен несущий винт 25 или несущий винт 25 и хвостовой винт.
Представленный на фиг. 3 третий БПЛА 26 является другим примером беспилотного летательного аппарата 10 на примере летательного аппарата с поворотным крылом (конфигурация с поворотным крылом и с поворотными винтами). Также в этом третьем БПЛА 26 привод 12 применен для приведения в действие движителей 18, выполненных в форме поворотных несущих винтов 27.
Различные варианты осуществления для привода 12 разъяснены в дальнейшем посредством фиг. 4-17 более подробно.
Во всех трех представленных здесь различных вариантах осуществления привода 12 он снабжен выполненным для питания дизельным топливом и/или керосином двигателем 28 внутреннего сгорания и нагнетательным устройством 30, выполненным для наддува двигателя 28 внутреннего сгорания.
Привод 12 также во всех трех представленных здесь вариантах осуществления представлен гибридным приводом 32. Гибридный привод 32 имеет наряду с двигателем 28 внутреннего сгорания электрическую машину 34. Электрическая машина 34 может быть использована в режиме работы в качестве электродвигателя 36, что обозначено на чертежах посредством букв М, а в другом режиме работы может быть использована в качестве электрического генератора 38, что обозначено на чертежах посредством букв G.
В других, здесь подробно непредставленных вариантах осуществления электрическая машина 34 может являться либо электродвигателем, либо генератором. В других, далее более подробно разъясненных вариантах осуществления предусмотрены отдельный электродвигатель 36, М и отдельный генератор 38, G.
Гибридный привод 32 имеет, кроме того, электрический энергетический накопитель 40, который выполнен, например, в виде системы заряжаемых элементов аккумуляторной батареи или в виде системы аккумуляторов, и отмечен на чертежах, в любом случае, как "В". Электрическая машина 34 присоединена посредством силовой электроники 42, Е к электрическому энергетическому накопителю 40, В.
Гибридный привод 32 выполнен в представленных вариантах осуществления как параллельный гибрид, причем двигатель 28 внутреннего сгорания или электродвигатель 36 используются выборочно для приведения в действие беспилотного летательного аппарата 10, или как двигатель 28 внутреннего сгорания, так и электродвигатель используются совместно для приведения в действие. Для этого предусмотрено выполненное с возможностью переключения сцепное устройство 44, с помощью которого двигатель 28 внутреннего сгорания и электрическая машина 34 выборочно присоединяются к соединенному с движителем 18 выходному валу 62.
Выполненное с возможностью переключения сцепное устройство 44 имеет первое сцепление 46 для присоединения двигателя 28 внутреннего сгорания и второе сцепление 48 для присоединения электрической машины 34. Сцепное устройство 44 и нагнетательное устройство 30, см. фиг. 1-3, являются управляемыми в зависимости от различных параметров при полетной эксплуатации, как это разъяснено далее еще более подробно. Термин "сцепление" обозначает в данном случае общее понятие для устройств, с помощью которых крутящие моменты могут быть выборочно переданы (сцепление включено) или выключены (сцепление отключено).
Как можно, кроме того, понять из фиг. 4-17, нагнетательное устройство 30 имеет, по меньшей мере, первый нагнетатель 52, выполненный для наддува двигателя 28 внутреннего сгорания.
Первый нагнетатель 52 может быть выполнен в виде турбонагнетателя 54 отработавших газов для использования энергии отработавших газов с целью нагнетания.
Прежде всего, нагнетательное устройство 30 имеет компрессор 56 для производства давления, что позволяет поставлять воздух сгорания с повышенным давлением к двигателю 28 внутреннего сгорания.
Компрессор 56 соединен с первой работающей на отработавших газах турбиной 58, что таким образом образует турбонагнетатель 54 отработавших газов в качестве первого нагнетателя 52.
Двигатель 28 внутреннего сгорания в предпочтительном варианте осуществления представлен роторно-поршневым двигателем 60. Роторно-поршневой двигатель 60, прежде всего, выполнен таким образом, как он описан и показан в немецкой заявке на патент DE 10 2012 101 032.3, и предложен, соответственно этому, для питания дизельным топливом или керосином. В зависимости от желательной степени мощности для БПЛА 14, 24, 26, роторно-поршневой двигатель 60 выполнен в виде однороторного роторно-поршневого двигателя, в виде двухроторного роторно-поршневого двигателя или в виде трехроторного роторно-поршневого двигателя или в виде многороторного роторно-поршневого двигателя. Конфигурация в виде роторно-поршневого двигателя 60 имеет к тому же особую способность к модульному построению таким образом, что посредством незначительных издержек могут быть предусмотрены один или несколько роторов.
В то время как ранее были разъяснены общие элементы представленных здесь вариантов осуществления привода 12, в дальнейшем более подробно рассмотрены различия представленных здесь вариантов осуществления.
Фиг. 4-7 показывают первый вариант осуществления привода 12 с одноступенчатым наддувом, причем лишь первый нагнетатель 52 представлен в форме турбонагнетателя 54 отработавших газов с компрессором 56, С и с присоединенной к компрессору 56 первой работающей на отработавших газах турбиной 58, Т. Двигатель 28 внутреннего сгорания и электрическая машина 34 выборочно присоединяются посредством первого сцепления 46 и второго сцепления 48 к выходному валу 62 и, вместе с тем, к движителю 18.
Таким образом, привод 12 имеет двигатель 28 внутреннего сгорания, который может быть выполнен в виде дизельного двигателя и в виде двигателя Ванкеля и который снабжен системой нагнетания в форме нагнетательного устройства 30 с компрессором 56 и с первой работающей на отработавших газах турбиной 58. Выходной вал двигателя 64 соединяется посредством первого сцепления 46 с движителем 18. Генератор 38 и электродвигатель 36 или, как здесь представлено, приводимая в действие как генератор G или как электродвигатель М электрическая машина 34, соединены посредством электронного управляющего аппарата (силовой электроники 42, Е) с буферной батареей (электрическим энергетическим накопителем 40, В), который может быть применен попеременно в режиме генератора для заряжения или для снабжения электрической энергией электрической машины 34 в режиме электродвигателя.
Фиг. 5 показывает первый режим работы, в котором гибридный привод 32 приводится в действие в чисто электрическом режиме. Для этого первое сцепление 46 отключено, а второе сцепление 48 включено.
Фиг. 6 показывает "обычный" режим, в котором приводная мощность гибридного привода 32 поставляется только посредством двигателя 28 внутреннего сгорания. Для этого первое сцепление 46 включено, а второе сцепление 48 отключено.
В показанном на фиг. 7 третьем режиме работы включены как первое сцепление 46, так и второе сцепление 48, и таким образом, как двигатель 28 внутреннего сгорания, так и электрическая машина 34 соединены с выходным валом 62 и тем самым также и друг с другом. В этом третьем способе при приведении в действие электрической машины 34 в качестве электродвигателя М может быть выполнена функция электрического усиления, то есть, повышения системной мощности посредством дополнительной электрической энергии или, при функционировании электрической машины 34 в качестве генератора G, реализован режим зарядки.
Таким образом, посредством представленного построения первого варианта осуществления гибридного привода 32, как он представлен на фиг. 4-7, являются возможными по меньшей мере четыре следующих рабочих состояния:
А) Обычный режим: Двигатель 28 внутреннего сгорания приводит в действие движитель 18, в то время как генератор G и электродвигатель М отцеплены. Это соответствует режиму работы прежней системы привода БПЛА на основе двигателей внутреннего сгорания.
Б) "Электрическое усиление": Дополнительно к двигателю 28 внутреннего сгорания с выходным валом 62 соединен электродвигатель М. За счет этого на выходной вал 62 может быть передан дополнительный крутящий момент, вследствие чего в течение короткого времени, в зависимости от мощности электрического энергетического накопителя 40, предоставляется в распоряжение дополнительная мощность и, таким образом, пиковые потребности по мощности могут быть удовлетворены.
В) "Режим зарядки": В фазах работы, которые не нуждаются во всей моторной мощности двигателя 28 внутреннего сгорания для движителя 18, часть находящейся в распоряжении мощности может быть отдана в генератор G для возобновляемой зарядки электрического энергетического накопителя 40.
Г) "Чисто электрический режим": Дополнительно к ранее описанным режимам работы двигатель 28 внутреннего сгорания также может быть отцеплен и выключен для переключения на чисто электрический режим. В данном случае с выходным валом теперь соединен электродвигатель Е, который снабжается электрической энергией посредством электрического энергетического накопителя В.
Это предлагает, прежде всего, следующие преимущества.
Функциональность параллельного гибрида позволяет осуществлять чисто электрический режим для сокращения тепловой и акустической сигнатуры в критических фазах миссии. Одновременно, высокая плотность хранения энергии ископаемого горючего может быть использована в обычном режиме для обеспечения такой дальности действия, которая не может быть достигнута посредством чистого электропривода. Дополнительно, система предлагает возможность возобновляемой зарядки батареи в полете, причем посредством повышения точки нагрузки двигателя внутреннего сгорания 28 может быть выбрано эффективное рабочее состояние двигателя 28 внутреннего сгорания.
На фиг. 8-11 представлен второй вариант осуществления гибридного привода 32. Этот второй вариант осуществления соответствует по существу первому варианту осуществления за исключения того различия, что второй вариант осуществления дополнительно к первой работающей на отработавших газах турбине 58, Т имеет еще и вторую работающую на отработавших газах турбину 66, Т, которая соединена или может быть соединена с выходным валом 64 двигателя и/или с выходным валом 62.
Посредством второй работающей на отработавших газах турбины 66 энергия отработавших газов двигателя 28 внутреннего сгорания может быть использована на двух ступенях. В первой работающей на отработавших газах турбине 58, Т энергия отработавших газов используется посредством компрессора 56, С для наддува двигателя 28 внутреннего сгорания. Во второй работающей на отработавших газах турбине 66, Т остаточная энергия отработавших газов используется для дальнейшего приведения в действие.
Таким образом, можно по сравнению с первым вариантом осуществления понизить температуру выхлопных газов, вследствие чего тепловая сигнатура беспилотного летательного аппарата 10 может быть уменьшена.
В остальном функциональность представленного на фиг. 8-11 второго варианта осуществления гибридного привода 32 соответствует функциональности первого варианта осуществления гибридного привода 32, как она представлена на фиг. 4-7. Соответственно этому, также фиг. 9 показывает первый режим работы для чистого электрорежима, фиг. 10 показывает второй режим работы для обычного режима, и фиг. 11 показывает третий режим работы, в котором может выполняться либо электрическое усиление, либо может выполняться режим зарядки. Другие подробности этих трех режимов работы приведены выше в отношении первого варианта осуществления.
На фиг. 12-17 третий вариант осуществления гибридного привода 32 представлен в виде примера привода 12 для БПЛА 14, 24, 26, причем одинаковым или соответствующим элементам, как в первых двух вариантах осуществления, отнесены одинаковые ссылочные обозначения, а для более близкого ознакомления с подробностями рекомендуется обращение к вышеприведенному изложению.
Нагнетательное устройство 30 выполнено в этом третьем варианте осуществления для переключаемого многоступенчатого наддува, и имеет для создания многоступенчатого наддува первый нагнетатель 52 и второй нагнетатель 70, причем различные нагнетатели 52, 70 посредством системы 50 управления могут быть управляемым образом подключены или выключены, что позволяет выключать или подключать различные ступени наддува.
В третьем варианте осуществления гибридного привода 32 в данном случае вместо электрической машины 34, которая может приводиться в действие как в режиме электродвигателя, так и в режиме генератора, представлены по меньшей мере один электродвигатель 36, М и один генератор 38, G. Сцепное устройство 44 имеет первое сцепление 46 для соединения выходного вала 64 двигателя с выходным валом 62, второе сцепление 48 для соединения электродвигателя 36, М с выходным валом 62 и третье сцепление 72 для присоединения генератора 72 к выходному валу 64 двигателя.
Кроме того, предусмотрено сцепное устройство нагнетателя 74 для включения нагнетательного устройства 30, прежде всего для присоединения или отцепления первого нагнетателя 52 и/или второго нагнетателя 70.
Для образования первого нагнетателя 52 предусмотрен компрессор 56 с первой работающей на отработавших газах турбиной 58.
Кроме того, в качестве второго нагнетателя 70 предусмотрен механический нагнетатель 76. Механический нагнетатель 76 может использовать, например, компрессор 56 и механический источник привода. В первом варианте осуществления или в первом способе наддува для этого использован электрический привод, такой как, прежде всего, электродвигатель 36, М. Во втором варианте осуществления или во втором способе наддува для этого использовано вращение выходного вала 64 двигателя.
В представленном на фиг. 12 варианте осуществления компрессор 56, С схематически представлен в качестве производителя давления, который соединяется посредством первого сцепления 78 нагнетателя в составе сцепного устройства 74 нагнетателя с первой работающей на отработавших газах турбиной 58, Т для образования, таким образом, турбонагнетателя 54 отработавших газов в качестве первого нагнетателя 52, а посредством второго сцепления 80 нагнетателя в составе сцепного устройства 74 нагнетателя присоединяется к электродвигателю 36, М для образования, таким образом, приводимого в действие электрически механического нагнетателя 76, а также, в соответствующих случаях, посредством третьего сцепления 82 нагнетателя в составе сцепного устройства 74 нагнетателя присоединяется к выходному валу 64 двигателя для образования, таким образом, приводимого в действие посредством вращения выходного вала механического нагнетателя 76.
В представленном варианте осуществления в качестве третьего сцепления 82 нагнетателя просто обозначено второе сцепление 48 в составе переключаемого сцепного устройства 44.
На фиг. 13-17 представлены пять различных режимов работы для этого третьего варианта осуществления гибридного привода 32. В режиме работы на фиг. 13 первое сцепление 78 нагнетателя включено таким образом, что действует первая ступень наддува. Нагнетенный с помощью первой ступени двигатель 28 внутреннего сгорания соединен посредством включенного первого сцепления 46 с движителем 18. Генератор 38, G соединен посредством включенного третьего сцепления 72 также с выходным валом 64 двигателя. За счет этого представленный на фиг. 13 первый режим работы соответствует режиму зарядки, когда тяговое усилие производится посредством нагнетенного с помощью первой ступени двигателя 28 внутреннего сгорания, а излишняя мощность используется для зарядки электрического энергетического накопителя 40. Второе сцепление 48 и второе сцепление 80 нагнетателя отключены таким образом, что электродвигатель 36 не соединен ни с нагнетательным устройством 30, ни с движителем 18.
Фиг. 14 показывает в качестве второго режима работы электрический режим. Для этого второе сцепление 80 нагнетателя отключено, а электродвигатель посредством включения второго сцепления 48 соединен с выходным валом 62 и тем самым с движителем 18. Первое сцепление 46 и третье сцепление 72 отключены таким образом, что ни двигатель 28 внутреннего сгорания, ни генератор не соединены с выходным валом 62. Двигатель 28 внутреннего сгорания в данном случае может быть выключен.
Представленный на фиг. 15 третий режим работы соответствует обычному режиму при одноступенчатом наддуве только с помощью турбонагнетателя 54 отработавших газов. Для этого включены лишь первое сцепление 56 и первое сцепление 78 нагнетателя, все остальные сцепления отключены.
Фиг. 16 показывает четвертый режим работы в форме режима только с двигателем 28 внутреннего сгорания, причем он наддувается, однако, посредством второго нагнетателя 70 электрического нагнетания. Для этого включены первое сцепление 46 и второе сцепление 80 нагнетателя, все другие сцепления отключены.
Фиг. 17 показывает пятый режим работы, в котором в качестве другой функциональности представлено электрическое усиление. Для этого одноступенчатым образом нагнетенный двигатель 28 внутреннего сгорания (активен турбонагнетатель 54 отработавших газов) соединен с движителем 18, а дополнительно с движителем 18 еще соединен и электродвигатель 36. Первое сцепление 46 и второе сцепление 48, а также первое сцепление 78 нагнетателя включены, все другие сцепления отключены.
Само собой разумеется, другие режимы работы являются возможными посредством различных переключений различных сцеплений 46, 48, 72, 78, 80, 82.
В представленном на фиг. 12-17 третьем варианте осуществления гибридного привода 32 привод 12 имеет двигатель внутреннего сгорания - дизельный двигатель/двигатель Ванкеля с системой нагнетания - нагнетательным устройством 30, содержащим компрессор 56 и работающую на отработавших газах турбину 58. Компрессор 56 нагнетательного устройства 30 может приводиться в действие при этом посредством системы сцепления - сцепного устройства 74 нагнетателя, либо от работающей на отработавших газах турбины 58, либо от электродвигателя, например, электродвигателя М гибридной системы. Выходной вал 64 двигателя от двигателя 28 внутреннего сгорания может быть соединен непосредственно с движителем 18 (например, пропеллером 20 или несущим винтом 25, 27). Дополнительно, электрический генератор 38, G подлежит соединению посредством отдельного сцепления - третьего сцепления 72 с выходным валом 64 двигателя и/или с выходным валом 62. Генератор 38, G и электродвигатель 36, М соединены посредством электронного блока управления - силовой электроники 42, Е с буферной батареей - примером воплощения электрического энергетического накопителя 40, В, которая попеременно заряжается генератором 38, G или применяется для снабжения питанием электродвигателя 36, М.
Посредством представленных на фиг. 12-17 построений являются возможными, прежде всего, следующие четыре рабочих состояния:
А) "Обычный режим": Компрессор 56 турбонагнетателя 54 отработавших газов приводится в действие работающей на отработавших газах турбиной 58 нагнетательного устройства 30, при этом электродвигатель 36, М и генератор 38, G отцеплены. Это соответствует режимам работы прежних обычных систем привода, разумеется, с различием в питании дизельным топливом или керосином с дополнительным наддувом.
Б) "Электрический турборежим": Компрессор 56 нагнетательного устройства 70 приводится в действие в этом случае электродвигателем 36, М.
Таким образом, может быть получено большее повышение производительности, чем в случае соединения электродвигателя 36, М с выходным валом 62.
В) "Электрическое усиление": В данном случае мощность электродвигателя 36, М передана дополнительно к мощности двигателя внутреннего сгорания на выходной вал 62.
Г) "Режим зарядки": В фазах работы, когда нет нужды в полной моторной мощности двигателя 28 внутреннего сгорания на движителе 18, часть находящейся в распоряжении мощности может быть отдана в генератор 38, G для зарядки батареи - электрического энергетического накопителя 40, В. Компрессор 56 нагнетательного устройства 30 приводится в действие при этом работающей на отработавших газах турбиной 58, в то время как электродвигатель 36, М отцеплен.
Это предлагает, прежде всего, следующие преимущества.
Наряду с функциональностью параллельного гибрида - режима с двигателем внутреннего сгорания, чисто электрического режима или возобновляемой зарядки батареи, электродвигатель 36, М для предоставления в распоряжение дополнительной мощности может быть применен двумя способами:
А) посредством электрического усиления, при котором мощность непосредственно подводится на выходной вал 62 или
Б) посредством электрического приведения в действие механического нагнетателя 76, при котором необходимая для наддува мощность предоставляется в распоряжение электродвигателем 36, М и не должна быть в процессе отобрана от двигателя внутреннего сгорания. Это имеет то преимущество, что, в противоположность приводу с работающей на отработавших газах турбиной 58, не образуется противодействия для отработавших газов, против которого, в противном случае, должен работать двигатель 28 внутреннего сгорания. В противоположность применению механического привода для механического нагнетателя 76, прежде всего, посредством сцепления с выходным валом 64 двигателя, с выходного вала не снимается какая-либо механическая мощность.
Выше посредством чертежей представлены самые различные варианты осуществления для гибридного привода 32. Само собой разумеется, возможны и другие варианты осуществления, которые, однако, не представлены здесь более подробно. Например, вторая работающая на отработавших газах турбина 66 может иметься в наличии также и в представленных на фиг. 12-17 вариантах осуществления, прежде всего, с возможностью переключения посредством отдельного переключающего устройства, которое может включать или отключать эту вторую работающую на отработавших газах турбину 66.
Кроме того, дополнительно или альтернативно приводу механического нагнетателя 76 посредством электродвигателя 36 гибридного привода, возможен также отдельный электродвигатель для привода компрессора. С другой стороны, также является возможным приведение в действие компрессора 56 посредством выходного вала 64 двигателя. Кроме того, вместо построения только с одним компрессором 56 также является возможным выполнение нескольких компрессоров, которые приводятся в действие посредством первой работающей на отработавших газах турбины 58, второй работающей на отработавших газах турбины 66, электродвигателя 36 гибридного привода 32 и/или посредством выходного вала 64 двигателя.
В дальнейшем возможная система управления гибридного привода 32 для беспилотного летательного аппарата 10 разъяснена еще более подробно посредством представления на фиг. 18.
Как показывают фиг. 2 и 3, беспилотный летательный аппарат 10 может быть представлен БПЛА 24, 26, который способен к вертикальному взлету и посадке (VTOL) и/или БПЛА 14, 26, который способен к обычному взлету и посадке (CTOL) как самолет, и к использованию воздушного потока при полете летательного аппарата 10.
На диаграмме фиг. 18 представлена необходимая мощность Р в зависимости от скорости V полета. Стрелка R показывает область крейсерского полета - область полета на крейсерской скорости. "ISA" означает международный стандарт по атмосфере (нормальную атмосферу).
Кривая S показывает необходимую мощность для различных условий полета на высоте уровня моря в условиях стандартной атмосферы, кривая HI показывает необходимую мощность при больших высотах и в условиях стандартной атмосферы и кривая Н2 показывает необходимую мощность при большой высоте и при превышении примерно на 15°С условий стандартной атмосферы.
Посредством различных режимов работы покрыты все необходимые при этих различных условиях эксплуатации и условиях полета мощностные диапазоны.
Система управления переключает различные режимы работы, такие как, прежде всего, включение или отключение нагнетательного устройства или включение или отключение различных нагнетателей или различных ступеней наддува в зависимости от параметров, которые отображают условия эксплуатации, такие как действительная и заданная скорость, высота, прежде всего, регистрируемая посредством датчиков давления, требуемые режимы VTOL или CTOL, или температура.
Представленные на чертеже, подключаемые или отключаемые посредством системы управления ступени L мощности обозначают максимально достижимую мощность для:
L1 - режима двигателя внутреннего сгорания без наддува,
L2 - режима двигателя внутреннего сгорания с наддувом на первой ступени, прежде всего режима первого нагнетателя 52, то есть турбонагнетателя 54 отработавших газов,
L3 - режима двигателя внутреннего сгорания с наддувом на второй ступени, например режима второго нагнетателя 70, такого как, прежде всего, приводимый в действие электрическим способом механический нагнетатель 76,
L4 - режима двигателя внутреннего сгорания с наддувом на второй ступени, и дополнительно, с функцией электрического усиления.
Наддув двигателя повышает доступную моторную мощность двигателя 28 внутреннего сгорания. Это делает возможным, прежде всего, вертикальные взлеты на большой высоте и/или при высоких температурах окружающей среды ("hot and high conditions"). Кроме того, вследствие этого повышена максимальная коммерческая скорость.
Возможность электрического усиления также повышает доступную мощность для таких условий, когда достигнута граница повышения мощности посредством наддува двигателя. Вследствие этого области применения могут быть еще более расширены. Являются возможными, например, вертикальные взлеты на еще больших высотах и при еще более высоких температурах, также далее повышена максимальная коммерческая скорость в трудных условиях.
СПИСОК ССЫЛОЧНЫХ ОБОЗНАЧЕНИЙ
10 беспилотный летательный аппарат
12 привод
14 первый БПЛА
16 несущая поверхность
18 движитель
20 пропеллер
22 вертикальный стабилизатор
24 второй БПЛА
25 несущий винт
26 третий БПЛА
27 поворотный несущий винт
28 двигатель внутреннего сгорания
30 нагнетательное устройство
32 гибридный привод
34 электрическая машина
36, М электродвигатель
38,G генератор
40, В электрический энергетический накопитель
42, Е силовая электроника
44 выполненное с возможностью переключения сцепное устройство
46 первое сцепление
48 второе сцепление
50 система управления
52 первый нагнетатель
54 турбонагнетатель отработавших газов
56 компрессор
58 первая работающая на отработавших газах турбина
60 роторно-поршневой двигатель
62 выходной вал
64 выходной вал двигателя
66 вторая работающая на отработавших газах турбина
70 второй нагнетатель
72 третье сцепление
74 сцепное устройство нагнетателя
76 механический нагнетатель
78 первое сцепление нагнетателя
80 второе сцепление нагнетателя
82 третье сцепление нагнетателя
S высота над уровнем моря
R область полета на крейсерской скорости
V скорость прямолинейного горизонтального полета
Р мощность
HI большая высота, при ISA
Н2 большая высота, при ISA+15°C
ISA стандартная атмосфера
VTOL вертикальный взлет/посадка
CTOL обычный взлет/посадка
L1 режим двигателя внутреннего сгорания без наддува
L2 режим двигателя внутреннего сгорания с наддувом на 1-ой ступени
L3 режим двигателя внутреннего сгорания с наддувом на 2-ой ступени
L4 режим двигателя внутреннего сгорания с наддувом на 2-ой ступени + электрическое усиление

Claims (25)

1. Беспилотный летательный аппарат (10), привод (12) которого содержит двигатель (28) внутреннего сгорания, выполненный в виде дизельного двигателя и снабженный нагнетательным устройством (30) для наддува двигателя, выполненным с возможностью многоступенчатого наддува, содержащим несколько последовательно включенных турбин, работающих на отработавших газах, и дополнительно содержащим по меньшей мере один механический нагнетатель (76), причем беспилотный летательный аппарат (10) имеет систему (50) управления, обеспечивающую возможность осуществления наддува двигателя с использованием и без использования энергии отработавших газов и с использованием механической энергии, получаемой от двигателя внутреннего сгорания или от электропривода.
2. Летательный аппарат по п. 1, отличающийся тем, что привод (12) является гибридным приводом (32), который, дополнительно к двигателю (28) внутреннего сгорания, содержит электродвигатель (36, М) и устройство хранения энергии для сохранения электрической энергии для приведения в действие электродвигателя (36, М).
3. Летательный аппарат по п. 2, отличающийся тем, что гибридный привод (32) имеет выполненное с возможностью переключения сцепное устройство (44), с помощью которого двигатель (28) внутреннего сгорания и/или электродвигатель (36, М) могут быть выборочно соединены с движителем (18).
4. Летательный аппарат по п. 2, отличающийся тем, что двигатель (28) внутреннего сгорания и электродвигатель (36, М) выполнены с возможностью выборочного параллельного или последовательного приведения в действие.
5. Летательный аппарат по п. 1, отличающийся тем, что нагнетательное устройство (30) содержит по меньшей мере первый нагнетатель (52) и второй нагнетатель (70).
6. Летательный аппарат по п. 1, отличающийся тем, что нагнетательное устройство (30) содержит по меньшей мере один нагнетатель, приводимый в действие посредством энергии отработавших газов.
7. Летательный аппарат по п. 1, отличающийся тем, что по меньшей мере один механический нагнетатель (76) выполнен с возможностью приведения в действие посредством выходного вала (62) двигателя (28) внутреннего сгорания и/или посредством электродвигателя (36, М).
8. Летательный аппарат по п. 1, отличающийся тем, что привод (12) является гибридным приводом (32), который, дополнительно к двигателю (28) внутреннего сгорания, содержит электродвигатель (36, М) и устройство хранения энергии для сохранения электрической энергии для приведения в действие электродвигателя (36, М), что нагнетательное устройство (30) содержит по меньшей мере один механический нагнетатель (76) и что по меньшей мере один механический нагнетатель (76) выполнен с возможностью приведения в действие посредством электродвигателя (36, М).
9. Летательный аппарат по п. 8, отличающийся тем, что гибридный привод (32) имеет выполненное с возможностью переключения сцепное устройство (44), с помощью которого двигатель (28) внутреннего сгорания и/или электродвигатель (36, М) могут быть выборочно соединены с движителем (18).
10. Летательный аппарат по п. 8, отличающийся тем, что двигатель (28) внутреннего сгорания и электродвигатель (36, М) выполнены с возможностью выборочного параллельного или последовательного приведения в действие.
11. Летательный аппарат по одному из предшествующих пунктов, отличающийся тем, что система (50) управления обеспечивает возможность управления нагнетательным устройством (30) и/или гибридным приводом (32) в зависимости от различных параметров при полетной эксплуатации.
12. Летательный аппарат по п. 11, отличающийся тем, что система (50) управления выполнена для управления нагнетательным устройством (30) и/или гибридным приводом (32), прежде всего для включения и отключения первой (L2) и/или второй (L3) ступени нагнетания двигателя или включения и отключения электродвигателя (36, М), в зависимости по меньшей мере от одного из таких параметров, как высота, угол к вертикали взлета или захода на посадку, требуемая скорость, допустимое выделение тепла, допустимый уровень шума и/или температура.
13. Летательный аппарат по п. 1, отличающийся тем, что двигатель (28) внутреннего сгорания представляет собой роторно-поршневой двигатель (60).
14. Летательный аппарат по п. 1, отличающийся тем, что он имеет максимальный взлетный вес более 70 кг, прежде всего более 250 кг.
15. Способ эксплуатации беспилотного летательного аппарата (10) по одному из предшествующих пунктов, характеризующийся тем, что наддувом двигателя (28) внутреннего сгорания привода (12) и/или взаимодействием двигателя (28) внутреннего сгорания и электродвигателя (36, М) гибридного привода (32) управляют в зависимости по меньшей мере от одного из таких параметров, как высота, угол к вертикали взлета или захода на посадку, требуемая скорость, допустимое выделение тепла, допустимый уровень шума и/или температура.
16. Способ по п. 15, характеризующийся тем, что при превышении или снижении ниже предварительно заданных предельных значений по меньшей мере для одного параметра подключают или выключают:
- первую ступень (L2) наддува,
- вторую ступень (L3) наддува,
- механический нагнетатель (76),
- электрический нагнетатель,
- первый нагнетатель, работающий на отработавших газах,
- второй нагнетатель, работающий на отработавших газах, или
- электродвигатель (36, М), дополнительно к работающему двигателю (28) внутреннего сгорания,
и/или
- двигатель (28) внутреннего сгорания, дополнительно к работающему электродвигателю (36, М).
RU2015120459A 2012-10-31 2013-10-22 Беспилотный летательный аппарат и способ его эксплуатации RU2653324C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012021339.5 2012-10-31
DE102012021339.5A DE102012021339A1 (de) 2012-10-31 2012-10-31 Unbemanntes Luftfahrzeug und Betriebsverfahren hierfür
PCT/DE2013/000620 WO2014067506A1 (de) 2012-10-31 2013-10-22 Unbemanntes luftfahrzeug und betriebsverfahren hierfür

Publications (2)

Publication Number Publication Date
RU2015120459A RU2015120459A (ru) 2016-12-20
RU2653324C2 true RU2653324C2 (ru) 2018-05-07

Family

ID=50479431

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015120459A RU2653324C2 (ru) 2012-10-31 2013-10-22 Беспилотный летательный аппарат и способ его эксплуатации

Country Status (8)

Country Link
US (2) US20150285165A1 (ru)
EP (1) EP2914490B1 (ru)
CN (1) CN104903192B (ru)
BR (1) BR112015008277A2 (ru)
DE (1) DE102012021339A1 (ru)
IL (1) IL238295A0 (ru)
RU (1) RU2653324C2 (ru)
WO (1) WO2014067506A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU217115U1 (ru) * 2022-11-29 2023-03-17 Сергей Александрович Мосиенко Беспилотный летательный аппарат - колеоптер

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182616A2 (en) * 2013-05-06 2014-11-13 Sikorsky Aircraft Corporation Supplemental power for reduction of prime mover
DE102013109392A1 (de) 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Schnellfliegendes, senkrechtstartfähiges Fluggerät
IL233902B (en) * 2014-07-31 2020-07-30 Israel Aerospace Ind Ltd egnition system
FR3028243A1 (fr) * 2014-11-07 2016-05-13 Ifp Energies Now Systeme de propulsion comportant un moteur a combustion interne et une turbomachine
DE102014224637B4 (de) * 2014-12-02 2022-12-29 Georgi Atanasov Hybrid-Elektro-Antriebssystem für ein Flugzeug
EP3034834B1 (fr) * 2014-12-16 2019-04-10 Airbus (Sas) Procédé de gestion d'une demande de puissance pour le fonctionnement d'un aéronef sans pilote équipé d'un moteur à combustion interne
ITUB20150241A1 (it) * 2015-02-06 2016-08-06 Power Hybrid S R L Sistema di controllo per un velivolo a motore, particolarmente adatto alla gestione di avarie motore, nonche' rispettivo metodo di funzionamento
DE102015213026A1 (de) * 2015-07-13 2017-01-19 Siemens Aktiengesellschaft System zum Bereitstellen von kinetischer Energie für ein Antriebssystem eines Luftfahrzeugs
EP3124379B1 (de) 2015-07-29 2019-05-01 Airbus Defence and Space GmbH Hybrid-elektrischer antriebsstrang für vtol drohnen
US10232933B2 (en) 2015-12-17 2019-03-19 Amazon Technologies, Inc. Redundant aircraft propulsion system using co-rotating propellers joined by tip connectors
US10086933B2 (en) 2015-12-17 2018-10-02 Amazon Technologies, Inc. Redundant aircraft propulsion system using multiple motors per drive shaft
US11548650B2 (en) * 2016-02-05 2023-01-10 Brendon G. Nunes Hybrid airship
JP2017154654A (ja) * 2016-03-03 2017-09-07 双葉電子工業株式会社 マルチコプター
CA2958375A1 (en) * 2016-05-06 2017-11-06 Rolls-Royce Corporation Optionally hybrid power system
US10227133B2 (en) 2016-07-01 2019-03-12 Bell Helicopter Textron Inc. Transportation method for selectively attachable pod assemblies
US10232950B2 (en) 2016-07-01 2019-03-19 Bell Helicopter Textron Inc. Aircraft having a fault tolerant distributed propulsion system
US11608173B2 (en) 2016-07-01 2023-03-21 Textron Innovations Inc. Aerial delivery systems using unmanned aircraft
US10183746B2 (en) 2016-07-01 2019-01-22 Bell Helicopter Textron Inc. Aircraft with independently controllable propulsion assemblies
US10315761B2 (en) 2016-07-01 2019-06-11 Bell Helicopter Textron Inc. Aircraft propulsion assembly
US11142311B2 (en) 2016-07-01 2021-10-12 Textron Innovations Inc. VTOL aircraft for external load operations
US10737765B2 (en) 2016-07-01 2020-08-11 Textron Innovations Inc. Aircraft having single-axis gimbal mounted propulsion systems
US10214285B2 (en) 2016-07-01 2019-02-26 Bell Helicopter Textron Inc. Aircraft having autonomous and remote flight control capabilities
US10011351B2 (en) 2016-07-01 2018-07-03 Bell Helicopter Textron Inc. Passenger pod assembly transportation system
US11124289B2 (en) 2016-07-01 2021-09-21 Textron Innovations Inc. Prioritizing use of flight attitude controls of aircraft
US10633087B2 (en) 2016-07-01 2020-04-28 Textron Innovations Inc. Aircraft having hover stability in inclined flight attitudes
US11027837B2 (en) 2016-07-01 2021-06-08 Textron Innovations Inc. Aircraft having thrust to weight dependent transitions
US10981661B2 (en) 2016-07-01 2021-04-20 Textron Innovations Inc. Aircraft having multiple independent yaw authority mechanisms
US10633088B2 (en) 2016-07-01 2020-04-28 Textron Innovations Inc. Aerial imaging aircraft having attitude stability during translation
US10604249B2 (en) 2016-07-01 2020-03-31 Textron Innovations Inc. Man portable aircraft system for rapid in-situ assembly
US10597164B2 (en) 2016-07-01 2020-03-24 Textron Innovations Inc. Aircraft having redundant directional control
US9963228B2 (en) 2016-07-01 2018-05-08 Bell Helicopter Textron Inc. Aircraft with selectively attachable passenger pod assembly
US10618647B2 (en) 2016-07-01 2020-04-14 Textron Innovations Inc. Mission configurable aircraft having VTOL and biplane orientations
US11104446B2 (en) 2016-07-01 2021-08-31 Textron Innovations Inc. Line replaceable propulsion assemblies for aircraft
US11084579B2 (en) 2016-07-01 2021-08-10 Textron Innovations Inc. Convertible biplane aircraft for capturing drones
US10625853B2 (en) 2016-07-01 2020-04-21 Textron Innovations Inc. Automated configuration of mission specific aircraft
US10220944B2 (en) 2016-07-01 2019-03-05 Bell Helicopter Textron Inc. Aircraft having manned and unmanned flight modes
US10737778B2 (en) 2016-07-01 2020-08-11 Textron Innovations Inc. Two-axis gimbal mounted propulsion systems for aircraft
US10870487B2 (en) 2016-07-01 2020-12-22 Bell Textron Inc. Logistics support aircraft having a minimal drag configuration
US10501193B2 (en) * 2016-07-01 2019-12-10 Textron Innovations Inc. Aircraft having a versatile propulsion system
DE102016220234A1 (de) * 2016-10-17 2018-04-19 Siemens Aktiengesellschaft Trennkupplungsvorrichtung zur Fehlerbehebung einer elektrischen Maschine
CN106494625A (zh) * 2016-11-02 2017-03-15 沈阳航空航天大学 一种并联式通用飞机气电混合动力系统
EP3339185B1 (de) * 2016-12-21 2019-05-15 Airbus Defence and Space GmbH Luftfahrzeugantriebsvorrichtung sowie damit versehenes luftfahrzeug
US10934008B2 (en) 2017-02-10 2021-03-02 General Electric Company Dual function aircraft
US11148819B2 (en) 2019-01-23 2021-10-19 H55 Sa Battery module for electrically-driven aircraft
US10479223B2 (en) 2018-01-25 2019-11-19 H55 Sa Construction and operation of electric or hybrid aircraft
US10854866B2 (en) 2019-04-08 2020-12-01 H55 Sa Power supply storage and fire management in electrically-driven aircraft
US11063323B2 (en) 2019-01-23 2021-07-13 H55 Sa Battery module for electrically-driven aircraft
US11065979B1 (en) 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
JP7037826B2 (ja) * 2017-04-18 2022-03-17 インダストリーネットワーク株式会社 プロペラ式飛行体
US10633104B2 (en) * 2017-05-17 2020-04-28 General Electric Company Hybrid-electric propulsion system for an aircraft
US10351232B2 (en) 2017-05-26 2019-07-16 Bell Helicopter Textron Inc. Rotor assembly having collective pitch control
US10442522B2 (en) 2017-05-26 2019-10-15 Bell Textron Inc. Aircraft with active aerosurfaces
US10618646B2 (en) 2017-05-26 2020-04-14 Textron Innovations Inc. Rotor assembly having a ball joint for thrust vectoring capabilities
US10329014B2 (en) 2017-05-26 2019-06-25 Bell Helicopter Textron Inc. Aircraft having M-wings
US10661892B2 (en) 2017-05-26 2020-05-26 Textron Innovations Inc. Aircraft having omnidirectional ground maneuver capabilities
EP3630601A4 (en) 2017-06-01 2021-02-24 Moog Inc. AUXILIARY POWER SYSTEM FOR GIRAVIONS WITH FOLDING PROPELLER ARMS AND DEFORMABLE ZONE LANDING GEAR
US10800536B2 (en) 2017-06-09 2020-10-13 General Electric Company Propulsion system for an aircraft
US11008111B2 (en) * 2017-06-26 2021-05-18 General Electric Company Propulsion system for an aircraft
US10696416B2 (en) 2017-06-30 2020-06-30 General Electric Company Propulsion system for an aircraft
US10738706B2 (en) 2017-06-30 2020-08-11 General Electric Company Propulsion system for an aircraft
US10953995B2 (en) * 2017-06-30 2021-03-23 General Electric Company Propulsion system for an aircraft
US10569759B2 (en) 2017-06-30 2020-02-25 General Electric Company Propulsion system for an aircraft
GB2567158A (en) * 2017-10-03 2019-04-10 J And M Ferranti Tech Limited Power generation and drive system
WO2020053877A1 (en) * 2018-09-11 2020-03-19 Srinath MALLIKARJUNAN Apparatus for aerial transportation of payload
FR3086926B1 (fr) 2018-10-09 2022-04-01 Safran Reseau d'alimentation electrique embarque d'un aeronef a propulsion electrique
US10759540B2 (en) 2018-11-08 2020-09-01 Rolls-Royce North American Technologies, Inc. Hybrid propulsion systems
US11370554B2 (en) 2018-11-08 2022-06-28 Rolls-Royce North American Technologies, Inc. Hybrid propulsion systems
US11159024B2 (en) * 2018-11-08 2021-10-26 Rolls-Royce North American Technologies, Inc. Electrical architecture for hybrid propulsion
US11225881B2 (en) 2018-11-08 2022-01-18 Rolls-Royce North American Technologies, Inc. Hybrid propulsion systems
WO2020137103A1 (ja) * 2018-12-27 2020-07-02 本田技研工業株式会社 飛行体
WO2020137104A1 (ja) * 2018-12-27 2020-07-02 本田技研工業株式会社 飛行体
US11732639B2 (en) * 2019-03-01 2023-08-22 Pratt & Whitney Canada Corp. Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems
CA3133337A1 (en) * 2019-03-18 2020-09-24 Pratt & Whitney Canada Corp. Architectures for hybrid-electric propulsion
HRP20231013T1 (hr) * 2019-09-25 2023-12-08 Stratowave Connect J.D.O.O. Hibridni višerotorni pogonski sistem za zrakoplov
USD896730S1 (en) * 2019-09-27 2020-09-22 Bell Textron Inc. Combined aircraft fuselage and empennage
USD894814S1 (en) * 2019-09-27 2020-09-01 Bell Textron Inc. Aircraft
US11312491B2 (en) 2019-10-23 2022-04-26 Textron Innovations Inc. Convertible biplane aircraft for autonomous cargo delivery
GB201918281D0 (en) * 2019-12-12 2020-01-29 Rolls Royce Plc Aircraft hybrid propulsion system
DE102020001834B4 (de) 2020-03-19 2023-09-28 SDT Industrial Technology UG (haftungsbeschränkt) Flugtriebwerk mit lenkbarem Schubvektor für Luftfahrzeuge mit Tragflächenflug-Eigenschaften
EP4143085A4 (en) * 2020-04-30 2024-04-24 Volansi Inc HEAVY OIL ENGINE POWERED HYBRID FIXED VTOL AIRCRAFT
US11530035B2 (en) 2020-08-27 2022-12-20 Textron Innovations Inc. VTOL aircraft having multiple wing planforms
US11319064B1 (en) 2020-11-04 2022-05-03 Textron Innovations Inc. Autonomous payload deployment aircraft
CA3198792A1 (en) * 2020-11-13 2022-05-19 Michael VON BERTOUCH Aerial vehicles
US11630467B2 (en) 2020-12-23 2023-04-18 Textron Innovations Inc. VTOL aircraft having multifocal landing sensors
US11926426B2 (en) * 2021-03-19 2024-03-12 Pratt & Whitney Canada Corp. Electric distributed propulsion using exhaust recovery power
RU2770510C1 (ru) * 2021-04-30 2022-04-18 Глеб Владимирович Пономаренко Способ запуска и разгона беспилотных летательных аппаратов с турбореактивным двигателем и устройство для его осуществления
JP7034364B1 (ja) * 2021-10-14 2022-03-11 恭胤 高藤 ドローン
US11932387B2 (en) 2021-12-02 2024-03-19 Textron Innovations Inc. Adaptive transition systems for VTOL aircraft
US11643207B1 (en) 2021-12-07 2023-05-09 Textron Innovations Inc. Aircraft for transporting and deploying UAVs
US11673662B1 (en) 2022-01-05 2023-06-13 Textron Innovations Inc. Telescoping tail assemblies for use on aircraft
CN116280230B (zh) * 2023-03-17 2024-02-23 昆山亿飞航空智能科技有限公司 一种无人机动力输出中断的续能保护装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2189468C2 (ru) * 1996-10-25 2002-09-20 Клайд К. БРАЙАНТ Усовершенствованный двигатель внутреннего сгорания и его рабочий цикл
US20040031880A1 (en) * 2000-05-05 2004-02-19 Reiner Stemme Aircraft and propulsion system for an aircraft, and operating method
RU2448874C2 (ru) * 2006-11-29 2012-04-27 Эйрбас Оперейшнз Гмбх Силовая установка для летательного аппарата
RU2462397C2 (ru) * 2006-11-29 2012-09-27 Эйрбас Оперейшнз Гмбх Силовая установка для летательного аппарата
US20120329593A1 (en) * 2010-04-08 2012-12-27 Daniel Larrabee Hybrid transmission using planetary gearset for multiple sources of torque for vehicles

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483147A (en) * 1981-04-27 1984-11-20 Evans Hugh G Turbocharged engine having an engine speed and throttle position responsive compressor bleed valve
JPS58146036U (ja) * 1982-03-26 1983-10-01 株式会社小松製作所 エンジンの2段過給装置
DE3437872C1 (de) * 1984-10-16 1986-05-28 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Steuereinrichtung fuer einen Verbrennungsmotor mit einem Abgasturbolader
US5183014A (en) * 1989-06-05 1993-02-02 Stevenson Gregory S Sleeve valve system for internal combustion engine having elliptical path
US5309718A (en) * 1992-09-14 1994-05-10 Hughes Aircraft Company Liquid fuel turbocharged power plant and method
JP3430764B2 (ja) * 1995-12-28 2003-07-28 トヨタ自動車株式会社 過給機の過給圧制御装置
JP3953636B2 (ja) * 1998-04-30 2007-08-08 富士重工業株式会社 レシプロエンジン用多段過給システム
US20020084120A1 (en) * 2001-01-02 2002-07-04 Beasley Leslie R. Motor assembly with independent motor units
US6721646B2 (en) * 2001-09-27 2004-04-13 Ernest A. Carroll Unmanned aircraft with automatic fuel-to-air mixture adjustment
US6883503B2 (en) * 2002-09-26 2005-04-26 Ernest A. Carroll Engine driven supercharger for aircraft
US7472863B2 (en) * 2004-07-09 2009-01-06 Steve Pak Sky hopper
US7093788B2 (en) * 2004-07-15 2006-08-22 Raytheon Company Rotating flying wing aircraft and control system
US20070204616A1 (en) * 2006-03-06 2007-09-06 Honeywell International, Inc. Swing valve for a turbocharger with stacked valve members, and two-stage turbocharger system incorporating same
US20090020958A1 (en) * 2006-03-31 2009-01-22 Soul David F Methods and apparatus for operating an internal combustion engine
CN101082318B (zh) * 2006-05-31 2011-09-21 卡特彼勒公司 涡轮增压器控制系统
US20080184906A1 (en) * 2007-02-07 2008-08-07 Kejha Joseph B Long range hybrid electric airplane
US7753036B2 (en) * 2007-07-02 2010-07-13 United Technologies Corporation Compound cycle rotary engine
US8205331B2 (en) * 2008-01-24 2012-06-26 Braly George W Full time lean running aircraft piston engine
JP4254899B1 (ja) * 2008-02-13 2009-04-15 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
US8128019B2 (en) 2008-12-12 2012-03-06 Honeywell International Inc. Hybrid power for ducted fan unmanned aerial systems
US8677751B2 (en) * 2009-07-24 2014-03-25 Vandyne Superturbo, Inc. Rich fuel mixture super-turbocharged engine system
DE102009034510A1 (de) * 2009-07-24 2011-04-14 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit aufgeladenem Verbrennungsmotor sowie Verfahren zum Betreiben eines Fahrzeugs mit aufgeladenem Verbrennungsmotor
DE102009050957B4 (de) * 2009-10-28 2018-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Mischhybrid
US8695565B2 (en) * 2010-02-16 2014-04-15 Sine Waves, Inc. Co-axial rotary engine
US20120149516A1 (en) * 2010-07-29 2012-06-14 The Regents Of The University Of Colorado, A Body Corporate Hybrid transmission using planetary gearset for multiple sources of torque for aeronautical vehicles
US20110281679A1 (en) * 2010-04-08 2011-11-17 The Regents Of The University Of Colorado, A Body Corporate Hybrid transmission using planetary gearset for multiple sources of torque for marine, or two wheeled land vehicles
US8516994B2 (en) * 2010-05-11 2013-08-27 Turn And Bank Holdings, Inc. Fuel injection system
DE102010021022A1 (de) * 2010-05-19 2011-11-24 Eads Deutschland Gmbh Kippflügel-Flugzeug
DE102010046850A1 (de) * 2010-09-29 2012-03-29 Eads Deutschland Gmbh Dieselmotoren/Gasturbinen-Verbundtriebwerk für ein Transportmittel
KR20140035876A (ko) * 2010-12-14 2014-03-24 잭 알. 테일러 완전 팽창 내연 기관
US20120209456A1 (en) * 2011-02-15 2012-08-16 Government Of The United States, As Represented By The Secretary Of The Air Force Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft
IN2014DN03208A (ru) * 2011-10-12 2015-05-22 Engineered Propulsion Systems Inc
DE102012101032A1 (de) 2012-02-08 2013-08-08 Eads Deutschland Gmbh Kreiskolbenmotor und Verfahren zum Herstellen eines Kreiskolbenmotors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2189468C2 (ru) * 1996-10-25 2002-09-20 Клайд К. БРАЙАНТ Усовершенствованный двигатель внутреннего сгорания и его рабочий цикл
US20040031880A1 (en) * 2000-05-05 2004-02-19 Reiner Stemme Aircraft and propulsion system for an aircraft, and operating method
RU2448874C2 (ru) * 2006-11-29 2012-04-27 Эйрбас Оперейшнз Гмбх Силовая установка для летательного аппарата
RU2462397C2 (ru) * 2006-11-29 2012-09-27 Эйрбас Оперейшнз Гмбх Силовая установка для летательного аппарата
US20120329593A1 (en) * 2010-04-08 2012-12-27 Daniel Larrabee Hybrid transmission using planetary gearset for multiple sources of torque for vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU217115U1 (ru) * 2022-11-29 2023-03-17 Сергей Александрович Мосиенко Беспилотный летательный аппарат - колеоптер

Also Published As

Publication number Publication date
CN104903192A (zh) 2015-09-09
EP2914490A1 (de) 2015-09-09
CN104903192B (zh) 2017-11-07
BR112015008277A2 (pt) 2017-07-04
US20180283292A1 (en) 2018-10-04
US20150285165A1 (en) 2015-10-08
RU2015120459A (ru) 2016-12-20
US10371066B2 (en) 2019-08-06
EP2914490B1 (de) 2017-05-24
WO2014067506A1 (de) 2014-05-08
DE102012021339A1 (de) 2014-04-30
IL238295A0 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
RU2653324C2 (ru) Беспилотный летательный аппарат и способ его эксплуатации
EP3568354B1 (en) Vertical lift by series hybrid-propulsion
CN108016623B (zh) 用于增强主动力装置的系统和方法
US10017266B2 (en) Power generation and distribution for vehicle propulsion
US10435169B2 (en) Hybrid electric drive train for VTOL drones
US10094235B2 (en) System, propulsion system and vehicle
US20080184906A1 (en) Long range hybrid electric airplane
US20160097328A1 (en) Accessory drive system for a gas turbine engine
EP3321184B1 (en) Fan module with adjustable pitch blades and power system
US20160185461A1 (en) Integrated auxiliary power unit, starter-generator-motor, and vapor cycle cooling system for an aircraft
Çoban et al. Unmanned aerial vehicles (UAVs) according to engine type
Ausserer et al. Integration, validation, and testing of a hybrid-electric propulsion system for a small remotely piloted aircraft
EP2727834B1 (de) Bausatz und Herstellverfahren zum Herstellen eines unbemannten Luftfahrzeugs sowie damit hergestelltes unbemanntes Luftfahrzeug
EP3907136A1 (en) Hybrid jet electric aircraft
US20200354054A1 (en) A vertical take off and landing flying machine
CN113479334B (zh) 一种弹射式无人机动力系统快速启动方法
EP2184230A2 (en) Soldier portable generator
CN215830601U (zh) 一种涡轮电磁发动机