RU2651641C1 - Способ оценки качества кабеля - Google Patents
Способ оценки качества кабеля Download PDFInfo
- Publication number
- RU2651641C1 RU2651641C1 RU2017115005A RU2017115005A RU2651641C1 RU 2651641 C1 RU2651641 C1 RU 2651641C1 RU 2017115005 A RU2017115005 A RU 2017115005A RU 2017115005 A RU2017115005 A RU 2017115005A RU 2651641 C1 RU2651641 C1 RU 2651641C1
- Authority
- RU
- Russia
- Prior art keywords
- cable
- heterogeneity
- inhomogeneity
- voltage
- reflectogram
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000013441 quality evaluation Methods 0.000 title 1
- 238000009413 insulation Methods 0.000 claims abstract description 31
- 239000012634 fragment Substances 0.000 claims abstract description 17
- 239000000523 sample Substances 0.000 claims abstract description 17
- 229920003020 cross-linked polyethylene Polymers 0.000 claims abstract description 13
- 239000004703 cross-linked polyethylene Substances 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 9
- 230000010354 integration Effects 0.000 claims abstract description 6
- 230000001939 inductive effect Effects 0.000 claims abstract description 5
- 239000013598 vector Substances 0.000 claims abstract description 5
- 230000007774 longterm Effects 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 8
- 239000004020 conductor Substances 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 abstract description 2
- 238000004870 electrical engineering Methods 0.000 abstract description 2
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 238000001303 quality assessment method Methods 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000000253 optical time-domain reflectometry Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 230000007547 defect Effects 0.000 description 5
- 230000007717 exclusion Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/11—Locating faults in cables, transmission lines, or networks using pulse reflection methods
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Изобретение относится к импульсной технике и электроизмерениям и может использоваться для оценки качества коаксиальных кабелей, в частности, медных силовых кабелей с изоляцией из сшитого полиэтилена или с бумажной пропитанной изоляцией. Для получения оценки качества кабеля с неоднородностью в способе оценки качества кабеля, включающем зондирование кабеля короткими импульсами напряжения, получение рефлектограммы с зондирующими и отраженными импульсами, выделение фрагмента рефлектограммы для определения расстояния до неоднородности и ее схемы замещения, исключение «эффекта лыжи», смещения «нулевой линии» и вычисление оценочного коэффициента неоднородности из фрагмента рефлектограммы, согласно изобретению предварительно измеряют диаметр токопроводящей жилы и определяют тип изоляции кабеля, а в качестве оценочного коэффициента неоднородности из фрагмента рефлектограммы используют значение отношения площадей фигур отраженного импульса от неоднородности и зондирующего импульса, затем рассчитывают величину активного сопротивления неоднородности для схемы замещения «продольная неоднородность» по формуле: , где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=8,678497; а2=2,182438; а3=0,775739; а4=-0,736041; для кабеля с бумажной пропитанной изоляцией: а1=8,251717; а2=2,232208; а3=1,036615; а4=-0,794184; ОK - оценочный коэффициент неоднородности, который определяют по формуле: , где 0 - координата начала кабеля, м; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; xD0 - начальная координата отраженного импульса на рефлектограмме, м; хD1 - конечная координата отраженного импульса на рефлектограмме, м; uD - функция напряжения отраженного импульса, В; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют условие: ; где Р - активная электрическая мощность приемника энергии, кВт; l - длина кабеля, м; Uном - номинальное напряжение кабеля, кВ; r0 - удельное активное сопротивление кабеля, Ом/км; х0 - удельное индуктивное сопротивление кабеля, Ом/км; ϕ - угол между векторами напряжения и тока у приемника энергии; R - активное сопротивление неоднородности, Ом; 0,1 - допустимое отклонение напряжения; если условие выполняется, то кабель качественный; для схемы замещения «поперечная неоднородность» рассчитывают по формуле: ; где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=2,76876; а2=-1,40164; а3=-0,49824; а4=-0,68309; для кабеля с бумажной пропитанной изоляцией: a1=2,83903; а2=-1,32283; а3=-0,61436; а4=-0,62646; ОK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют условие: ; где - номинальное напряжение кабеля, В; - полное сопротивление кабеля до неоднородности, Ом; - полное сопротивление кабеля после неоднородности, Ом; - полное сопротивление приемника энергии, Ом; R - активное сопротивление неоднородности, Ом; Iдоп - длительно допустимый ток в кабеле, А; если условие выполняется, то кабель качественный. Техническим результатом при реализации заявленного решения является обеспечение возможности получения оценки качества кабеля с неоднородностью. 2 ил.
Description
Изобретение относится к импульсной технике и электроизмерениям и может использоваться для качественной оценки коаксиальных кабелей, в частности медных силовых кабелей с изоляцией из сшитого полиэтилена или с бумажной пропитанной изоляцией.
Из научно-технической литературы известно, что для дистанционного контроля степени однородности кабельных линий и определения их параметров (абсолютных, относительных) широко используется импульсный метод электрических измерений, реализуемый, прежде всего, импульсными рефлектометрами (ИР) или рефлектометрами во временной области, основанный на зондировании кабельных линий короткими видеоимпульсами напряжения и последующей регистрации совокупности сигналов-откликов, отраженных от неоднородностей и повреждений. Функциональные возможности вышеизложенного метода могут быть расширены путем использования цифровой обработки рефлектограмм (графической зависимости напряжения от расстояния: u(х)) с зондирующими и отраженными импульсами, зарегистрированных существующими ИР (см. М.С. Былина «Усовершенствованная модель и методика расчета сигналов, отраженных из неоднородной кабельной цепи» // журнал «Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Информатика. Телекоммуникации. Управление», 2015 г., №1 (212), стр. 23-24).
Качество кабеля как системы передачи электроэнергии оценивают с помощью критериев: фактическая потеря напряжения и длительно протекающий ток. Значения обоих критериев могут лежать в определенных диапазонах, например, фактическая потеря напряжения не может превышать 0,1 (ΔU≤0,1), а длительно протекающий ток не может превышать длительно допустимый ток для выбранного сечения (Iпр≤Iдоп), выполнение этих условий подтверждает качество применяемого кабеля. Фактическая потеря напряжения может быть рассчитана по формуле: ; где Р - активная электрическая мощность приемника энергии, кВт; 1 - длина кабеля, км; Uном - номинальное напряжение кабеля, кВ; r0 - удельное активное сопротивление кабеля, Ом/км; х0 - удельное индуктивное сопротивление кабеля, Ом/км; ϕ - угол между векторами напряжения и тока у приемника энергии, град; (см. Маньков В.Д. «Основы проектирования электроснабжения». Справочное пособие. - СПб: НОУ ДПО «УМИТЦ «Электро Сервис», 2010 г., стр. 412, 416, 422). Длительно протекающий ток может быть найден путем расчета схемы замещения кабеля в нормальном режиме работы цепи «источник-кабель-нагрузка» (Л.А. Бессонов, «Теоретические основы электротехники. Электрические цепи», 1996 г.).
Известен способ определения дефектов изоляции (см. патент на изобретение RU 2240547), включающий предварительное определение методом высокочастотной рефлектометрии электрической емкости дефектов изоляции, определение значений входного сопротивления, волнового сопротивления контролируемого участка изолированного кабеля или трубы и коэффициента отражения на входе кабеля или трубы, покрытых слоем изоляции, и вычисление на основе коэффициента отражения места нахождения дефекта, причем дополнительно при вычислении коэффициента отражения определяют действительную часть коэффициента отражения.
Недостаток способа: невозможность получения оценки качества кабеля с неоднородностью.
Известно техническое решение по оценке количественных и статистических характеристик внутренних неоднородностей электрических кабелей (см. патент на полезную модель RU 97831), содержащее генератор зондирующих импульсов и устройство согласования, выходом связанное с приемником, содержащим усилитель и АЦП, вычислительный блок, содержащий процессор, соединенный входом/выходом с блоком памяти, причем соответствующими входом и выходом вычислительный блок связан соответственно с выходом и соответствующими входами приемника и входом блока индикации, отличающееся тем, что оно содержит блок подключения, выполненный с, по меньшей мере, двумя раздельными входами/выходами со стороны кабеля, которыми являются соответствующие входы/выходы упомянутого устройства согласования, входящего в блок подключения, содержащий также дифференциальную систему, входом соединенную с выходом генератора зондирующих импульсов, а входом/выходом - с выходом/входом устройства согласования, в приемник введен блок памяти рефлектограмм, соответствующим входом соединенный с выходом АЦП, соответствующим входом соединенного с выходом усилителя, вычислительный блок дополнительно содержит последовательно соединенные корректор искажений, амплитудный корректор, блок статистической обработки, соответствующие входы/выходы которого подключены к выходам/входам коррелятора и процессора, управляющий выход которого соединен с управляющими входами амплитудного корректора, корректора искажений, блока памяти рефлектограмм и усилителя приемника, генератора зондирующих импульсов и устройства согласования блока подключения, причем выход дифференциальной системы и соответствующий выход устройства согласования блока подключения подключены к соответствующим входам усилителя, являющимся входами приемника, выход блока памяти рефлектограмм, являющийся выходом приемника, подключен к входу вычислительного блока, которым является вход корректора искажений, а выход вычислительного блока, которым является выход блока статистической обработки, подключен ко входу блока индикации.
Недостаток технического решения: невозможность получения оценки качества кабеля с неоднородностью, а также сложное конструктивное устройство.
Наиболее близким аналогом является способ количественной оценки внутренних неоднородностей (см. М.С. Былина «Теоретическое и экспериментальное исследование импульсного метода измерений параметров неоднородных двухпроводных цепей» // Бюллетень результатов научных исследований. СПб.: ПГУПС, 2014. №3 (12), стр. 5-6, 21), включающий зондирование кабеля короткими импульсами напряжения, получение рефлектограммы, выделение фрагмента рефлектограммы, исключение «эффекта лыжи», смещения нулевой линии и вычисление оценочного коэффициента неоднородности из фрагмента рефлектограммы.
Недостаток прототипа: невозможность получения оценки качества кабеля с неоднородностью.
Техническим результатом является возможность получения оценки качества кабеля с неоднородностью.
Технический результат достигается тем, что в способе оценки качества кабеля, включающем зондирование кабеля короткими импульсами напряжения, получение рефлектограммы с зондирующими и отраженными импульсами, выделение фрагмента рефлектограммы для определения расстояния до неоднородности и ее схемы замещения, исключение «эффекта лыжи», смещения «нулевой линии» и вычисление оценочного коэффициента неоднородности из фрагмента рефлектограммы, согласно изобретению предварительно измеряют диаметр токопроводящей жилы и определяют тип изоляции кабеля, а в качестве оценочного коэффициента неоднородности из фрагмента рефлектограммы используют значение отношения площадей фигур отраженного импульса от неоднородности и зондирующего импульса, затем рассчитывают величину активного сопротивления неоднородности для схемы замещения «продольная неоднородность» по формуле: , где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=8,678497; а2=2,182438; а3=0,775739; а4=-0,736041; для кабеля с бумажной пропитанной изоляцией: а1=8,251717; а2=2,232208; а3=1,036615; а4=-0,794184; OK - оценочный коэффициент неоднородности, который определяют по формуле: , где 0 - координата начала кабеля, м; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; xD0 - начальная координата отраженного импульса на рефлектограмме, м; хD1 - конечная координата отраженного импульса на рефлектограмме, м; uD - функция напряжения отраженного импульса, В; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют неравенство: ; где Р - активная электрическая мощность приемника энергии, кВт; l - длина кабеля, м; Uном - номинальное напряжение кабеля, кВ; r0 - удельное активное сопротивление кабеля, Ом/км; х0 - удельное индуктивное сопротивление кабеля, Ом/км; ϕ - угол между векторами напряжения и тока у приемника энергии; R - активное сопротивление неоднородности, Ом; 0,1 - допустимое отклонение напряжения; если неравенство выполняется, то кабель качественный; для схемы замещения «поперечная неоднородность» рассчитывают по формуле: ; где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: а1=2,76876; а2=-1,40164; а3=-0,49824; а4=-0,68309; для кабеля с бумажной пропитанной изоляцией: а1=2,83903; а2=-1,32283; а3=-0,61436; а4=-0,62646; ОK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют неравенство: ; где - номинальное напряжение кабеля, В; - комплексное полное сопротивление кабеля до неоднородности, Ом; - комплексное полное сопротивление кабеля после неоднородности, Ом; - комплексное полное сопротивление приемника энергии, Ом; R - активное сопротивление неоднородности, Ом; Iдоп - длительно допустимый ток в кабеле, А; если неравенство выполняется, то кабель качественный.
Формулы для расчета активного сопротивления неоднородности «R» для схемы замещения «поперечная неоднородность» и «продольная неоднородность» получены с помощью программы для ЭВМ «STATISTICA 6.0» посредством нелинейного множественного регрессионного анализа в программной среде, где за независимые переменные, влияющие на значение сопротивления, приняты наиболее значимые факторы, характеризующие физический процесс при проведении электроизмерений на кабеле с определенной диэлектрической проницаемостью изоляции, а именно: оценочный коэффициент, расстояние до неоднородности в кабеле, диаметр токопроводящей жилы кабеля.
Понятие определенный интеграл функции на определенном диапазоне независимой переменной, например, функции напряжения uз на интервале расстояний [0, хз] в u/x-системе координат, эквивалентно площади криволинейной фигуры, «накрытой» сверху линией uз=f(x), а именно, ограниченной линиями uз=f(x), х=0, х=хз, u=0:
где 0 - координата начала кабеля, м; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; ПКФ - величина площади криволинейной фигуры под функцией напряжения uз, В⋅м;
Справедливо данное рассуждение в случае, если uз=f(x)>0. Однако, в соответствии со свойствами интеграла, положим, что, если uз=f(x)<0, то площадь, вычисленная таким образом, окажется с отрицательным знаком:
Но величина площади изменений не претерпит. Отсюда модуль площади криволинейной фигуры можно вычислять независимо от знака функции на определенном диапазоне независимой переменной, что используется при определении оценочного коэффициента (ОК) по заявленному способу:
Обоснование критериев охраноспособности изобретения
В зависимости от схемы замещения неоднородности выбирается критерий, по которому оценивается качество кабеля. Для «продольной неоднородности» удобно пользоваться понятием «отклонение напряжения», так как существенную роль играет стремительное уменьшение потенциала, подводимого по ветви-«токопроводящей жиле» к приемнику энергии от источника, обусловленное ростом эквивалентного полного сопротивления за счет появления сопротивления неоднородности «R» (фиг. 1). Для «поперечной неоднородности» - понятием «длительно протекающий ток», так как существенную роль играет возможность возрастания входного тока в кабеле из-за уменьшения эквивалентного сопротивления схемы замещения кабеля в нормальном режиме работы цепи «источник-кабель-нагрузка», что обусловлено появлением поперечной ветви с активным сопротивлением неоднородности «R» (фиг. 2). Неоднородность как повреждение вносит изменения в суммарное полное сопротивление кабеля «ZЛИНИИ», что непременно влияет на результат расчета критериев качества. Известна формула для расчета отклонения напряжения в кабеле без неоднородностей: . Из вышерассмотренного уравнения видно, что выражение [105⋅Р⋅l⋅(r0+х0⋅tg(ϕ))] есть сумма квадратов падений напряжений на суммарных активном и реактивном сопротивлениях по всей длине кабеля. Если рассматривать кабель с неоднородностью в виде активного сопротивления, например, сосредоточенного, то необходимо учесть дополнительное падение напряжения в нем. Формула для расчета отклонения напряжения в кабеле с неоднородностью примет вид: ; где R - активное сопротивление неоднородности, Ом. Также известно, что максимальное значение тока при появлении поперечной неоднородности приходится на участок кабеля до нее, расчет действующего значения тока в комплексной форме в начале кабеля можно произвести по формуле: ; где - комплексное номинальное напряжение кабеля, В; - комплексное полное сопротивление кабеля до неоднородности, Ом; - комплексное полное сопротивление кабеля после неоднородности, Ом; - комплексное полное сопротивление приемника энергии, Ом; R - активное сопротивление неоднородности, Ом.
Активное сопротивление неоднородности возможно рассчитать в заявленном способе по эмпирическим нелинейным формулам косвенно, используя графический интерфейс рефлектометра для кабельных линий. Отсюда можно сделать вывод о наличии в способе «изобретательского уровня».
Новизна обусловлена тем, что предлагаемая совокупность существенных признаков не известна из сведений об уровне техники, а именно: использование в качестве оценочного коэффициента неоднородности значение отношения площадей фигур отраженного импульса от неоднородности и зондирующего импульса из фрагмента рефлектограммы, расчет величины активного сопротивления неоднородности для схемы замещения «продольная неоднородность» по формуле: , где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=8,678497; а2=2,182438; а3=0,775739; а4=-0,736041; для кабеля с бумажной пропитанной изоляцией: a1=8,251717; а2=2,232208; а3=1,036615; а4=-0,794184; ОK - оценочный коэффициент неоднородности, который определяют по формуле: , где 0 - координата начала кабеля, м; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; xD0 - начальная координата отраженного импульса на рефлектограмме, м; хD1 - конечная координата отраженного импульса на рефлектограмме, м; uD - функция напряжения отраженного импульса, В; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; для схемы замещения «поперечная неоднородность» по формуле: ; где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: а1=2,76876; а2=-1,40164; а3=-0,49824; а4=-0,68309; для кабеля с бумажной пропитанной изоляцией: a1=2,83903; а2=-1,32283; а3=-0,61436; а4=-0,62646; ОK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; в способе оценки качества кабеля, включающем зондирование кабеля короткими импульсами напряжения, получение рефлектограммы с зондирующими и отраженными импульсами, выделение фрагмента рефлектограммы для определения расстояния до неоднородности и ее схемы замещения, исключение «эффекта лыжи», смещения нулевой линии и вычисление оценочного коэффициента неоднородности из фрагмента рефлектограммы.
Промышленная применимость подтверждается возможностью осуществления технического решения при диагностике и ремонте кабельных линий в промышленности и сельском хозяйстве.
Способ оценки качества кабеля осуществляется следующим образом.
Жилы и экран неисправного коаксиального силового кабеля отключают со стороны источника питания и со стороны приемника энергии. С одной стороны кабеля жилы и экран оставляют в разомкнутом состоянии, а с другой стороны кабеля проводят электрические измерения заявленным способом: с помощью штангенциркуля измеряют диаметр токопроводящей жилы, определяют тип изоляции по комплектной документации завода-производителя, подключают рефлектометр по схеме «неисправная жила-экран», посредством рефлектометра осуществляют зондирование кабеля короткими импульсами напряжения, получают рефлектограмму с зондирующими и отраженными импульсами, выделяют фрагмент рефлектограммы. Далее посредством рефлектометра, а именно с помощью графического интерфейса прибора, определяют расстояние до неоднородности и ее схему замещения по фрагменту рефлектограммы. После выполняют исключение «эффекта лыжи» и смещения «нулевой линии». Далее вычисляют оценочный коэффициент неоднородности по формуле: ; где 0 - координата начала кабеля; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; xD0 - начальная координата отраженного импульса на рефлектограмме, м; xD1 - конечная координата отраженного импульса на рефлектограмме, м; uD - функция напряжения отраженного импульса, В. Затем рассчитывают величину активного сопротивления неоднородности для схемы замещения «продольная неоднородность» по формуле: ; где a1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=8,678497; а2=2,182438; а3=0,775739; а4=-0,736041; для кабеля с бумажной пропитанной изоляцией: a1=8,251717; а2=2,232208; а3=1,036615; а4=-0,794184; ОK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; для схемы замещения «поперечная неоднородность» рассчитывают по формуле: ; где a1, a2, a3, a4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=2,76876; а2=-1,40164; а3=-0,49824; а4=-0,68309; для кабеля с бумажной пропитанной изоляцией: a1=2,83903; а2=-1,32283; а3=-0,61436; а4=-0,62646; ОK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм. После для схемы замещения «продольная неоднородность» проверяют неравенство: ; где Р - активная электрическая мощность приемника энергии, кВт; l - длина кабеля, м; Uном - номинальное напряжение кабеля, кВ; r0 - удельное активное сопротивление кабеля, Ом/км; х0 - удельное индуктивное сопротивление кабеля, Ом/км; ϕ - угол между векторами напряжения и тока у приемника энергии; R - активное сопротивление неоднородности, Ом; 0,1 - допустимое отклонение напряжения; если неравенство выполняется, то кабель качественный; а для схемы замещения «поперечная неоднородность» проверяют неравенство: ; где - комплексное номинальное напряжение кабеля, В; - комплексное полное сопротивление кабеля до неоднородности, Ом; - комплексное полное сопротивление кабеля после неоднородности, Ом; - комплексное полное сопротивление приемника энергии, Ом; R - активное сопротивление неоднородности, Ом; Iдоп - длительно допустимый ток в кабеле, А; если неравенство выполняется, то кабель качественный.
Примеры конкретного осуществления способа.
Пример 1. В качестве дефектного (с неоднородностью) коаксиального силового кабеля был принят однофазный кабель типа ПвП (изоляция из сшитого полиэтилена) 1×50/16-10 кВ длиной 1000 м. На расстоянии 500 м была искусственно создана неоднородность в виде активного сопротивления в ветви токопроводящей жилы 750 Ом по схеме замещения «поперечная неоднородность». Диаметр токопроводящей жилы составлял 8 мм. Посредством рефлектометра серии РИ-407 марки «Эрстед» производили зондирование кабеля короткими импульсами напряжения с длительностью 50 нс в соответствии с технической документацией к рефлектометру. С помощью графического интерфейса рефлектометра была получена рефлектограмма с зондирующими и отраженными импульсами, выделен фрагмент рефлектограммы, по которому определено расстояние до неоднородности: х=504 м; а схема замещения была определена как «поперечный дефект», выполнено исключение «эффекта лыжи» и смещения «нулевой линии». Был вычислен оценочный коэффициент: ОК=0,0066. Активное сопротивление по расчетам согласно заявленному методу составило 753,7 Ом. Условие при подстановке абсолютных значений обращается в верное неравенство: 146 А≤215 А. Следовательно неравенство выполняется, а значит кабель качественный.
Пример 2. В качестве дефектного (с неоднородностью) коаксиального силового кабеля был принят однофазный кабель типа ЦСВнг-LS (бумажно-пропитанная изоляция) 1×70/16-10 кВ длиной 1000 м. На расстоянии 300 м была искусственно создана неоднородность в виде активного сопротивления в ветви токопроводящей жилы 714 Ом по схеме замещения «продольная неоднородность». Диаметр токопроводящей жилы составлял 16,7 мм. Посредством рефлектометра серии РИ-407 марки «Эрстед» производили зондирование кабеля короткими импульсами напряжения с длительностью 50 нс в соответствии с технической документацией к рефлектометру. С помощью графического интерфейса рефлектометра была получена рефлектограмма с зондирующими и отраженными импульсами, выделен фрагмент рефлектограммы, по которому определено расстояние до неоднородности: х=295 м; а схема замещения была определена как «поперечный дефект», выполнено исключение «эффекта лыжи» и смещения «нулевой линии». Был вычислен оценочный коэффициент: ОК=0,43479. Активное сопротивление по расчетам согласно заявленному методу составило 717 Ом. Условие при подстановке абсолютных значений обращается в неверное неравенство: 1,2≤0,1. Следовательно неравенство не выполняется, а значит кабель некачественный.
Способ позволяет качественно оценить кабель, а также рассчитать электрическое сопротивление неоднородности в кабеле. Информация об электрическом сопротивлении неоднородности может быть использована при оценке КПД и энергоэффективности кабельной линии, являясь ключевым параметром качества передаваемой электроэнергии.
Claims (1)
- Способ оценки качества кабеля, включающий зондирование кабеля короткими импульсами напряжения, получение рефлектограммы с зондирующими и отраженными импульсами, выделение фрагмента рефлектограммы для определения расстояния до неоднородности и ее схемы замещения, исключение «эффекта лыжи», смещения «нулевой линии» и вычисление оценочного коэффициента неоднородности из фрагмента рефлектограммы, отличающийся тем, что предварительно измеряют диаметр токопроводящей жилы и определяют тип изоляции кабеля, а в качестве оценочного коэффициента неоднородности из фрагмента рефлектограммы используют значение отношения площадей фигур отраженного импульса от неоднородности и зондирующего импульса, затем рассчитывают величину активного сопротивления неоднородности для схемы замещения «продольная неоднородность» по формуле: , где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: а1=8,678497; а2=2,182438; а3=0,775739; а4=-0,736041; для кабеля с бумажной пропитанной изоляцией: a1=8,251717; а2=2,232208; а3=1,036615; а4=-0,794184; OK - оценочный коэффициент неоднородности, который определяют по формуле:; где 0 - координата начала кабеля, м; хз - конечная координата зондирующего импульса на рефлектограмме, м; uз - функция напряжения зондирующего импульса, В; dx - шаг интегрирования, м; xD0 - начальная координата отраженного импульса на рефлектограмме, м; xD1 - конечная координата отраженного импульса на рефлектограмме, м; uD - функция напряжения отраженного импульса, В; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют неравенство: ; где Р - активная электрическая мощность приемника энергии, кВт; 1 - длина кабеля, м; Uном - номинальное напряжение кабеля, кВ; r0 - удельное активное сопротивление кабеля, Ом/км; х0 - удельное индуктивное сопротивление кабеля, Ом/км; ϕ - угол между векторами напряжения и тока у приемника энергии; R - активное сопротивление неоднородности, Ом; 0,1 - допустимое отклонение напряжения; если неравенство выполняется, то кабель качественный; для схемы замещения «поперечная неоднородность» рассчитывают по формуле: ; где а1, а2, а3, а4 - эмпирические коэффициенты для кабеля с изоляцией из сшитого полиэтилена: a1=2,76876; а2=-1,40164; а3=-0,49824; а4=-0,68309; для кабеля с бумажной пропитанной изоляцией: a1=2,83903; а2=-1,32283; а3=-0,61436; а4=-0,62646; OK - оценочный коэффициент неоднородности; х - расстояние до неоднородности на рефлектограмме, м; d - диаметр токопроводящей жилы кабеля, мм; после проверяют неравенство: ; где Uном - номинальное напряжение кабеля, В; - комплексное полное сопротивление кабеля до неоднородности, Ом; - комплексное полное сопротивление кабеля после неоднородности, Ом; - комплексное полное сопротивление приемника энергии, Ом; R - активное сопротивление неоднородности, Ом; Iдоп - длительно допустимый ток в кабеле, А; если неравенство выполняется, то кабель качественный.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017115005A RU2651641C1 (ru) | 2017-04-27 | 2017-04-27 | Способ оценки качества кабеля |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017115005A RU2651641C1 (ru) | 2017-04-27 | 2017-04-27 | Способ оценки качества кабеля |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2651641C1 true RU2651641C1 (ru) | 2018-04-23 |
Family
ID=62045423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017115005A RU2651641C1 (ru) | 2017-04-27 | 2017-04-27 | Способ оценки качества кабеля |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2651641C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117893103A (zh) * | 2024-03-18 | 2024-04-16 | 山东阳谷恒昌电缆集团有限公司 | 一种基于电缆生产线的交联电缆产品质量管理控制系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5469067A (en) * | 1989-10-25 | 1995-11-21 | Hitachi Cable, Ltd. | Detecting partial discharge using a detection coil and analysis of output signal and noise frequency spectrums |
RU2143703C1 (ru) * | 1998-10-02 | 1999-12-27 | Новочеркасский государственный технический университет | Способ определения места однофазных замыканий в кабельных линиях, проложенных в земле |
RU42111U1 (ru) * | 2004-06-09 | 2004-11-20 | Космачев Александр Федорович | Устройство определения мест неоднородностей кабеля |
RU56649U1 (ru) * | 2006-02-21 | 2006-09-10 | Александр Федорович Космачев | Устройство определения мест неоднородностей кабеля |
US20070085548A1 (en) * | 2003-10-22 | 2007-04-19 | Takashi Shinmoto | Insulation degradation diagnostic device |
RU97831U1 (ru) * | 2010-03-23 | 2010-09-20 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" | Устройство оценки количественных и статистических характеристик внутренних неоднородностей электрических кабелей |
-
2017
- 2017-04-27 RU RU2017115005A patent/RU2651641C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5469067A (en) * | 1989-10-25 | 1995-11-21 | Hitachi Cable, Ltd. | Detecting partial discharge using a detection coil and analysis of output signal and noise frequency spectrums |
RU2143703C1 (ru) * | 1998-10-02 | 1999-12-27 | Новочеркасский государственный технический университет | Способ определения места однофазных замыканий в кабельных линиях, проложенных в земле |
US20070085548A1 (en) * | 2003-10-22 | 2007-04-19 | Takashi Shinmoto | Insulation degradation diagnostic device |
RU42111U1 (ru) * | 2004-06-09 | 2004-11-20 | Космачев Александр Федорович | Устройство определения мест неоднородностей кабеля |
RU56649U1 (ru) * | 2006-02-21 | 2006-09-10 | Александр Федорович Космачев | Устройство определения мест неоднородностей кабеля |
RU97831U1 (ru) * | 2010-03-23 | 2010-09-20 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича" | Устройство оценки количественных и статистических характеристик внутренних неоднородностей электрических кабелей |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117893103A (zh) * | 2024-03-18 | 2024-04-16 | 山东阳谷恒昌电缆集团有限公司 | 一种基于电缆生产线的交联电缆产品质量管理控制系统 |
CN117893103B (zh) * | 2024-03-18 | 2024-05-24 | 山东阳谷恒昌电缆集团有限公司 | 一种基于电缆生产线的交联电缆产品质量管理控制系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108896872B (zh) | 基于sstdr的手持式电缆故障检测系统及方法 | |
CN112630598B (zh) | 长距离高压电缆故障程度检测方法及装置 | |
Smaïl et al. | Detection and location of defects in wiring networks using time-domain reflectometry and neural networks | |
CN105308872B (zh) | 用于确定金属电缆的通信特性的测试装置和方法 | |
Jiang et al. | A capacitive strip sensor for detecting partial discharge in 110-kV XLPE cable joints | |
KR20200004794A (ko) | 파이프 결함을 검출하기 위한 반사측정 장치 및 방법 | |
Sheng et al. | A novel on-line cable pd localisation method based on cable transfer function and detected pd pulse rise-time | |
CN110110497A (zh) | 一种输电电缆及附件高频电气参数的无损评估方法 | |
CN114217166A (zh) | 一种基于fdr频域波形的变电站低压电缆局部缺陷定位方法 | |
CN110569482B (zh) | 一种电缆局部放电故障概率的计算方法 | |
CN106324450B (zh) | 一种电缆传输衰减特性测试中的特征阻抗匹配方法 | |
CN110261739B (zh) | 一种电缆软故障定位装置及定位方法 | |
RU2651641C1 (ru) | Способ оценки качества кабеля | |
CN117434386A (zh) | 一种基于护层接地回路宽频阻抗谱的高压电缆护套缺陷定位方法 | |
Fischer et al. | Perspective on spatially-resolved diagnostic methods for power cables | |
CN115128403B (zh) | 一种用于电力电缆的在线信号测量方法 | |
Gao et al. | Research on electric field characteristics under different length interface air gap defects in cable terminals of high-speed train | |
Zhang et al. | Parameter estimation technique for the semi-conducting layers in single-core XLPE cable | |
Alam et al. | Rod Insertion TDR for Detecting Corrosion Damage in Vertical Grounding Electrodes | |
Li et al. | Power cable joint model: Based on lumped components and cascaded transmission line approach | |
Manesh et al. | Experimental analysis and modelling of coaxial transmission lines with soft shield defects | |
Sheri et al. | Characterization of a power line cable for channel frequency response—Analysis and investigation | |
CN112611938A (zh) | 一种电缆离线局放检测中信号传播衰减系数的计算方法及装置 | |
Hassen et al. | A damaged twisted pair cable modeling for fault detection and characterization using OMTDR and particle swarm algorithm | |
Sallem et al. | Wire arc defect localization and mathematical characterization by MCTDR reflectometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190428 |