RU2651551C1 - Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну - Google Patents
Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну Download PDFInfo
- Publication number
- RU2651551C1 RU2651551C1 RU2017110763A RU2017110763A RU2651551C1 RU 2651551 C1 RU2651551 C1 RU 2651551C1 RU 2017110763 A RU2017110763 A RU 2017110763A RU 2017110763 A RU2017110763 A RU 2017110763A RU 2651551 C1 RU2651551 C1 RU 2651551C1
- Authority
- RU
- Russia
- Prior art keywords
- surfacing
- electrode
- filler wire
- wire
- filler
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000003466 welding Methods 0.000 title claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000000945 filler Substances 0.000 claims abstract description 44
- 230000008018 melting Effects 0.000 claims abstract description 22
- 238000002844 melting Methods 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 230000001154 acute effect Effects 0.000 claims abstract description 4
- 239000003607 modifier Substances 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 4
- 230000001681 protective effect Effects 0.000 claims description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 238000010891 electric arc Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000007790 solid phase Substances 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
Изобретение может быть использовано для изготовления и восстановления деталей и инструмента, работающих в условиях абразивного и других видов изнашивания. Электродуговую наплавку производят плавящимся электродом. В сварочную ванну подают под острым углом к направлению подачи плавящегося электрода электрически изолированную присадочную порошковую проволоку с наполнителем из ультрадисперсного порошка тугоплавкого химического соединения на расстоянии от плавящегося электрода, которое выбирают в зависимости от параметров режима наплавки и теплофизических свойств наплавленного металла. Присадочную проволоку вводят в сварочную ванну со скоростью, обеспечивающей содержание порошка тугоплавкого химического соединения в количестве 0,2…0,6% от массы наплавленного металла. Способ обеспечивает повышение механических и эксплуатационных свойств наплавленного металла за счет измельчения его структуры и формирования в ней упрочняющих твердых фаз. 2 з.п. ф-лы, 2 ил., 1 табл., 1 пр.
Description
Изобретение относится к сварке и наплавке и может быть применено для изготовления и восстановления деталей и инструмента, работающих в условиях абразивного и других видов изнашивания, путем формирования на их рабочих поверхностях слоев износостойких сплавов, модифицированных ультрадисперсными частицами тугоплавких химических соединений.
Известен способ электродуговой наплавки под слоем флюса бронзы с дополнительной подачей ленты. (Наплавка бронзы с дополнительной подачей ленты / Б.В. Филимонов, В.В. Степанов, Б.В. Степанов // Сварочное производство. - 1976. - №1. - С. 19-21.) Присадочная стальная лента, подаваемая в зону горения дуги, находится в контакте с наплавляемой поверхностью и располагается между дугой и изделием. Расплавляясь, электродная проволока и лента образуют валик наплавленного металла. Данный способ наплавки позволяет повысить производительность процесса наплавки и уменьшить степень проплавления основного металла. Однако в случае применения порошковой ленты с модификатором ее подача прямо в зону действия дуги приводит к расплавлению тугоплавких частиц, что не позволяет достичь упрочнения наплавленного металла.
Известен способ наплавки (патент РФ №2143962, МПК В23K 9/04, опубл. 10.01.2000 г.) в среде защитных газов плавящимся электродом с введением дополнительной присадочной проволоки, нагретой проходящим через нее током, в кристаллизующуюся часть сварочной ванны. Способ позволяет формировать аустенитный подслой между основным и наплавленным металлом и двухфазную структуру в центре сварного шва, что предотвращает появление горячих трещин и позволяет отказаться от предварительного подогрева изделий.
Данный способ предусматривает подогрев присадочной проволоки, что увеличивает сложность конструкции подающего механизма и энергетические затраты на проведение процесса, а также обусловливает необходимость дополнительной газовой защиты нагретой проволоки. В случае использования порошковой проволоки с наполнителем из ультрадисперсных тугоплавких частиц ее предварительный подогрев, а также подача параллельно электроду и электрической дуге могут привести к перегреву проволоки и плавлению вне сварочной ванны. Это обусловливает капельный массоперенос, повышенную степень диссоциации тугоплавких частиц и низкую эффективность упрочнения наплавленного металла.
Наиболее близким к заявляемому решению является способ восстановления наплавкой поверхностей деталей (патент РФ №2403138, МПК В23Р 6/04, опубл. 10.11.2010, бюл. №31). Способ включает наплавку плавящимся электродом на поверхность восстанавливаемой детали с образованием наплавочной ванны и подачу в нее под острым углом к направлению подачи плавящегося электрода одной или нескольких присадочных проволок сплошного сечения из легированной стали или цветных металлов и сплавов. Причем присадочную проволоку изолируют от тока и подают в ванну на расстоянии от электрода, обеспечивающем сохранение в наплавленном металле легирующих элементов, содержащихся в проволоке. Способ позволяет получать наплавленный металл, различный по химическому составу, а также по физико-механическим и трибологическим свойствам.
Недостатками прототипа является то, что в случае введения в сварочную ванну нескольких (до четырех) порошковых проволок, содержащих модификатор, это приводит к переохлаждению ванны, неполному расплавлению в ней оболочек проволок и неоднородному распределению модификатора по объему наплавленного металла, что снижает его механические и эксплуатационные свойства. Также использование нескольких проволок значительно усложняет конструкцию системы их подачи. Подача проволок под малыми углами к направлению подачи плавящегося электрода не обеспечивает стабильного плавления в ванне их оболочек при повышенных скоростях подачи. При этом возможно приваривание проволок ко дну ванны и возникновение в наплавленном металле структурно-механической неоднородности, что не позволяет обеспечить его высокие эксплуатационные свойства. Введение в ванну присадочной проволоки, содержащей ультрадисперсный порошок тугоплавкого химического соединения (ТХС), на малых расстояниях от плавящегося электрода, выбранных из рекомендуемого диапазона (0,7-2,5)D, где D - диаметр электрода, приводит к интенсивной диссоциации тугоплавких частиц, что снижает свойства наплавленного металла.
Технический результат заключается в повышении механических и эксплуатационных свойств наплавленного металла за счет измельчения его структуры и формирования в ней упрочняющих твердых фаз, кристаллизующихся на недиссоциировавших в процессе наплавки частицах ТХС, введенных в низкотемпературную область сварочной ванны в составе присадочной порошковой проволоки и однородно распределенных по объему металла.
Технический результат достигается тем, что в способе наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну, включающем перемещение электрода относительно поверхности изделия с образованием сварочной ванны, подачу в сварочную ванну изолированной от тока присадочной проволоки, расположенной под острым углом к направлению подачи плавящегося электрода на расстоянии от него, в качестве присадочной проволоки используют порошковую проволоку, содержащую низкоуглеродистую стальную оболочку и наполнитель, представляющий собой модификатор в виде ультрадисперсного порошка тугоплавкого химического соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид и оксикарбонитрид металла, при этом присадочную проволоку подают в сварочную ванну под углом 55…65° со скоростью, обеспечивающей содержание в наплавленном металле модификатора в количестве 0,2…0,6 масс. %, а расстояние В от плавящегося электрода выбирают равным
где k=0,25…0,15 - эмпирический коэффициент, зависящий от содержания в наплавленном металле модификатора; I - сила сварочного тока, A; U - напряжение на дуге, В; Tпл - температура плавления наплавляемого металла, °С; λ - коэффициент теплопроводности наплавляемого металла, Вт/м⋅°С; η - эффективный КПД процесса нагрева изделия дугой. При этом наплавку осуществляют в среде защитных газов, а также под флюсом.
Введение в сварочную ванну в процессе наплавки модификатора в виде порошка ТХС в составе присадочной порошковой проволоки способствует измельчению структуры наплавленного металла и увеличивает количество упрочняющей фазы, что повышает его механические и эксплуатационные свойства, в частности твердость и износостойкость.
Присадочную проволоку необходимо вводить в сварочную ванну на расстоянии В от электрода, вычисленном по формуле (1), учитывающей энергетические параметры режима наплавки (сварочный ток, напряжение на дуге, эффективный КПД процесса) и теплофизические свойства наплавляемого металла (температуру плавления, коэффициент теплопроводности), которые определяют форму и геометрические размеры сварочной ванны. Коэффициент k определен экспериментально на основании анализа тепловых полей на поверхности сварочной ванны, исследования структуры наплавленного Металла, а также изучения распределения твердости по его сечению. Коэффициент k зависит от скорости подачи в сварочную ванну присадочной проволоки, определяющей массовую долю модификатора в наплавленном металле, причем его величина обратно пропорциональна содержанию модификатора.
Присадочную проволоку подают в сварочную ванну со скоростью, обеспечивающей содержание в наплавленном металле порошка ТХС в количестве 0,2…0,6 масс. %, что соответствует диапазону значений k = 0,25…0,15. При содержании в наплавленном металле частиц ТХС меньше 0,2 масс. % они не оказывают существенного влияния на его структуру и эксплуатационные свойства. При содержании частиц ТХС более 0,6 масс. % увеличивается стоимость наплавленного металла, при этом его эксплуатационные свойства повышаются не так значительно.
Допустимые пределы (±0,03) варьирования величиной k определены экспериментально на основе выявления в сварочной ванне области с оптимальными тепловыми и гидродинамическими условиями, обеспечивающими сохранение ультрадисперсных частиц ТХС от диссоциации и их равномерное распределение в объеме наплавленного металла. При уменьшении коэффициента k на величину более 0,03 скорость плавления оболочки присадочной проволоки под воздействием плазмы дуги будет превышать скорость ее подачи. Это обусловливает оплавление проволоки над сварочной ванной и перегрев образующихся на ее торце капель, что приводит к диссоциации значительной части частиц ТХС. При увеличении k на величину более 0,03 скорость плавления оболочки проволоки в низкотемпературной области сварочной ванны будет недостаточной, что приведет к привариванию проволоки ко дну ванны, вызывая нарушение процесса наплавки.
Угол подачи в сварочную ванну присадочной проволоки должен находиться в диапазоне 55…65° относительно направления подачи плавящегося электрода. Такая величина угла позволяет уменьшить перегрев присадочной проволоки от тепла сварочной дуги и увеличить время ее движения в расплаве сварочной ванны, что обеспечивает полное расплавление в ванне стальной оболочки проволоки в широком диапазоне скоростей подачи и равномерное распределение частиц ТХС по объему наплавленного металла.
Подача проволоки под углом менее 55° приводит к уменьшению времени ее движения в сварочной ванне до момента касания ее донной части. Это снижает допустимую скорость подачи проволоки в ванну, может приводить к неравномерному распределению в ней частиц ТХС, а также привариванию проволоки и нарушению процесса наплавки. Подача проволоки под углом более 65° может приводить к касанию проволокой поверхности валика наплавленного металла, а также затрудняет контроль величины расстояния между присадочной и электродной проволоками.
Сущность изобретения поясняется чертежами.
На фиг. 1 изображена схема процесса дуговой наплавки плавящимся электродом с подачей присадочной проволоки в сварочную ванну.
На фиг. 2 показана микроструктура металла 320Х12М2НТР, полученного наплавкой с использованием присадочной проволоки, содержащей модификатор в виде порошка нитрида титана TiN.
Способ осуществляется следующим образом. К поверхности наплавляемого изделия 1 подводятся плавящийся электрод 2, подаваемый через токоподводящий мундштук 3, и присадочная проволока 4, которую располагают после электрода на расстоянии и под углом α=55-65° к нему. Присадочную проволоку 4 электрически изолируют от электрода 2 и элементов конструкции, находящихся под его потенциалом, для исключения возникновения дугового разряда между изделием 1 и присадочной проволокой либо шунтирования через нее электрического тока в процессе наплавки. В случае наплавки в среде защитного газа его подают через сопло 5, при наплавке под слоем флюса его насыпают на изделие 1. Между изделием 1 и электродом 2 подают напряжение, включают подачу электродной проволоки и ее перемещение относительно изделия по направлению Vн, при этом между электродом и изделием зажигается электрическая дуга 6, а на поверхности изделия формируется сварочная ванна 7. Металлический расплав ванны 7 под воздействием дуги 6 оттесняется в сторону, противоположную направлению наплавки, где охлаждается и кристаллизуется в виде валика наплавленного металла 8.
После выхода процесса наплавки на установившийся режим и стабилизации размеров сварочной ванны 7 включают подачу присадочной проволоки 4 со скоростью, обеспечивающей содержание в наплавленном металле порошка ТХС в количестве 0,2…0,6 масс. %, причем меньшее содержание модификатора соответствует большему значению коэффициента k в формуле 1, выбираемому из диапазона 0,25…0,15, и наоборот. При соблюдении данных рекомендаций полное расплавление оболочки присадочной проволоки 4 происходит под действием тепла сварочной ванны. При этом частицы ТХС из наполнителя проволоки под воздействием гидродинамических потоков в ванне, направленных к ее низкотемпературной «хвостовой» части, равномерно распределяется в объеме расплава вблизи фронта кристаллизации 9 металла. Здесь они, подвергаясь незначительному растворению в металлическом расплаве, становятся центрами кристаллизации, на которых формируются упрочняющие металл фазы, что обусловливает измельчение его структуры и повышение механических и эксплуатационных свойств.
Пример.
Выполняли дуговую наплавку в среде аргона на пластины из стали 20 толщиной 8 мм с использованием электродной порошковой проволоки диаметром 3 мм, обеспечивающей получение наплавленного металла типа 320X12М2НТР. Параметры режима наплавки следующие: сварочный ток 290-310 А, напряжение на дуге 26-27 В, скорость наплавки 26 м/ч, расход аргона 18-20 л/мин. Присадочную порошковую проволоку диаметром 1,8 мм с наполнителем в виде ультрадисперсного порошка нитрида титана TiN подавали в сварочную ванну под углом 60° к плавящемуся электроду со скоростью 12,6 м/ч, выбранной исходя из задачи получения в наплавленном металле содержания частиц TiN в количестве 0,4 масс. %. Рассчитанное расстояние между плавящимся электродом и присадочной проволокой составляло B=13 мм, при этом коэффициент k принимали равным 0,2, эффективный КПД процесса нагрева изделия дугой в среде аргона - 0,75, температуру плавления наплавленного металла - 1300°С, коэффициент его теплопроводности - 23 Вт/м⋅град.
Визуальные наблюдения за процессом наплавки подтвердили стабильное расплавление оболочки присадочной проволоки в сварочной ванне, капли над сварочной ванной не образовывались, приваривание проволоки ко дну ванны не происходило. В результате получали качественно сформированный валик наплавленного металла высотой 4 мм. Анализ микроструктуры наплавленного металла, а также распределения твердости по сечению валика показали высокую структурно-механическую однородность металла, модифицированного частицами TiN. Установлено, что частицы TiN глобулярной формы из состава присадочной проволоки становятся центрами кристаллизации в расплаве, на поверхности которых формируются карбиды (Ti, Mo)C1-x (фиг. 2), обладающие высокой твердостью и термостабильностью. Формирование новых упрочняющих фаз наряду со значительным измельчением эвтектической структуры модифицированного наплавленного металла по сравнению с немодифицированным обусловливает повышение его твердости и стойкости к абразивному изнашиванию при температуре 500°С.
Сравнительные данные предлагаемого способа наплавки в сравнении с прототипом приведены в таблице, из которой следует, что заявляемый способ наплавки характеризуется стабильным и качественным процессом плавления в сварочной ванне оболочки присадочной проволоки, сохранением от диссоциации и однородным распределением в наплавленном металле частиц ТХС, что подтверждается высокими значениями его твердости, лежащими в узком диапазоне. Это обеспечивает повышенные эксплуатационные свойства, в частности износостойкость, наплавленного металла.
Примечание: при определении относительной износостойкости в качестве эталона применяли металл типа 320X12М2НТР, наплавленный без использования присадочной проволоки с модификатором.
Использование предлагаемого способа наплавки дает в сравнении с известными способами следующий технический результат: повышение механических и эксплуатационных свойств наплавленного металла за счет минимальной диссоциации и равномерного распределения в прилегающем к фронту кристаллизации объеме сварочной ванны частиц ТХС, служащих центрами кристаллизации в расплаве и способствующих измельчению структуры наплавленного металла, а также формированию в нем упрочняющих твердых фаз.
Claims (10)
1. Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну, включающий перемещение электрода относительно поверхности изделия с образованием сварочной ванны, подачу в сварочную ванну изолированной от тока присадочной проволоки, расположенной под острым углом к направлению подачи плавящегося электрода на расстоянии от него, отличающийся тем, что в качестве присадочной проволоки используют порошковую проволоку, содержащую низкоуглеродистую стальную оболочку и наполнитель, представляющий собой модификатор в виде ультрадисперсного порошка тугоплавкого химического соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид и оксикарбонитрид металла, при этом присадочную проволоку подают в сварочную ванну под углом 55…65° со скоростью, обеспечивающей содержание в наплавленном металле модификатора в количестве 0,2…0,6 мас.%, а расстояние В от плавящегося электрода выбирают равным
где k=0,25…0,15 - эмпирический коэффициент, зависящий от содержания в наплавленном металле модификатора;
I - сила сварочного тока, А;
U - напряжение на дуге, В;
Тпл - температура плавления наплавляемого металла, °С;
λ - коэффициент теплопроводности наплавляемого металла, Вт/м⋅°С;
η - эффективный КПД процесса нагрева изделия дугой.
2. Способ по п. 1, отличающийся тем, что наплавку осуществляют в среде защитных газов.
3. Способ по п. 1, отличающийся тем, что наплавку осуществляют под флюсом.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017110763A RU2651551C1 (ru) | 2017-03-30 | 2017-03-30 | Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017110763A RU2651551C1 (ru) | 2017-03-30 | 2017-03-30 | Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2651551C1 true RU2651551C1 (ru) | 2018-04-20 |
Family
ID=61977019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017110763A RU2651551C1 (ru) | 2017-03-30 | 2017-03-30 | Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2651551C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109158739A (zh) * | 2018-08-31 | 2019-01-08 | 江苏省沙钢钢铁研究院有限公司 | 一种提高耐磨钢板盖面焊道表面硬度的焊接方法 |
RU2735084C1 (ru) * | 2020-01-27 | 2020-10-28 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) | Способ дуговой сварки под флюсом с дополнительной присадкой |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1233516B (de) * | 1962-03-03 | 1967-02-02 | Siemens Ag | Verfahren zum maschinellen Lichtbogen-Auftragschweissen von Metallen mit abschmelzender Elektrode |
SU1016912A1 (ru) * | 1981-07-17 | 1986-06-15 | Производственное объединение "Строймаш" | Способ износостойкой наплавки |
RU2143962C1 (ru) * | 1997-03-25 | 2000-01-10 | Шефель Владимир Викторович | Способ восстановления наплавкой поверхностей катания |
RU2159171C1 (ru) * | 1999-05-26 | 2000-11-20 | Курский государственный технический университет | Способ дуговой двухслойной наплавки |
RU2403138C1 (ru) * | 2009-08-17 | 2010-11-10 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) | Способ восстановления наплавкой поверхностей деталей |
-
2017
- 2017-03-30 RU RU2017110763A patent/RU2651551C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1233516B (de) * | 1962-03-03 | 1967-02-02 | Siemens Ag | Verfahren zum maschinellen Lichtbogen-Auftragschweissen von Metallen mit abschmelzender Elektrode |
SU1016912A1 (ru) * | 1981-07-17 | 1986-06-15 | Производственное объединение "Строймаш" | Способ износостойкой наплавки |
RU2143962C1 (ru) * | 1997-03-25 | 2000-01-10 | Шефель Владимир Викторович | Способ восстановления наплавкой поверхностей катания |
RU2159171C1 (ru) * | 1999-05-26 | 2000-11-20 | Курский государственный технический университет | Способ дуговой двухслойной наплавки |
RU2403138C1 (ru) * | 2009-08-17 | 2010-11-10 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) | Способ восстановления наплавкой поверхностей деталей |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109158739A (zh) * | 2018-08-31 | 2019-01-08 | 江苏省沙钢钢铁研究院有限公司 | 一种提高耐磨钢板盖面焊道表面硬度的焊接方法 |
RU2735084C1 (ru) * | 2020-01-27 | 2020-10-28 | федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) | Способ дуговой сварки под флюсом с дополнительной присадкой |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120325779A1 (en) | Alloy Depositing Machine And Method Of Depositing An Alloy Onto A Workpiece | |
NL8402640A (nl) | Gas-metaal-boog lasmethode. | |
Vespa et al. | Analysis of WC/Ni-based coatings deposited by controlled short-circuit MIG welding | |
CA2207579A1 (fr) | Piece frittee a surface anti-abrasive et procede pour sa realisation | |
US20040084421A1 (en) | Hardfacing materials & methods | |
RU2651551C1 (ru) | Способ наплавки изделий плавящимся электродом с подачей присадочной проволоки в сварочную ванну | |
Škamat et al. | Pulsed laser processed NiCrFeCSiB/WC coating versus coatings obtained upon applying the conventional re-melting techniques: Evaluation of the microstructure, hardness and wear properties | |
EP3481580B1 (en) | Association of a contact tip assembly for mig metal welding and a pta torch | |
Barroi et al. | A novel approach for high deposition rate cladding with minimal dilution with an arc–laser process combination | |
RU2403138C1 (ru) | Способ восстановления наплавкой поверхностей деталей | |
EP3481578B1 (en) | Fluid-cooled contact tip assembly for metal welding | |
Kovalev et al. | Formation of an intermetallic layer during arc facing of aluminum alloys onto a steel substrate | |
EP3154737B1 (en) | Shielded metal arc welding stick electrode | |
Gladkii et al. | Plasma surfacing | |
KR101931140B1 (ko) | 55중량% 초과의 caf2를 갖는 플럭스에 의해 일렉트로슬래그 스트립 클래딩에 의해 금속 표면 상으로 오버레이 재료를 용착하기 위한 방법; 대응하는 플럭스 및 이러한 오버레이에 의한 물품 | |
RU2798645C1 (ru) | Способ автоматической наплавки в инертном газе комбинацией дуг | |
WO2005044500A1 (en) | Manufacture of hardfaced plates | |
Fauchais et al. | Plasma-transferred arc | |
Dwivedi et al. | Surface modification by developing coating and cladding | |
Zorin et al. | Structure formation and properties of nickel aluminide-based alloy deposited by the GMAW method under periodic arc thermal impact on the weld pool | |
Artemiev et al. | The effect of technological features of surfacing and TiN particles on the structure and characteristics of corrosion-resistant high-carbon Fe-Cr-Mo-Ni-Ti-CB metal | |
RU2781329C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ОСНОВЕ КВАЗИКРИСТАЛЛИЧЕСКОГО СПЛАВА СИСТЕМЫ Al-Cu-Fe | |
Vlasov et al. | Heating and melting of electrodes with exothermic mixture in coating | |
US20050208279A1 (en) | Items made of wear resistant materials | |
RU2557180C1 (ru) | СПОСОБ ПЛАЗМЕННОЙ НАПЛАВКИ ПОРОШКОВ СИСТЕМЫ Fe-Cr-V-Mo-C |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190331 |