RU2650910C2 - Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения - Google Patents

Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения Download PDF

Info

Publication number
RU2650910C2
RU2650910C2 RU2016136764A RU2016136764A RU2650910C2 RU 2650910 C2 RU2650910 C2 RU 2650910C2 RU 2016136764 A RU2016136764 A RU 2016136764A RU 2016136764 A RU2016136764 A RU 2016136764A RU 2650910 C2 RU2650910 C2 RU 2650910C2
Authority
RU
Russia
Prior art keywords
dose
electronic
ionizing radiation
backup
units
Prior art date
Application number
RU2016136764A
Other languages
English (en)
Other versions
RU2016136764A3 (ru
RU2016136764A (ru
Inventor
Юрий Иванович Борисов
Василий Александрович Беляев
Константин Владимирович Ануфрейчик
Илья Владиленович Чулков
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт космических исследований Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт космических исследований Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт космических исследований Российской академии наук
Priority to RU2016136764A priority Critical patent/RU2650910C2/ru
Publication of RU2016136764A3 publication Critical patent/RU2016136764A3/ru
Publication of RU2016136764A publication Critical patent/RU2016136764A/ru
Application granted granted Critical
Publication of RU2650910C2 publication Critical patent/RU2650910C2/ru

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1608Error detection by comparing the output signals of redundant hardware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • B64G1/54Protection against radiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1629Error detection by comparing the output of redundant processing systems
    • G06F11/165Error detection by comparing the output of redundant processing systems with continued operation after detection of the error
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1658Data re-synchronization of a redundant component, or initial sync of replacement, additional or spare unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Critical Care (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

Изобретение относится к резервированию электронной аппаратуры. Технический результат - обеспечение длительного срока активного существования электронного устройства в условиях воздействия ионизирующего излучения. Для этого предложен способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения, который заключается в том, что в электронном устройстве устанавливают идентичные основной и резервный блоки, дозовый детектор и блок сбора и обработки данных, при этом предварительно по результатам испытаний для конкретных микросхем выявляют зависимость вероятности возникновения одиночного отказа от уровня накопленной дозы, а также зависимость предельной поглощенной дозы от электрического режима работы, в процессе работы регистрируют показания дозового детектора и вычисляют интегральную дозу ионизирующего излучения и на основании информации об интегральной дозе генерируют управляющие сигналы на переключение работы с основного блока на резервный и обратно для равномерного распределения накопленной дозы на каждый из блоков. 3 з.п. ф-лы.

Description

Изобретение относится к области резервирования электронной аппаратуры, в частности к способам построения высоконадежных электронных блоков, длительно работающих в условиях воздействия ионизирующего излучения, с использованием динамического резервирования.
Под электронными блоками понимаются различные системы сбора, обработки, хранения и передачи данных с использованием цифровых, аналоговых и аналого-цифровых полупроводниковых элементов различной функциональной сложности: простейшие активные и пассивные элементы, интегральные схемы усилителей, аналого-цифровые и цифро-аналоговые преобразователи, микроконтроллеры и программируемые логические интегральные схемы (ПЛИС).
Под динамическим резервированием понимается резервирование замещением, при котором основным критерием замены основного и резервного электронных блоков служит не только возникновение катастрофического отказа, но и наличие внешних управляющих сигналов, причем количество подобных переключений ограничено только ресурсом элементов подачи питания.
Известен способ резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения, состоящий в том, что используют активный объект, находящийся в температурных условиях, считающихся нормальными для его работы, и идентичный ему выключенный резервный объект, и замещают активный объект на резервный при получении сигнала замещения, формируемого при отказе активного объекта, при этом нагревают резервный объект до заданной температуры, при которой в нем идет интенсивный отжиг радиационных дефектов его полупроводниковых приборов, но которая не приводит к необратимой неисправности этого объекта, формируют дополнительно сигнал замещения при достижении допустимого уровня деградации полупроводниковых приборов активного объекта до наступления потери им работоспособности, затем перед замещением активного объекта охлаждают резервный объект до температуры, считающейся нормальной для работы активного объекта, и замещают активный объект охлажденным резервным объектом, который используют как новый активный объект (см. патент RU №2413281, кл. Н05К 10/00, опубл. 27.02.2011).
Однако для реализации данного способа резервирования необходима чрезвычайно сложная техническая реализация - необходимость разработки отдельной системы нагрева и охлаждения, а также температурного контроля этих процессов. Для удаленных автоматических систем, например систем космического назначения, использование подобного метода может быть в связи с вышеуказанным затруднено, особенно при создании малых космических аппаратов, при этом данный способ существенно усложнит проектирование аппарата в целом из-за дополнительных проблем по распределению и отводу тепла, а также температурного контроля процесса отжига.
Наиболее близкой к изобретению по технической сущности и достигаемому результату является система управления объектами, которая использует данные детекторов внешних дестабилизирующих воздействий в качестве критерия выдачи управляющего сигнала для выполнения (см. патент RU №2494006, кл. В63Н 25/04, опубл. 27.09.2013).
Однако данный способ управления резервируемой системой не учитывает зависимость параметров стойкости электронной компонентной базы от ее электрического режима работы. Результаты исследований на радиационную стойкость указывают на зависимость предельной поглощенной дозы ряда электронных компонентов от их электрического режима работы, что приводит к неоптимальности использования холодного резервирования.
Задачей изобретения является преодоление указанных недостатков.
Технический результат заключается в том, что достигается возможность обеспечения длительного срока активного существования электронного устройства в условиях воздействия ионизирующего излучения за счет повышения стойкости электронной компонентной базы к «дозовым» отказам, т.е. отказам в связи с накоплением дозы ионизирующего излучения.
Указанная задача решается, а технический результат достигается за счет того, что способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения заключается в том, что в электронном устройстве устанавливают идентичные основной и резервные электронные блоки с возможностью их работы в режиме динамического резервирования, дозовый детектор и электронный блок сбора и обработки данных, при этом предварительно по результатам испытаний для конкретных микросхем выявляют зависимость вероятности возникновения одиночного отказа от уровня накопленной дозы, а также зависимость предельной поглощенной дозы от электрического режима работы, в процессе работы регистрируют показания дозового детектора с заданной частотой и вычисляют на основании полученных показаний интегральную накопленную электронными блоками дозу ионизирующего излучения и на основании информации об интегральной дозе генерируют управляющие сигналы для бортового компьютера на переключение работы с основного электронного блока на резервный и обратно для равномерного распределения эффективной накопленной дозы на каждый из электронных блоков.
Активное время работы основного и резервного электронных блоков определяют на основании анализа его интегральной накопленной дозы в реальном времени с учетом различия величин предельной поглощенной дозы электронной компонентной базы в разных электрических режимах работы и изменяют адаптивно к изменению внешней радиационной обстановки.
Основной и резервный электронные блоки в каждый отдельный момент времени работают в режиме N-кратного холодного резервирования с полным или частичным отключением питания электронной компонентной базы в составе блока.
При определении интегральной накопленной дозы учитывают различие величин предельной поглощенной дозы электронной компонентной базы в разных электрических режимах работы.
Резервирование является традиционным аппаратным методом повышения надежности на уровне отдельного модуля. Наиболее критичные с точки зрения функционирования в условиях воздействия факторов космического пространства электронные блоки (ЭБ), выполняющие задачи сбора, обработки и хранения научных и телеметрических данных приборов целевой аппаратуры, в частности в космических аппаратов (КА), кратно резервируются и находятся в холодном резерве, в связи с чем резервные электронные блоки и основные электронные блоки часто называют полукомплектами (ПК). Решение об отключении основного полукомплекта и вводе в эксплуатацию резервного принимается по факту отказа первого, на основании данных телеметрии.
Путем проведения испытаний электронной компонентной базы (ЭКБ) на стойкость к дозовому воздействию определяют зависимость величины предельной поглощенной дозы (ППД) определенных микросхем от их электрического режима работы. В частности, испытания вторичных источников питания (DC-DC преобразователей), применяемых во всех ЭБ, в составе которых имеются интерфейсные и микропроцессорные сверхбольшие интегральные схемы (СБИС), демонстрируют значительное уменьшение ППД при их нахождении в отключенном состоянии. С другой стороны, результат аналогичных испытаний микросхем NOR Flash памяти, отказ которых может привести к полному отказу блока при их использовании в качестве постоянного запоминающего устройства (ПЗУ) хранения программы микропроцессора или конфигурации ПЛИС, показывает обратный эффект: величина ППД в выключенном состоянии в несколько раз превышает ППД во включенном.
В условиях радиационного воздействия космического излучения одновременно с деградацией электрических и временных параметров ЭКБ происходят одиночные отказы. По результатам комплексных испытаний для конкретных микросхем выявлена зависимость вероятности возникновения одиночного отказа от уровня накопленной дозы.
Возможное действие синергетического эффекта увеличения вероятности возникновения одиночных сбоев по мере накопления дозы, а также влияние электрического режима на величину ППД для компонентов в составе ЭБ может привести к неэффективности использования холодного резервирования как метода повышения надежности. К моменту отказа основного полукомплекта резервный модуль будет иметь сравнительно меньшие показатели надежности или, в худшем случае, наберет ППД и откажет вскоре после введения в работу, если в его состав входят электронные компоненты с большим темпом деградации в выключенном состоянии.
Включение дозового детектора при мониторинге радиационной обстановки КА позволяет с наибольшей точностью в реальном времени анализировать и вычислять интегральную накопленную дозу и по результатам расчета определять длительность нахождения каждого полукомплекта ЭБ в том или ином режиме работы.
В ходе проведенного исследования был установлен алгоритм управления полукомплектами ЭБ, который в данном случае сводится к заданию опорного значения интегральной накопленной дозы - DSW за половину периода работы блока в динамическом режиме и поддержанию этой величины в течение всего срока активного существования (САС) КА - ТСАС с использованием показаний бортовой дозиметрии.
Значение DSW определяется исходя из ожидаемой усредненной мощности поглощенной дозы на орбите КА - JD, времени релаксации дозового воздействия - tr и ресурса по переключению - NMAX релейных элементов подачи питания на ЭБ с учетом коэффициента запаса - kSW в соответствии с математическим уравнением:
Figure 00000001
Базовое уравнение модели, при использовании которого устанавливается адаптивная циклограмма работы блока, обеспечивающая равномерное распределение эффективной поглощенной дозы для всех его полукомплектов, имеет вид:
Figure 00000002
Ts - длительность работы полукомплекта до переключения
Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения может быть реализован в составе служебной аппаратуры космического аппарата.
Для реализации способа адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения, совокупность признаков которого приведена выше, электронный блок сбора и обработки данных выполняет считывание показаний дозового детектора с заданной частотой и вычисляет интегральную накопленную дозу. При достижении заданной величины DSW блок сбрасывает внутренний счетчик дозы и передает центральному бортовому компьютеру аппарата сигнал на переключение полукомплекта, т.е. на переключение работы с основного электронного блока на резервный электронный блок. Перевод операции переключения полукомплектов на центральный бортовой компьютер продиктован обеспечением надежности всей системы: выход из строя монитора дозы не должен влиять на режим работы целевого блока. Затем операция снова повторяется. Таким образом, длительность работы полукомплекта Ts определяется исходя из реальной радиационной обстановки на борту космического аппарата и изменяется адаптивно к изменению мощности дозы.
При этом достигается равномерное распределение интегральной накопленной дозы для каждого полукомплекта при каждом электрическом режиме работы.
Оперативные данные об уровне накопленной дозы вместе с характеристиками электронной компонентной базы в составе целевого блока, полученными по результатам испытаний на дозовую стойкость в различных режимах работы, позволят выработать объективный критерий по управлению процессом переключения полукомплектов с целью повышения надежности блока и увеличения его срока активного существования.

Claims (4)

1. Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения, заключающийся в том, что в электронном устройстве устанавливают идентичные основной и резервные электронные блоки с возможностью их работы в режиме динамического резервирования, дозовый детектор и электронный блок сбора и обработки данных, отличающийся тем, что предварительно по результатам испытаний для конкретных микросхем выявляют зависимость вероятности возникновения одиночного отказа от уровня накопленной дозы, а также зависимость предельной поглощенной дозы от электрического режима работы, в процессе работы регистрируют показания дозового детектора с заданной частотой и вычисляют на основании полученных показаний интегральную накопленную электронными блоками дозу ионизирующего излучения и на основании информации об интегральной дозе генерируют управляющие сигналы для бортового компьютера на переключение работы с основного электронного блока на резервный и обратно для равномерного распределения эффективной накопленной дозы на каждый из электронных блоков.
2. Способ по п. 1, отличающийся тем, что активное время работы основного и резервного электронных блоков определяют на основании анализа его интегральной накопленной дозы в реальном времени и изменяют адаптивно к изменению внешней радиационной обстановки.
3. Способ по п. 1, отличающийся тем, что основной и резервный электронные блоки в каждый отдельный момент времени работают в режиме N-кратного холодного резервирования с полным или частичным отключением питания электронной компонентной базы в составе блока.
4. Способ по п. 1, отличающийся тем, что при определении интегральной накопленной дозы учитывают различие величин предельной поглощенной дозы электронной компонентной базы в разных электрических режимах работы.
RU2016136764A 2016-09-13 2016-09-13 Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения RU2650910C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016136764A RU2650910C2 (ru) 2016-09-13 2016-09-13 Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016136764A RU2650910C2 (ru) 2016-09-13 2016-09-13 Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения

Publications (3)

Publication Number Publication Date
RU2016136764A3 RU2016136764A3 (ru) 2018-03-16
RU2016136764A RU2016136764A (ru) 2018-03-16
RU2650910C2 true RU2650910C2 (ru) 2018-04-18

Family

ID=61627310

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016136764A RU2650910C2 (ru) 2016-09-13 2016-09-13 Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения

Country Status (1)

Country Link
RU (1) RU2650910C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168735C2 (ru) * 1999-04-05 2001-06-10 РНИИ "Электронстандарт" Способ отбора изделий электронной техники по стойкости или надежности
RU2413281C1 (ru) * 2010-02-12 2011-02-27 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения
RU2449352C1 (ru) * 2011-07-08 2012-04-27 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Способ формирования 4-канальной отказоустойчивой системы бортового комплекса управления повышенной живучести и эффективного энергопотребления и его реализация для космических применений
RU2494006C2 (ru) * 2011-12-07 2013-09-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" Система автоматического управления
US20150318915A1 (en) * 2014-04-30 2015-11-05 Tesat-Spacecom Gmbh & Co. Kg Redundancy Scheme for Analog Circuits and Functions for Transient Suppression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2168735C2 (ru) * 1999-04-05 2001-06-10 РНИИ "Электронстандарт" Способ отбора изделий электронной техники по стойкости или надежности
RU2413281C1 (ru) * 2010-02-12 2011-02-27 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ резервирования полупроводниковых объектов, работающих под действием ионизирующего излучения
RU2449352C1 (ru) * 2011-07-08 2012-04-27 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Способ формирования 4-канальной отказоустойчивой системы бортового комплекса управления повышенной живучести и эффективного энергопотребления и его реализация для космических применений
RU2494006C2 (ru) * 2011-12-07 2013-09-27 Федеральное государственное унитарное предприятие "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" Система автоматического управления
US20150318915A1 (en) * 2014-04-30 2015-11-05 Tesat-Spacecom Gmbh & Co. Kg Redundancy Scheme for Analog Circuits and Functions for Transient Suppression

Also Published As

Publication number Publication date
RU2016136764A3 (ru) 2018-03-16
RU2016136764A (ru) 2018-03-16

Similar Documents

Publication Publication Date Title
US11429092B2 (en) Asset management method for power equipment
US9007087B2 (en) System and method for automated failure detection of hold-up power storage devices
US10205335B2 (en) Storage battery management device, method, and computer program product
US10410502B2 (en) Method and apparatus for providing environmental management using smart alarms
US20200134516A1 (en) Method for asset management of electric power equipment
US9774205B2 (en) System and method for monitoring a battery in an uninterruptible power supply
US20170040646A1 (en) Systems and methods for detecting a battery pack having an operating issue or defect
US20170074946A1 (en) Energy based battery backup unit testing
US9779559B2 (en) Circuit for monitoring abnormality of ECU
US20160306903A9 (en) Metrics and Semiparametric Model Estimating Failure Rate and Mean time Between Failures
US20180074874A1 (en) System and method for managing semiconductor manufacturing defects
US20180003745A1 (en) Method for diagnosing state of capacitor in modular converter
US10831251B1 (en) Augmented power monitoring switching assembly
RU2650910C2 (ru) Способ адаптивного резервирования электронных блоков приборов бортовой аппаратуры космического аппарата в условиях воздействия ионизирующего излучения
JP6054800B2 (ja) 電源管理システム及び電源切替制御装置
EP3355312B1 (en) Plant maintenance assisting system
EP3611523B1 (en) Apparatuses and methods involving adjustable circuit-stress test conditions for stressing regional circuits
US20160283121A1 (en) Numerical controller including maintenance function of data or the like stored in non-volatile memory
KR101581309B1 (ko) 보드단위별 연동고장검출 및 배제 방식 항공전자장비
EP3502720B1 (en) An apparatus for prediction of failure of a functional circuit
US20200097922A1 (en) Asset management method for substation
US10374426B2 (en) Enhanced power signaling system
CN112835087B (zh) 抗辐射系统及方法
Behzadirafi et al. Preventive maintenance scheduling based on short circuit and overload currents
Saro et al. The impact of a single module's MTBF value in modular UPS systems: Technique for its assessment, improvement and final validation