RU2651338C2 - Способ лазерного разделения изотопов йода - Google Patents

Способ лазерного разделения изотопов йода Download PDF

Info

Publication number
RU2651338C2
RU2651338C2 RU2016139328A RU2016139328A RU2651338C2 RU 2651338 C2 RU2651338 C2 RU 2651338C2 RU 2016139328 A RU2016139328 A RU 2016139328A RU 2016139328 A RU2016139328 A RU 2016139328A RU 2651338 C2 RU2651338 C2 RU 2651338C2
Authority
RU
Russia
Prior art keywords
laser
radiation
iodine
infrared
isotopes
Prior art date
Application number
RU2016139328A
Other languages
English (en)
Other versions
RU2016139328A (ru
Inventor
Борис Абрамович Зон
Алексей Станиславович Корнев
Василий Иванович Наскидашвили
Иван Мстиславович Семилетов
Кирилл Игоревич Суворов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ")
Priority to RU2016139328A priority Critical patent/RU2651338C2/ru
Publication of RU2016139328A publication Critical patent/RU2016139328A/ru
Application granted granted Critical
Publication of RU2651338C2 publication Critical patent/RU2651338C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lasers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Изобретение относится к области разделения изотопов йода и может быть использовано для получения изотопически обогащенного йода, а также при утилизации радиоактивных отходов. Способ лазерного разделения изотопов йода включает облучение паров йода (I2) резонансным инфракрасным излучением с длиной волны 47,62 мкм, последующее воздействие сильным лазерным излучением с диапазоном излучения оптическим или инфракрасным и интенсивностью более 3×1013 Вт/см2 и экстракцию образованных положительных ионов, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния I2. Изобретение обеспечивает повышение эффективности выделения изотопов йода лазерным излучением. 1 ил.

Description

Изобретение относится к молекулярной физике, а именно к области разделения изотопов йода, и может быть использовано для получения изотопически обогащенного йода, а также для утилизации радиоактивных отходов.
Методы лазерного разделения изотопов являются эффективными методами получения химических элементов определенного изотопического состава [Летохов B.C., Мур С.Б. Квантовая электроника. Т. 3, вып. 3, 4, 1976 г.], что связано с возможностью значительного изотопического обогащения за один цикл. Лазерные методы разделения изотопов основаны на селективном возбуждении лазерным излучением электронных или колебательных уровней атомов или молекул определенного изотопического состава. Метод избирательной стимуляции одного молекулярного компонента в смеси [WO 9712373; МПК B01D 53/00; B01D 59/34; G01N 21/63; опубл. 1997-04-03] предполагает переход обоих компонентов в первое возбужденное состояние при первом импульсе лазерного излучения и выборочный переход одного компонента во второе возбужденное состояние при втором импульсе лазерного излучения длительностью порядка 10-15 с.
Способ разделения и обогащения стабильных изотопов в газовой фазе с использованием принципов спектрометрии ионной подвижности при атмосферном давлении (760 мм рт.ст.) и при комнатной температуре (298 К) согласно патенту US 6831271 [B01D 59/46; B01D 59/48; G01N 27/62; G01N 27/64; H01J 49/04; H01J 49/40; H01J 49/42 2004-12-14] может быть использован для разделения и обогащения изотопов фтора. Электроспрей-ионизация используется для создания газовой смеси ионов, и ионные пучки на выходе из сильного поля с асимметричной формой волны спектрометра подвижности ионов попадают в масс-спектрометр для идентификации изотопов.
Известен способ [патент RU 2530062, МПК B01D 59/00, опубл. 10.10.2014] лазерного разделения изотопов хлора, согласно которому проводят облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, в качестве исходного газа используется хлористый водород (HCl), длина волны резонансного инфракрасного излучения 3,782 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность сильного лазерного излучения превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния HCl.
Известен способ [патент RU 2531178, МПК B01D 59/00, опубл. 20.10.2014] лазерного разделения изотопов водорода облучением исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (смесь HCl и DC1), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния DCl.
Известен способ разделения различных изотопов по патенту GB 1529391 (B01D 59/34; G02B 27/00; H01S 3/08 1978-10-18), согласно которому пар, содержащий смесь изотопов, облучают для возбуждения изотопов одного типа до повышенного колебательного состояние и перехода возбужденных изотопов на более высокий электронный уровень, на котором электронные заряды разделяются. Пар обеспечивает сильно насыщенную атмосферу, которая не является растворителем для изотопов.
Известен способ [патент GB 1473330, МПК B01D 59/34; B01J 19/12; G02B 27/00; H01S 3/00; H01S 3/094; H01S 3/22; от 23.10.1973] лазерного разделения изотопов, взятый за прототип, основанный на изотопически-селективном возбуждении молекул газовой фазы в процессе инфракрасного поглощения фотонов, который включает в себя следующие стадии: облучение молекул ИК-излучением с помощью ИК-лазера при интенсивности, по крайней мере, 104 Вт/см2, в течение времени от 10-10 до 5×10-5 с, причем молекулы, содержащие желаемый изотоп или изотопы, преимущественно возбуждены резонансным излучением и поглощают больше, чем один квант ИК-излучения; преобразование возбужденных молекул в процессе облучения лазером оптического или УФ-диапазона для осуществления фотодиссоциации, в котором возбужденные молекулы могут быть отделены от невозбужденных.
Селективное колебательное возбуждение считается наиболее трудным методом [Летохов B.C., Мур С.Б., цит. соч., стр. 253]. Это связано с тем, что, несмотря на простоту селективного колебательного возбуждения, затруднено дальнейшее выделение колебательно возбужденных молекул.
Задачей изобретения является устранение недостатков, присущих прототипу.
Технический результат заключается в повышении эффективности выделения изотопов йода лазерным излучением.
Технический результат достигается тем, что в способе лазерного разделения изотопов йода, включающем облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, согласно изобретению в качестве исходного газа используются пары йода (I2). Длина волны резонансного инфракрасного излучения 47,62 мкм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния I2.
Предлагается использовать эффект антистоксова усиления туннельной ионизации молекул. Этот эффект, предложенный в работе [Kornev A.S., Zon B.A. Phys. Rev. A 86, 043401 (2012)] и более детально рассмотренный в работе [Kornev A.S., Zon В.А. Laser Phys. 24, 115302 (2014)] применительно к молекуле HF, состоит в значительном увеличении вероятности туннельного эффекта в лазерном поле для колебательно-возбужденных молекул. При туннельном эффекте в лазерном поле возможен неупругий процесс, когда часть энергии передается туннелирующему электрону от иных степеней свободы в атомах [Kornev A.S. et al., Phys. Rev. A 68, 065403 (2003); 69, 065401 (2004); 79, 063405 (2009); 84, 053424 (2011); 85, 035402 (2012)] или молекулах [Kornev A.S., Zon B.A., Phys. Rev. A 86, 043401 (2012); Kornev A.S., Zon B.A. Laser Phys. 24, 115302 (2014)]. Для молекул такими иными степенями свободы могут являться колебательные степени свободы ядер атомов, образующих молекулу. Предварительное возбуждение ядерных колебаний позволяет в результате туннельного эффекта образовывать ионы с преимущественным содержанием определенных изотопов, поскольку нейтральные молекулы разного изотопического состава имеют разные частоты колебательных переходов.
На Фиг. 1 показана зависимость отношения вероятности образования ионов I2 + из возбужденного колебательного состояния (υi=1) к вероятности образования ионов I2 + из основного колебательного состояния (υi=0), в зависимости от интенсивности лазерного излучения I.
В природе встречается единственный стабильный изотоп I127. Долгоживущий β--радиоактивный изотоп I131 может быть получен искусственно из Те131 бомбардировкой нейтронами либо он содержится в радиоактивных отходах, являясь экологически наиболее опасным нуклидом. Достаточно длинный период полураспада I131 (8,02070 суток) позволяет получить из газовой смеси, содержащей различные изотопы йода (I127 и I131), молекулы I2 131. Пары йода облучаются инфракрасным излучением с длиной волны 47,62 мкм для заселения первого колебательного состояния молекулы I2 131. После этого на объем газа, подвергшийся облучению с указанной выше длиной волны, воздействуют лазерным излучением оптического или ИК-диапазона, причем интенсивность излучения I должна быть достаточно высокой, чтобы ионизация проходила вследствие туннельного эффекта, то есть удовлетворять неравенству
Figure 00000001
.
Здесь Е0 - потенциал ионизации молекулы, λ - длина волны ионизирующего излучения, a=0,529
Figure 00000002
=0,529×10-10 м - атомная единица длины (боровский радиус), Е а =27,2 эВ =4,36×10-18 Дж - атомная единица энергии, I а =3,51×1016 Вт см-2 =3,51×1020 Вт м-2 - атомная единица интенсивности, αe=7,23×10-3 - постоянная тонкой структуры.
Для молекулы йода I2 эта интенсивность должна превышать 3×1013 Вт/см2 при длине волны ионизирующего излучения 1,3 мкм или 1.4×1013 Вт/см2 при длине волны ионизирующего излучения 2,0 мкм. Интервал времени между облучением резонансным инфракрасным излучением и мощным лазерным излучением не должен превышать времени жизни колебательного состояния, зависящего от давления и температуры газа. Вследствие туннельного эффекта преимущественно ионизуются колебательно-возбужденные молекулы, то есть молекулы I2 131. Далее, путем экстракции положительных ионов, получают йод с повышенным по сравнению с исходным содержанием изотопа I131.
Из зависимости на Фиг. 1 видно, что в оптимальных условиях, при интенсивности лазерного излучения ~1013 Вт/см2, вероятность образования I2 131+ превышает вероятность образования ионов I2 127+ более чем в 2 раза.

Claims (1)

  1. Способ лазерного разделения изотопов йода, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие сильным лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используются пары йода (I2), длина волны резонансного инфракрасного излучения 47,62 мкм, диапазон сильного лазерного излучения оптический или инфракрасный, а интенсивность превышает 3×1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния I2.
RU2016139328A 2016-10-06 2016-10-06 Способ лазерного разделения изотопов йода RU2651338C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016139328A RU2651338C2 (ru) 2016-10-06 2016-10-06 Способ лазерного разделения изотопов йода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016139328A RU2651338C2 (ru) 2016-10-06 2016-10-06 Способ лазерного разделения изотопов йода

Publications (2)

Publication Number Publication Date
RU2016139328A RU2016139328A (ru) 2018-04-06
RU2651338C2 true RU2651338C2 (ru) 2018-04-19

Family

ID=61866849

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016139328A RU2651338C2 (ru) 2016-10-06 2016-10-06 Способ лазерного разделения изотопов йода

Country Status (1)

Country Link
RU (1) RU2651338C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937956A (en) * 1973-10-23 1976-02-10 Exxon Research & Engineering Company Isotope separation process
US4044252A (en) * 1975-01-02 1977-08-23 Bell Telephone Laboratories, Incorporated Separation of chemical species
WO1997012373A2 (en) * 1995-09-15 1997-04-03 British Nuclear Fuels Plc Method and apparatus for laser separation of molecular compounds
US6831271B1 (en) * 1998-08-05 2004-12-14 National Research Council Canada Method for separation and enrichment of isotopes in gaseous phase
RU2531178C2 (ru) * 2012-12-18 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Способ лазерного разделения изотопов водорода

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937956A (en) * 1973-10-23 1976-02-10 Exxon Research & Engineering Company Isotope separation process
US4044252A (en) * 1975-01-02 1977-08-23 Bell Telephone Laboratories, Incorporated Separation of chemical species
WO1997012373A2 (en) * 1995-09-15 1997-04-03 British Nuclear Fuels Plc Method and apparatus for laser separation of molecular compounds
US6831271B1 (en) * 1998-08-05 2004-12-14 National Research Council Canada Method for separation and enrichment of isotopes in gaseous phase
RU2531178C2 (ru) * 2012-12-18 2014-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Способ лазерного разделения изотопов водорода

Also Published As

Publication number Publication date
RU2016139328A (ru) 2018-04-06

Similar Documents

Publication Publication Date Title
Fuß et al. Time-resolved dissociative intense-laser field ionization for probing dynamics: Femtosecond photochemical ring opening of 1, 3-cyclohexadiene
Lu et al. Laser-based methods for ultrasensitive trace-isotope analyses
Nakashima et al. Large molecules in high-intensity laser fields
Xu et al. Ultraviolet photodissociation of bromoform at 234 and 267 nm by means of ion velocity imaging
RU2531178C2 (ru) Способ лазерного разделения изотопов водорода
Ilkov et al. Dissociative tunnel ionization of H 2 in an intense mid-ir laser field
Ozenne et al. Laser photodissociation of the isotopic hydrogen molecular ions. Comparison between experimental and ab initio computed fragment kinetic energy spectra
RU2652260C2 (ru) Способ лазерного разделения изотопов лития
RU2651338C2 (ru) Способ лазерного разделения изотопов йода
RU2530062C2 (ru) Способ лазерного разделения изотопов хлора
RU2620051C2 (ru) Способ лазерного разделения изотопов фтора
RU2724748C1 (ru) Способ лазерного разделения изотопов кислорода
Tang et al. Photodissociation Study of Ethyl Bromide in the Ultraviolet Range by the Ion‐Velocity Imaging Technique
Stuke et al. Monitoring UF6 photodissociation via laser multiphoton ionization
Tian Photoion-pair dissociation dynamics of polyatomic molecules with synchrotron radiation
RU2750381C1 (ru) Способ лазерного разделения изотопов азота
KR100927466B1 (ko) 이터븀 동위원소 분리방법
US7323651B2 (en) Method for isotope separation of thallium
JP2008282595A (ja) 質量分析方法及び質量分析装置
Agostini et al. Multiphoton ionization of rare gases at 1.06 μ and 0.53 μ
Saquet et al. Effect of electronic angular momentum exchange on photoelectron anisotropy following the two-color ionization of krypton atoms
Risaro et al. Silicon Isotope Separation by two frequency IRMPD
Okumura et al. Radiative decay of vibrationally excited CH2
Sharma et al. Multiphoton dissociation/ionization of CHCl3 and CFCl3 at 355 nm: an experimental and theoretical study
Teng et al. Dissociative ionization and Coulomb explosion of ethyl bromide under a near-infrared intense femtosecond laser field

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191007