RU2652369C1 - Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации - Google Patents

Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации Download PDF

Info

Publication number
RU2652369C1
RU2652369C1 RU2017100751A RU2017100751A RU2652369C1 RU 2652369 C1 RU2652369 C1 RU 2652369C1 RU 2017100751 A RU2017100751 A RU 2017100751A RU 2017100751 A RU2017100751 A RU 2017100751A RU 2652369 C1 RU2652369 C1 RU 2652369C1
Authority
RU
Russia
Prior art keywords
steam
pressure
stage
tanks
shut
Prior art date
Application number
RU2017100751A
Other languages
English (en)
Inventor
Владимир Васильевич Бирюк
Юрий Сергеевич Елисеев
Юрий Георгиевич Кирсанов
Михаил Юрьевич Лившиц
Леонид Павлович Шелудько
Артём Андреевич Шиманов
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва"
Акционерное общество "Металлист-Самара"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва", Акционерное общество "Металлист-Самара" filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва"
Priority to RU2017100751A priority Critical patent/RU2652369C1/ru
Application granted granted Critical
Publication of RU2652369C1 publication Critical patent/RU2652369C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J1/00Arrangements of installations for producing fresh water, e.g. by evaporation and condensation of sea water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Изобретение относится к области машиностроения, в частности к установкам для обессоливания морской воды (опреснительным установкам). Предлагаемая опреснительная установка имеет по меньшей мере две емкости, которые заполняют паром. Термосжатие пара в этих паровых емкостях производится с помощью электронагревателей. Сжатый пар направляют в испарительную установку периодически из первой и второй паровых емкостей. Отвод оставшегося пара из емкостей производят в трубопроводе подачи пара низкого давления, используя теплоту этого пара для нагрева морской воды. Управляющей системой с помощью запорных органов регулируют подачу, вывод и отвод пара из паровых емкостей. Технический результат заключается в улучшении эксплуатационных характеристик опреснительной установки. 2 н.п. ф-лы, 2 ил.

Description

Изобретение относится к области машиностроения, в частности к установкам обессоливания морской воды.
Известен способ работы опреснительной установки (Выпарные процессы и установки, Ф.М. Тарасов, Ленинградский технологический институт холодильной промышленности, 1962, с. 3, 19), в котором с помощью компрессора повышают давление и температуру вторичного пара таким образом, что эти параметры становятся близкими к параметрам первичного пара. В качестве компрессора используется механический компрессор. Преимуществом данного способа является отсутствие источника первичного пара на стационарных режимах работы, для запуска установки можно на короткое время использовать пар от внешнего источника.
Недостатком этого способа является сложность реализации конструкции опреснительной установки.
Например, в многоступенчатых испарительных установках опреснения морской воды применяют сжатие технологического пара с помощью механических компрессоров. Чаще всего в этих установках механический способ сжатия используют для сжатия насыщенного пара от давления 0,16-0,2 МПа до давления 0,3-0,34 МПа. Привод механических компрессоров производят от электродвигателей или от двигателей внутреннего сгорания, потребляющих большое количество энергии.
Известна установка для опреснения морской воды MED-MVC, разработанная компанией WABAG (WABAG_desalination_ru_2). В этой установке, состоящей из нескольких баков (ступеней), оборудованных теплообменниками с комплектом труб и механическим паровым компрессором, тепло для испаряющейся исходной морской воды получают за счет механического сжатия пара в компрессоре, приводимом от электрического двигателя. Опреснительные установки MED-MVC обычно применяют для малых и средних установок опреснения (Технологии опреснения. Морская и слабосоленая вода, http://www.wabag.com/wp-content/uploads/2012/04/WABAG_desalination_ru_2012_rev01_proof.pdf).
Преимуществом данного способа и установки этого типа является отсутствие внешнего источника для подогрева пара. Его недостатком является повышенный расход электроэнергии для работы опреснительной установки вследствие значительных потерь электроэнергии при механическом сжатии пара.
Известен способ работы многоступенчатой испарительной установки с механическим сжатием пара в паровом компрессоре. Согласно этому способу пар из межтрубного пространства испарителя последней ступени с давлением на входе 0,02 МПа и температурой 60°С сжимают в механическом паровом компрессоре со степенью повышения давления 1,6-1,8 и нагнетают во внутритрубное пространство первой ступени многоступенчатого испарителя. Привод парового компрессора производят от электродвигателя, питаемого электроэнергией из внешней электрической сети. Исходную морскую воду подогревают в теплообменниках за счет теплоты дистиллята и рассола обработанной морской воды (Дистилляционные опреснительные установки «Каскад». http://www.salut.ru/ViewTopic.php?Id=644). Этот способ сжатия механического сжатия насыщенного пара в паровом компрессоре опреснительной установки с многоступенчатыми испарителями принят в качестве прототипа изобретения.
Преимуществом этого способа является простота конструкции испарительной установки. Недостатками этого способа является его недостаточная экономичность и повышенная стоимость. Недостаточная экономичность определяется невысокими КПД электродвигателя, мультипликатора и центробежного механического парового компрессора. Повышенная стоимость установки связана со сложностью конструкции механического парового компрессора и применения в нем высокооборотных компрессора, мультипликатора и электродвигателя.
Задачей предлагаемого технического решения является устранение недостатков способа-прототипа и разработка способа работы многоступенчатой испарительной установки с термосжатием пара с повышением экономичности сжатия пара вследствие уменьшения расхода электрической энергии и снижения стоимости установки для реализации этого способа.
Поставленная задача решается за счет того, что в способе работы многоступенчатой испарительной установки пар из межтрубного пространства испарителя последней ступени с давлением Р1, равным 0,02 МПа, и температурой 60°С сжимают в паровом компрессоре со степенью повышения давления 1,6-1,8, используя электрическую энергию и нагнетают сжатый пар с давлением Р2 во внутритрубное пространство первой ступени многоступенчатого испарителя, исходную морскую воду подогревают теплотой рабочего тела и подают на внешние поверхности теплообменников ступеней испарительной установки, причем в паровом компрессоре производят термическое сжатие пара с давлением Р1 с помощью электрического нагревателя, термическое сжатие пара производят последовательно по меньшей мере в двух паровых емкостях с электрическими нагревателями в следующей последовательности: на первом этапе открывают запорный орган на входе пара в первую паровую емкость и закрывают запорный орган на выходе из нее пара, заполняют первую паровую емкость насыщенным паром с давлением Р1, включают электрический нагреватель первой паровой емкости и производят повышение его давления с Р1 до давления Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, подаваемого к первой ступени многоступенчатого испарителя, затем открывают запорный орган первой паровой емкости и подают сжатый пар в первую ступень многоступенчатого испарителя, понижая его давление от Р3 до Р2, одновременно с этим открывают запорный орган второй паровой емкости, заполняют ее паром с давлением Р1, включают электрический нагреватель, повышают во второй паровой емкости давление до Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, открывают запорный орган второй паровой емкости и подают сжатый пар с давлением Р3 в первую ступень испарителя с уменьшением его давления от Р3 до Р2; при снижении давления в этих паровых емкостях до Р2 открывают запорные органы на первой, а затем на второй емкостях и отводят из них пар через теплообменник нагрева морской воды; используя теплоту этого пара для подогрева морской воды, пар, вышедший из теплообменника нагрева морской воды, смешивают с паром с давлением Р1 с его последовательным подводом в первую и во вторую паровую емкости.
Поставленная задача решается и за счет того, что устройство, реализующее предлагаемый способ работы многоступенчатой испарительной установки, включает многоступенчатую испарительную установку, паровой компрессор для сжатия насыщенного пара, трубопровод пара насыщенного пара низкого давления, трубопровод сжатого насыщенного пара, причем паровой компрессор выполнен как термический компрессор и установлен с возможностью осуществления термического сжатия пара, содержащий по меньшей мере две паровые емкости, каждая из них снабжена электрическим нагревателем, входным и выходным запорными органами, а также запорными органами для отвода из них пара, каждая паровая емкость снабжена датчиком давления пара, электрическими выключателями, линией, подводящей электрической энергию, подогреватель морской воды, трубопроводы, связывающие паровые емкости с трубопроводом низкого давления, вход каждой из паровых емкостей связан через запорный орган и трубопровод насыщенного пара низкого давления с выходом последней ступени многоступенчатого испарителя, выходы паровых емкостей связаны по сжатому пару через выходные запорные органы и трубопроводы сжатого пара с входом первой ступени многоступенчатого испарителя, кроме того, каждая из паровых емкостей снабжена запорным органом, через который они связаны трубопроводами с запорными органами, через теплообменник подогрева морской воды с трубопроводом пара низкого давления, электронагреватели в обеих емкостях связаны через электрические выключатели с питающей электролинией.
Сущность технического решения поясняется следующими чертежами:
на фиг. 1 изображена схема термокомпрессора испарительной установки;
на фиг. 2 приведена принципиальная схема термосжатия пара в первой и второй паровых камерах.
Установка для реализации способа работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором содержит: 1 - трубопровод насыщенного пара низкого давления, 2 - теплообменник нагрева морской воды, 3 - трубопровод морской воды, 4 - трубопровод отвода пара из первой паровой емкости 8, 5 - запорный орган на трубопроводе отвода пара из первой паровой емкости, 6 - запорный орган, 7 - запорный орган, 8 - первая паровая емкость, 9 - электрический нагреватель первой паровой емкости, 10 - манометр первой паровой емкости, 11 - вторая паровая емкость, 12 - электрический нагреватель второй паровой емкости, 13 - манометр второй паровой емкости, 14 - трубопровод выхода пара из первой паровой емкости, 15 - запорный орган, 16 - электрическая сеть, 17 - трубопровод подачи насыщенного пара к первой ступени испарителя, 18 - электрический выключатель первой паровой емкости, 19 - электрический выключатель второй паровой емкости, 20 - трубопровод выхода пара из второй паровой емкости, 21 - запорный орган, 22 - запорный орган, 23 - трубопровод отвода пара из второй паровой емкости.
На фиг. 2: Р1 - давление насыщенного пара на входе в первую и вторую паровые емкости, Р2 - давление насыщенного пара на входе в трубопровод подвода пара в первую ступень испарителя, Р3 - максимальное давление насыщенного пара в первой и второй паровых емкостях.
Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором осуществляют следующим образом. Открывают запорный орган 6 на входе насыщенного пара в первую паровую емкость 8 и закрывают запорный орган 15 на выходе из нее сжатого пара, насыщенным паром низкого давления (Р1) заполняют эту емкость, закрывают входной запорный орган 8, подают электроэнергию к размещенному в ней электрическому нагревателю первой паровой емкости 9. Его теплоту используют для нагрева насыщенного пара в емкости с повышением его давления, которое на 10-15% выше давления насыщенного пара Р2, подаваемого в первую ступень испарителя. Затем одновременно открывают запорный орган 15 на выходе сжатого насыщенного пара из первой паровой емкости и запорный орган 7 на входе насыщенного пара (с давлением Р1) во вторую паровую емкость 11. Через открытый выходной запорный орган 15 сжатый насыщенный пар подают к технологическому потребителю, уменьшая его давление от Р3 до Р2. После снижения давления в первой паровой емкости 8 до давления Р2 закрывают ее выходной запорный орган 15, открывают дополнительный запорный орган 5 и пар из этой емкости подают по трубопроводу отвода пара из первой паровой емкости 4 через теплообменник нагрева морской воды 2 для смешения с насыщенным паром с давлением Р1. Теплоту пара, удаляемого из первой паровой емкости 8, используют для подогрева в теплообменнике нагрева морской воды 2. Затем насыщенный пар с давлением Р1 подают во вторую паровую емкость 11 через открытый входной запорный орган 7 при закрытом выходном запорном органе 21. После заполнения насыщенным паром второй паровой емкости 11 закрывают ее входной запорный орган 7 и через электрический выключатель второй паровой емкости 19 подают электроэнергию к электрическому нагревателю второй паровой емкости 12 и повышают давление пара в первой паровой емкости 8 до Р3. При этом через открытый выходной запорный орган 21 второй паровой емкости 11 сжатый насыщенный пар подают по трубопроводу подачи насыщенного пара к первой ступени испарителя 17 с уменьшением его давления от Р3 до Р2. После снижения давления во второй паровой емкости 11 до давления Р2 закрывают ее выходной запорный орган 21, открывают дополнительный запорный орган 22 на отводе пара из второй паровой емкости 11 и пар из нее подают через теплообменник нагрева морской воды 2 для смешения с насыщенным паром с давлением Р1. Теплоту этого пара, удаляемого из первой паровой емкости 8, используют для подогрева морской воды.
В предлагаемом способе практически всю электрическую энергию, подводимую к электрическим нагревателям в первой и второй паровых емкостях 9 и 12, используют для нагрева насыщенного пара, повышения его давления и температуры. В то время как применение в способе-прототипе механического сжатия пара потребует применения электродвигателя, мультипликатора и парового компрессора, что потребует значительно большего расхода электроэнергии вследствие того, что КПД электродвигателя не превышает 82%, а КПД механического компрессора не выше 75-80%. Кроме этого, достаточно сложна и дорога установка механического сжатия насыщенного пара, включающая высокооборотные электродвигатель, мультипликатор и центробежный компрессор.
Установка, реализующая предложенный способ, работает следующим образом. Открывают запорный орган 6 на трубопроводе на входе пара в первую паровую емкость 8 при закрытых запорных органах 5, 7, 15, 21, 22 и насыщенным паром низкого давления (Р1) заполняют первую паровую емкость 8, электроэнергию из электрической сети 16 через включенный электрический выключатель первой паровой емкости 18 подают к электрическому нагревателю первой паровой емкости 9. Его теплоту используют для нагрева насыщенного пара в первой паровой емкости 8 до давления Р3, которое на 10-15% выше давления насыщенного пара Р2, подаваемого по трубопроводу подачи пара в первую ступень испарителя (на фиг. 1 многоступенчатый испаритель не показан). Давление пара в первой паровой емкости 8 измеряют манометром первой паровой емкости 10. После повышения давления в первой паровой емкости 8 до давления Р3 механизмом управления (на фиг. 1 не показан) подают управляющее воздействие на одновременное открытие запорного органа 15 на выходе пара из первой паровой емкости 8 и запорного органа 7 на входе пара (с давлением Р1) во вторую паровую емкость 11. Через открытый выходной запорный орган 15 сжатый пар направляют по трубопроводу подачи пара к первой ступени испарителя. При этом давление пара в первой паровой емкости 8 снижают с давления от Р3 до давления Р2. В этот момент механизм управления производит закрытие запорного органа 15 на выходе пара из первой паровой емкости 8, открытие запорного органа 5 на отводе пара из первой паровой емкости 8. Отводимый из нее пар подают по трубопроводу отвода пара из первой паровой емкости 4 через теплообменник нагрева морской воды 2 и смешивают с насыщенным паром с давлением Р1 в трубопроводе насыщенного пара низкого давления 1. Теплоту пара, отводимого из первой емкости 8, используют для подогрева морской воды в теплообменнике нагрева морской воды 2. Сжатый пар с давлением Р3 из первой паровой емкости 8 через открытый запорный орган 15 по трубопроводу выхода пара из первой паровой емкости 14 подают в трубопровод подачи насыщенного пара к первой ступени испарителя 17. Пар с давлением Р1 подают по трубопроводу насыщенного пара низкого давления 1 во вторую паровую емкость 11 через открытый запорный орган 7 на входе пара во вторую паровую емкость 11. После заполнения насыщенным паром второй паровой емкости 11 закрывают запорный орган 7 на входе пара во вторую паровую емкость 11. Электроэнергию из электрической сети 16 через включенный электрический выключатель второй паровой емкости 19 подают к электрическому нагревателю второй паровой емкости 12 и повышают давление пара во второй паровой емкости 11 с Р1 до Р3. По сигналу манометра второй паровой емкости 13 механизм управления производит открытие запорного органа 21 на выходе пара из второй паровой емкости 11, и сжатый пар с давлением Р3 направляют по трубопроводу выхода пара из второй паровой емкости 20, а затем по трубопроводу подачи насыщенного пара к первой ступени испарителя 17. Давление пара во второй паровой емкости 11 при этом снижают с Р3 до давления Р2. В этот момент по сигналу манометра второй паровой емкости 13 через открытый выходной запорный орган 15 сжатый пар направляют по трубопроводу подачи пара к первой ступени испарителя. При этом давление пара в первой паровой емкости 8 снижают с давления от Р3 до давления Р2. В этот момент механизм управления производит закрытие запорного органа 21 на выходе пара из второй паровой емкости 11 и открытие запорного органа 22 на отводе пара из второй паровой емкости 11. Отводимый пар подают по трубопроводу отвода пара из второй паровой емкости 23 через трубопровод морской воды 3 и смешивают с насыщенным паром с давлением Р1 в трубопроводе насыщенного пара низкого давления 1. Теплоту пара, отводимого из второй паровой емкости 11, используют для подогрева морской воды в теплообменнике нагрева морской воды 2.

Claims (2)

1. Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором, согласно которому пар из межтрубного пространства испарителя последней ступени с давлением P1, равным 0,02 МПа, и температурой 60°C сжимают в паровом компрессоре со степенью повышения давления 1,6-1,8, используя электрическую энергию, и нагнетают сжатый пар с давлением P2 во внутритрубное пространство первой ступени многоступенчатого испарителя, исходную морскую воду подогревают теплотой рабочего тела и подают на внешние поверхности теплообменников ступеней испарительной установки, отличающийся тем, что в паровом компрессоре производят термическое сжатие пара с давлением Р1 с помощью электрического нагревателя, термическое сжатие пара производят последовательно по меньшей мере в двух паровых емкостях с электрическими нагревателями в следующей последовательности: на первом этапе открывают запорный орган на входе пара в первую паровую емкость и закрывают запорный орган на выходе из нее пара, заполняют первую паровую емкость насыщенным паром с давлением Р1, включают электрический нагреватель первой паровой емкости и производят повышение его давления с Р1 до давления Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, подаваемого к первой ступени многоступенчатого испарителя, затем открывают запорный орган первой паровой емкости и подают сжатый пар в первую ступень многоступенчатого испарителя, понижая его давление от Р3 до Р2, одновременно с этим открывают запорный орган второй паровой емкости, заполняют ее паром с давлением Р1, включают электрический нагреватель, повышают во второй паровой емкости давление до Р3 - на 10-15% выше, чем требуемое давление сжатого пара Р2, открывают запорный орган второй паровой емкости и подают сжатый пар с давлением Р3 в первую ступень испарителя с уменьшением его давления от Р3 до Р2; при снижении давления в этих паровых емкостях до Р2 открывают запорные органы на первой, а затем на второй емкостях и отводят из них пар через теплообменник нагрева морской воды, используя теплоту этого пара для подогрева морской воды, пар, вышедший из теплообменника нагрева морской воды, смешивают с паром с давлением Р1 с его последовательным подводом в первую и во вторую паровую емкости.
2. Устройство для реализации способа по п. 1, включающее многоступенчатую испарительную установку, паровой компрессор для сжатия насыщенного пара, трубопровод насыщенного пара низкого давления, трубопровод сжатого насыщенного пара, отличающееся тем, что паровой компрессор выполнен как термический компрессор и установлен с возможностью осуществления термического сжатия пара, содержащий по меньшей мере две паровые емкости, каждая из них снабжена электрическим нагревателем, входным и выходным запорными органами, а также запорными органами для отвода из них пара, каждая паровая емкость снабжена датчиком давления пара, электрическими выключателями, линией, подводящей электрическую энергию, подогреватель морской воды, трубопроводы, связывающие паровые емкости с трубопроводом низкого давления, вход каждой из паровых емкостей связан через запорный орган и трубопровод насыщенного пара низкого давления с выходом последней ступени многоступенчатого испарителя, выходы паровых емкостей связаны по сжатому пару через выходные запорные органы и трубопроводы сжатого пара с входом первой ступени многоступенчатого испарителя, кроме того, каждая из паровых емкостей снабжена запорным органом, через который они связаны трубопроводами с запорными органами через теплообменник подогрева морской воды с трубопроводом пара низкого давления, электронагреватели в обеих емкостях связаны через электрические выключатели с питающей электролинией.
RU2017100751A 2017-01-10 2017-01-10 Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации RU2652369C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017100751A RU2652369C1 (ru) 2017-01-10 2017-01-10 Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017100751A RU2652369C1 (ru) 2017-01-10 2017-01-10 Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Publications (1)

Publication Number Publication Date
RU2652369C1 true RU2652369C1 (ru) 2018-04-25

Family

ID=62045857

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017100751A RU2652369C1 (ru) 2017-01-10 2017-01-10 Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации

Country Status (1)

Country Link
RU (1) RU2652369C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187847U1 (ru) * 2018-10-30 2019-03-19 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Многоступенчатая испарительная установка с паровыми компрессорами
RU194874U1 (ru) * 2019-05-07 2019-12-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" (ФГБОУ ВО "КГМТУ") Система судовой опреснительной установки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619453A (en) * 1946-04-24 1952-11-25 Andersen Rolf Vapor-compression distillation
SU1118616A1 (ru) * 1983-02-22 1984-10-15 Калининградский технический институт рыбной промышленности и хозяйства Адиабатно-пленочный опреснитель
RU2442719C1 (ru) * 2010-07-05 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Опреснительная установка и устройство для выработки электроэнергии (варианты)
CN103112985A (zh) * 2013-02-26 2013-05-22 集美大学 低温多效汽轮压汽蒸馏-多级闪蒸海水淡化系统
WO2015016432A1 (ko) * 2013-07-29 2015-02-05 주식회사 더블유원 선박용 조수기
RU2567615C1 (ru) * 2014-08-12 2015-11-10 Юрий Васильевич Дробышевский Способ получения обессоленной воды и устройство для его осуществления

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619453A (en) * 1946-04-24 1952-11-25 Andersen Rolf Vapor-compression distillation
SU1118616A1 (ru) * 1983-02-22 1984-10-15 Калининградский технический институт рыбной промышленности и хозяйства Адиабатно-пленочный опреснитель
RU2442719C1 (ru) * 2010-07-05 2012-02-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Морской государственный университет имени адмирала Г.И. Невельского" Опреснительная установка и устройство для выработки электроэнергии (варианты)
CN103112985A (zh) * 2013-02-26 2013-05-22 集美大学 低温多效汽轮压汽蒸馏-多级闪蒸海水淡化系统
WO2015016432A1 (ko) * 2013-07-29 2015-02-05 주식회사 더블유원 선박용 조수기
RU2567615C1 (ru) * 2014-08-12 2015-11-10 Юрий Васильевич Дробышевский Способ получения обессоленной воды и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Статья "Дистилляционные опреснительные установки "Каскад", опубл. 2014, найдено 23.08.2017 [on-line], найдено в интернете: http://промкаталог.рф/ProtectedDocuments/1460824.pdf. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU187847U1 (ru) * 2018-10-30 2019-03-19 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Многоступенчатая испарительная установка с паровыми компрессорами
RU194874U1 (ru) * 2019-05-07 2019-12-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Керченский государственный морской технологический университет" (ФГБОУ ВО "КГМТУ") Система судовой опреснительной установки

Similar Documents

Publication Publication Date Title
JP6746692B2 (ja) 電気および熱エネルギー貯蔵を用いる熱電併給システム
JP6730004B2 (ja) 蒸留プロセス及びタービンエンジンインタークーラのシステム及び方法
JP2013064399A5 (ru)
SA07280082B1 (ar) جهاز لإزالة ملوحة ماء البحر باستخدام ماء منصرف من مولد بخار استعادة الحرارة
JP2014532138A (ja) 熱エネルギーを貯蔵するための設備
RU2652369C1 (ru) Способ работы опреснительной установки с многоступенчатыми испарителями и паровым компрессором и установка для его реализации
EP2333254B1 (en) Steam power plant with heat reservoir and method for operating a steam power plant
NO328059B1 (no) Framgangsmate og apparat for a frambringe vaeskestromning i en rorledning
US10245527B2 (en) Solid-liquid separation device
US20160090998A1 (en) Grid scale energy storage systems using reheated air turbine or gas turbine expanders
EP3102798A1 (en) A method and a system for driving a turbine
JP2011169539A (ja) 熱利用システム
RU2602649C2 (ru) Паротурбинная аэс
RU2648323C1 (ru) Способ работы парового компрессора многоступенчатой опреснительной установки и устройство для его реализации
RU187847U1 (ru) Многоступенчатая испарительная установка с паровыми компрессорами
RU2528452C2 (ru) Способ подогрева в паровых теплообменниках и установка для его осуществления
WO2021034221A1 (ru) Газопаровая энергетическая установка по антони циклу
JP5347685B2 (ja) 産業用加熱システム
RU2266414C2 (ru) Теплоэнергетическая установка для утилизации теплоты выхлопных газов газотурбинного двигателя
EP2850291B1 (en) Combined cycle plant for energy production and method for operating said plant
JOP20190309B1 (ar) طريقة ونظام الانتقال بمحطة الطاقة النووية إلى الحالة الآمنة بعد الإجهاد المفرط
RU2811729C2 (ru) Парогазовая энергетическая установка
KR101557239B1 (ko) 폐수증기 저장장치
CN219795348U (zh) 医废焚烧余热蒸汽发电系统
RU2504666C1 (ru) Энергетическая установка

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200111