RU2650740C1 - Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре - Google Patents

Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре Download PDF

Info

Publication number
RU2650740C1
RU2650740C1 RU2017107931A RU2017107931A RU2650740C1 RU 2650740 C1 RU2650740 C1 RU 2650740C1 RU 2017107931 A RU2017107931 A RU 2017107931A RU 2017107931 A RU2017107931 A RU 2017107931A RU 2650740 C1 RU2650740 C1 RU 2650740C1
Authority
RU
Russia
Prior art keywords
mirror
interferometer
working
sample
plates
Prior art date
Application number
RU2017107931A
Other languages
English (en)
Inventor
Игорь Аркадьевич Ефимович
Иван Сергеевич Золотухин
Евгений Сергеевич Завьялов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority to RU2017107931A priority Critical patent/RU2650740C1/ru
Application granted granted Critical
Publication of RU2650740C1 publication Critical patent/RU2650740C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание с неподвижной плитой и подвижную плиту. На основании установлены лазер, светоделитель и зеркало. Луч, отразившийся от зеркала, образует эталонное плечо двуплечего интерферометра продольных деформаций. Луч, отразившийся от светоделителя, направляется поворотным зеркалом в четырехходовой интерферометр поперечных деформаций, включающий поляризованный светоделитель, четвертьволновую и поляризационную пластины, два ретроотражателя и шесть обводных зеркал, направляющих луч рабочего плеча на две противоположные зеркально-полированные боковые поверхности исследуемого образца прямоугольного сечения. Луч рабочего плеча интерферометра продольных деформаций направляется через зеркальную наклонную под углом 45 градусов поверхность неподвижной плиты на зеркальную поверхность подвижной плиты. С наружных сторон плит установлены электроды, подключенные к источнику постоянного тока. Между одной из плит и соответствующим электродом помещен слой полупроводника. Образец устанавливают между плитами, задают предварительную нагрузку, пропускают электрический ток между электродами. После нагрева образца его деформируют, непрерывно регистрируют силу нагружения и температуру образца с помощью термопары. Счет переместившихся интерференционных линий производится с помощью последовательно расположенных после интерферометров по ходу отраженных лучей рабочих плеч соответственно двух коллиматоров, двух диафрагм, двух фотоприемников и электронной схемы обработки. Технический результат - повышение точности измерений упругих постоянных малопластичных металлов и сплавов при высоких температурах. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок.
Известно устройство для измерения деформаций (А.С. СССР №958851, МПК3 G01B 11/16, опубл. 15.09.82, Бюл. №34), содержащее основание, установленные на основании лазер, расположенный по ходу его излучения светоделитель, зеркало, образующее эталонное плечо интерферометра, два измерительных штока, подпружиненных в осевом направлении, три зеркала, расположенных в рабочем плече интерферометра, последовательно расположенные коллиматор, диафрагму, фотоприемник и электронную схему обработки, а также два зеркала, установленные на торцах измерительных штоков.
Недостатком известного устройства является низкая точность вследствие использования контактного метода измерения.
Наиболее близким техническим решением, взятым за прототип, является устройство для определения упругих постоянных малопластичных металлов и сплавов (пат. РФ №1744445, МПК5 G01B 11/00, опубл. 30.06.92, Бюл. №24), которое содержит основание с неподвижной плитой и подвижную в продольном направлении плиту. Между плитами расположен исследуемый образец прямоугольного сечения с одной зеркально-полированной боковой поверхностью. На основании установлен лазер, расположенные по ходу его излучения светоделитель и зеркало, отраженные лучи от которых образуют эталонные плечи двуплечих интерферометров соответственно поперечных и продольных деформаций. После интерферометров по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора, две диафрагмы, два фотоприемника и электронная схема обработки. При этом рабочее плечо интерферометра продольных деформаций образует зеркало, установленное на подвижной плите, а рабочее плечо интерферометра поперечных деформаций образует зеркально-полированная боковая поверхность исследуемого образца. Устройство может быть также снабжено тремя зеркалами, расположенными по ходу излучения в рабочем плече интерферометра поперечных деформаций. В этом случае луч рабочего плеча направляется под углом относительно нормали к передней зеркальной поверхности исследуемого образца.
Недостатками известного устройства являются недостаточная точность измерений из-за погрешностей, возникающих от просадки неподвижной плиты под воздействием силы нагружения, погрешности, связанной с направлением луча рабочего плеча под углом относительно нормали к передней зеркальной поверхности исследуемого образца, а также невозможность проведения измерений на нагретом образце из-за быстрой потери тепла, связанной с его стоком в плиты пресса и длительностью установки и настройки.
Задачей изобретения является повышение точности измерений упругих постоянных малопластичных металлов и сплавов при высоких температурах.
Поставленная задача решается за счет технических результатов, заключающихся в использовании дифференциальной схемы измерения длины образца, использовании четырехходовой оптической системы интерферометра поперечных деформаций и реализации нагрева образца в его рабочем положении непосредственно до и во время проведения испытания. Это достигается тем, что устройство содержит основание с неподвижной плитой и подвижную плиту. Между плитами расположен исследуемый образец прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями. На основании установлены лазер, расположенные по ходу его излучения светоделитель и зеркало. Луч, прошедший через светоделитель и отразившийся от зеркала, образует эталонное плечо двуплечего интерферометра продольных деформаций. Луч, отразившийся от светоделителя, направляется поворотным зеркалом в интерферометр поперечных деформаций. После интерферометров, по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора, две диафрагмы, два фотоприемника и электронная схема обработки. С наружных сторон плит установлены электроды, подключенные к источнику постоянного тока, между одной из плит и соответствующим электродом помещен слой полупроводника. Установлена термопара, контактирующая с исследуемым образцом и связанная электрически с электронной схемой обработки. В оптической системе измерения поперечной деформации образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, четвертьволновую и поляризационную пластины, два ретроотражателя и шесть обводных зеркал для рабочего луча. Причем в рабочем плече интерферометра поперечных деформаций расположены две противоположные зеркально-полированные боковые поверхности исследуемого образца, а в рабочем плече интерферометра продольных деформаций расположены последовательно зеркально-полированная наклонная под углом 45 градусов поверхность неподвижной плиты и зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите. Для получения более стабильного прогрева образца между второй плитой и вторым электродом также может быть помещен слой полупроводника.
На фиг. 1 изображена оптико-механическая схема устройства; на фиг. 2 - оптическая схема измерения поперечной деформации исследуемого образца с использованием четырехходового интерферометра; на фиг. 3 - схема компенсации погрешностей, возникающих из-за просадки неподвижной плиты, за счет сохранения величины хода рабочего луча при использовании зеркально-полированной поверхности подвижной плиты, расположенной под углом 45 градусов.
Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре содержит основание 1 с неподвижной плитой 2 и подвижную плиту 3. Между плитами 2 и 3 расположен исследуемый образец 4 прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями 5 и 6. На основании 1 установлены лазер 7, расположенные по ходу его излучения светоделитель 8 и зеркало 9. Луч, прошедший через светоделитель 8 и отразившийся от зеркала 9, образует эталонное плечо двуплечего интерферометра 10 продольных деформаций. Луч, отразившийся от светоделителя 8, направляется поворотным зеркалом 11 в интерферометр 12 поперечных деформаций. После интерферометров 10 и 12 по ходу отраженных лучей рабочих плеч последовательно расположены два коллиматора 13 и 14, две диафрагмы 15 и 16, два фотоприемника 17 и 18 и электронная схема обработки 19. С наружных сторон плит 2 и 3 установлены электроды 20 и 21, подключенные к источнику постоянного тока 22. Между одной из плит 2 и соответствующим электродом 21 помещен слой полупроводника 23. Установлена термопара 24, контактирующая с исследуемым образцом 4 и связанная электрически с электронной схемой обработки 19. Четырехходовой интерферометр 12 поперечных деформаций включает поляризованный светоделитель 25, делящий луч лазера 7 на рабочий и эталонный лучи, четвертьволновую пластину 26 и поляризационную пластину 27, два ретроотражателя 28 и 29 и шесть обводных зеркал 30 и 31 для рабочего луча. Причем в рабочем плече интерферометра 12 поперечных деформаций расположены две противоположные зеркально-полированные боковые поверхности 5 и 6 исследуемого образца 4, а в рабочем плече интерферометра 10 продольных деформаций расположены последовательно зеркально-полированная наклонная под углом 45 градусов поверхность 32 неподвижной плиты 2 и зеркально-полированная поверхность 33 подвижной плиты 3, обращенная к неподвижной плите 2. Для получения более стабильного прогрева образца 4 между второй плитой 3 и вторым электродом 20 также может быть помещен слой полупроводника.
Устройство работает следующим образом.
Излучение лазера 7 делится светоделителем 8 на два пучка, один из которых, прошедший через светоделитель 8 и отразившийся от зеркала 9, образует эталонное плечо двуплечего интерферометра 10 продольных деформаций, а другой, отразившийся от светоделителя 8, направляется поворотным зеркалом 11 в интерферометр 12 поперечных деформаций. Луч, отразившийся от светоделителя интерферометра 10 продольных деформаций, направляется через зеркально-полированную наклонную под углом 45 градусов поверхность 32 неподвижной плиты 2 на зеркально-полированную боковую поверхность 33 подвижной плиты 3, образуя рабочее плечо интерферометра 10 продольных деформаций. Поперечная деформация образца 4 регистрируется с помощью четырехходового интерферометра 12. Поляризованный под углом 45 градусов луч лазера 7 делится поляризованным светоделителем 25 интерферометра 12 на рабочий и эталонный лучи. Рабочий луч, образуемый путем прохождения через наклонную поверхность поляризованного светоделителя 25, получает горизонтальную поляризацию, а отразившийся от наклонной поверхности эталонный луч - вертикальную поляризацию. Установленная по ходу рабочего луча четвертьволновая пластина 26 меняет поляризацию рабочего луча на круговую с направлением по часовой стрелке. С помощью трех обводных зеркал 30 рабочий луч направляется на зеркально-полированную боковую поверхность 5 исследуемого образца 4. После отражения от зеркально-полированной боковой поверхности 5 рабочий луч обретает противоположное направление круговой поляризации и возвращается тем же путем на четвертьволновую пластину 26, пройдя которую приобретает вертикальную поляризацию. Далее рабочий луч отражается от наклонной поверхности поляризованного светоделителя 25 без изменения плоскости поляризации и направляется в ретроотражатель 29. После прохождения ретроотражателя 29 и отразившись от наклонной поверхности поляризованного светоделителя 25 рабочий луч снова проходит через четвертьволновую пластину 26 со сменой вертикальной поляризации на круговую с направлением против часовой стрелки. С помощью трех обводных зеркал 31 рабочий луч направляется на противоположную зеркально-полированную боковую поверхность 6 исследуемого образца 4, отразившись от которой, меняет направление круговой поляризации на противоположное и возвращается тем же путем на четвертьволновую пластину 26. Пройдя сквозь последнюю, рабочий луч приобретает горизонтальную поляризацию, проходит через наклонную поверхность поляризованного светоделителя 25 и совмещается с эталонным лучом, который направляется туда же ретроотражателем 28. Далее совмещенные эталонный и рабочий лучи проходят через поляризационную пластину 27, на которой плоскости поляризации лучей совмещаются, в результате чего происходит их интерференция. Счет переместившихся интерференционных линий производится с помощью последовательно расположенных после интерферометров 12 и 10 по ходу отраженных лучей рабочих плеч соответственно двух коллиматоров 13 и 14, двух диафрагм 15 и 16, двух фотоприемников 17 и 18 и электронной схемы обработки 19.
Перед испытанием исследуемый образец 4 прямоугольного сечения устанавливают между плитами 2 и 3, соблюдая перпендикулярность его зеркально-полированных боковых поверхностей 5 и 6 направлению лучей рабочего плеча интерферометра 12 поперечных деформаций. Далее задают предварительную нагрузку на образец 4. Пропускают постоянный электрический ток между электродами 20 и 21 через образец 4, плиты 2 и 3 и слой полупроводника 23. При прохождении электрического тока через слой полупроводника 23 выделяется тепло, благодаря которому происходит нагрев плиты 2 и соответственно образца 4. В процессе испытания после нагрева исследуемого образца 4 его деформируют, непрерывно регистрируют температуру образца 4 с помощью термопары 24 и силу нагружения P и ведут счет чисел n и m интерференционных линий с помощью фотоприемников 17 и 18, а результаты измерений записывают и обрабатывают с помощью электронной схемы обработки 19, в качестве которой может быть использована ПЭВМ. По изменению интерференционных картин определяют деформации материала, а модуль упругости E и коэффициент Пуассона μ определяют по формулам:
Figure 00000001
где Р - сила нагружения;
n и m - числа считанных интерференционных линий соответственно в интерферометрах продольной и поперечной деформаций;
а - толщина образца между его зеркально-полированными боковыми поверхностями;
l и b - длина и ширина образца соответственно;
λ - длина волны источника когерентного монохроматического излучения.
Для получения более стабильного прогрева образца 4 между второй плитой 3 и вторым электродом 20 также помещают слой полупроводника.
Направление луча рабочего плеча двуплечего интерферометра 10 продольных деформаций на зеркально-полированную поверхность 33 подвижной плиты 3 через предварительно-изготовленную на неподвижной плите 2 под углом 45 градусов зеркально-полированную поверхность 32 позволяет реализовать дифференциальную схему измерения длины образца 4 и, таким образом, автоматически компенсировать погрешности Δl, возникающие из-за просадки неподвижной плиты 2, за счет увеличения хода луча рабочего плеча. Кроме того, использование четырехходового интерферометра для измерения поперечной деформации позволяет устранить погрешность, которая возникает в случае направления луча рабочего плеча под углом относительно нормали к передней зеркальной поверхности исследуемого образца.
Таким образом, описанное устройство, благодаря использованию дифференциальной схемы измерения длины образца, использованию четырехходового интерферометра для измерения поперечной деформации и реализации нагрева образца в его рабочем положении непосредственно перед проведением испытания, позволяет реализовать определение упругих постоянных материала малопластичных металлов и сплавов при высоких температурах с высокой точностью.

Claims (2)

1. Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре, содержащее основание с неподвижной плитой и подвижную плиту, расположенный между плитами исследуемый образец прямоугольного сечения с двумя противоположными зеркально-полированными боковыми поверхностями, установленные на основании лазер, расположенные по ходу его излучения светоделитель и зеркало, отраженный луч от которого образует эталонное плечо двуплечего интерферометра продольных деформаций, интерферометр поперечных деформаций и расположенные после интерферометров по ходу отраженных лучей рабочих плеч последовательно два коллиматора, две диафрагмы, два фотоприемника и электронную схему обработки, причем для направления луча лазера на зеркально-полированные боковые поверхности исследуемого образца в рабочем плече интерферометра поперечных деформаций расположены обводные зеркала, отличающееся тем, что с наружных сторон плит установлены электроды, подключенные к источнику постоянного тока, между одной из плит и соответствующим электродом помещен слой полупроводника, установлена термопара, контактирующая с исследуемым образцом и связанная электрически с электронной схемой обработки, в оптической системе для измерения поперечной деформации исследуемого образца использован четырехходовой интерферометр, включающий поляризованный светоделитель, делящий луч лазера на рабочий и эталонный лучи, два ретроотражателя, по три обводных зеркала для направления рабочего луча на каждую из зеркально-полированных боковых поверхностей исследуемого образца, четвертьволновую и поляризационную пластины, а в рабочем плече интерферометра продольных деформаций расположены последовательно зеркально-полированная наклонная под углом 45 градусов поверхность неподвижной плиты и зеркально-полированная поверхность подвижной плиты, обращенная к неподвижной плите.
2. Устройство по п. 1, отличающееся тем, что между второй плитой и вторым электродом также помещен слой полупроводника.
RU2017107931A 2017-03-10 2017-03-10 Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре RU2650740C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017107931A RU2650740C1 (ru) 2017-03-10 2017-03-10 Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017107931A RU2650740C1 (ru) 2017-03-10 2017-03-10 Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Publications (1)

Publication Number Publication Date
RU2650740C1 true RU2650740C1 (ru) 2018-04-17

Family

ID=61976873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017107931A RU2650740C1 (ru) 2017-03-10 2017-03-10 Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре

Country Status (1)

Country Link
RU (1) RU2650740C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124701C1 (ru) * 1991-05-30 1999-01-10 Тэйлор Хобсон Лимитед Устройство для измерения поверхностных характеристик
US20120133928A1 (en) * 2009-06-18 2012-05-31 Yuta Urano Defect inspection device and inspection method
US20140033799A1 (en) * 2011-06-30 2014-02-06 John W. Newman Method and apparatus for the remote nondestructive evaluation of an object
RU168564U1 (ru) * 2016-08-01 2017-02-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Голографический интерферометр

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124701C1 (ru) * 1991-05-30 1999-01-10 Тэйлор Хобсон Лимитед Устройство для измерения поверхностных характеристик
US20120133928A1 (en) * 2009-06-18 2012-05-31 Yuta Urano Defect inspection device and inspection method
US20140033799A1 (en) * 2011-06-30 2014-02-06 John W. Newman Method and apparatus for the remote nondestructive evaluation of an object
RU168564U1 (ru) * 2016-08-01 2017-02-08 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Голографический интерферометр

Similar Documents

Publication Publication Date Title
CN106840001B (zh) 光学透镜中心厚度的非接触式测量装置和测量方法
CN104215176B (zh) 高精度光学间隔测量装置和测量方法
CN108431545A (zh) 用于测量存在薄层时的高度的装置和方法
Viotti et al. Accuracy and sensitivity of a hole drilling and digital speckle pattern interferometry combined technique to measure residual stresses
Park et al. Simultaneous measurements of refractive index and thickness by spectral-domain low coherence interferometry having dual sample probes
Gu et al. Improved depth characterization of internal defect using the fusion of shearography and speckle interferometry
RU2650740C1 (ru) Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре
RU2650742C1 (ru) Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре
RU2655949C1 (ru) Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре
Abdelaty et al. PTB’S prototype of a double ended interferometer for measuring the length of gauge blocks
RU2650741C1 (ru) Устройство для определения упругих постоянных малопластичных металлов и сплавов при повышенной температуре
US20160054116A1 (en) Scanning interferometry technique for through-thickness evaluation in multi-layered transparent structures
RU2650746C1 (ru) Способ исследования деформации материала
WO2020156296A1 (en) Measuring method and device for measuring thickness of substrate
Shyu et al. A signal interpolation method for Fabry–Perot interferometer utilized in mechanical vibration measurement
Badami et al. Uncertainty evaluation of a fiber-based interferometer for the measurement of absolute dimensions
RU2620787C1 (ru) Дилатометр
JP4613310B2 (ja) 表面形状測定装置
Fan et al. Dual-light-path optical strain gauge using diffraction grating and position-sensitive detectors for deformation measurement
JP4051443B2 (ja) 光学材料の群屈折率精密計測方法及び装置
RU2642489C2 (ru) Дилатометр
RU2372591C1 (ru) Способ определения показателя преломления поверхностной электромагнитной волны инфракрасной области спектра
US7502121B1 (en) Temperature insensitive low coherence based optical metrology for nondestructive characterization of physical characteristics of materials
Stavyshenko et al. The study of the elastic constants of tool hard alloys by laser interferometry
Dai et al. A six-spot grating diffraction strain gauge and its application to measuring high-temperature mechanical behavior

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200311