RU2650564C1 - Способ получения воды из воздуха - Google Patents

Способ получения воды из воздуха Download PDF

Info

Publication number
RU2650564C1
RU2650564C1 RU2017100871A RU2017100871A RU2650564C1 RU 2650564 C1 RU2650564 C1 RU 2650564C1 RU 2017100871 A RU2017100871 A RU 2017100871A RU 2017100871 A RU2017100871 A RU 2017100871A RU 2650564 C1 RU2650564 C1 RU 2650564C1
Authority
RU
Russia
Prior art keywords
air
caissons
condensers
water
sea
Prior art date
Application number
RU2017100871A
Other languages
English (en)
Inventor
Виктор Владимирович Миронов
Дмитрий Викторович Миронов
Евгений Александрович Жернаков
Юрий Андреевич Иванюшкин
Ирина Викторовна Якимова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority to RU2017100871A priority Critical patent/RU2650564C1/ru
Application granted granted Critical
Publication of RU2650564C1 publication Critical patent/RU2650564C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего, морского, атмосферного воздуха. Способ получения воды из воздуха включает установку генераторов энергии сжатого воздуха, охлаждение потока сжатого воздуха после генераторов в конденсаторах с осаждением и отбором влаги. Для реализации способа в широком диапазоне изменения уровня моря генераторы приводят в действие кессонами. Осушенный в конденсаторах воздух подают внутрь кессонов и обеспечивают постоянную положительную плавучесть кессонов созданием фиксированного давления осушенного воздуха внутри них путем сброса части отработанного воздуха в атмосферу. Кессоны снабжают успокоительными решетками для предотвращения колебаний уровня воды внутри них, обусловленных волнением поверхности моря. Осажденную пресную воду из конденсаторов подают в накопительные емкости через клапаны, отсекающие попадание воздуха в накопительные емкости по мере опорожнения отстойников конденсаторов. Способ обеспечивает получение пресной воды питьевого качества с использованием возобновляемого источника энергии, позволяющего с низкой себестоимостью получать пресную воду из атмосферного, влажного, морского воздуха. 1 ил.

Description

Изобретение относится к способам автономного получения пресной воды питьевого качества из окружающего влажного, морского, атмосферного воздуха.
Известен способ извлечения воды из атмосферного воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и получаемую при этом пресную воду-конденсат подают в емкость для сбора воды (RU 2081256, кл. Е03В 3/28, 1997). Недостатком способа является необходимость использования внешней подводимой энергии для формирования потока атмосферного воздуха, направляемого в конденсатор для осаждения влаги.
Наиболее близким техническим решением к заявленному способу по совокупности признаков является способ получения воды из воздуха, заключающийся в том, что формируют поток воздуха, содержащего водяные пары, охлаждают его до температуры ниже точки росы, конденсируют водяные пары в воду, а обезвоженный воздух выбрасывают в атмосферу (патент США N 5203989, Е03В 3/28, 1987). При прокачке потока атмосферного воздуха, содержащего пары воды, происходит их конденсация на охлаждающем элементе холодильной машины и одновременное охлаждение потока воздуха, который выбрасывается в атмосферу. Для прокачки потока атмосферного воздуха необходим генератор энергии сжатого воздуха, требующий затрат внешней энергии. Известный способ, предполагающий также использование внешней подводимой энергии для работы холодильной машины, характеризуются низкой экономичностью использования холодопроизводительности машины, так как только незначительная часть потребляемой ею энергии используется для конденсации паров воды. При этом большая часть холодопроизводительности расходуется на охлаждение обезвоженного воздуха, выбрасываемого в атмосферу.
Технической задачей, стоящей перед изобретением, является создание несложного способа получения пресной воды питьевого качества из атмосферного, влажного, морского воздуха с использованием возобновляемого источника энергии, позволяющего с низкой себестоимостью получать пресную воду из атмосферного, влажного, морского воздуха. В качестве возобновляемого источника энергии для сжатия воздуха используется энергия морских волн. Для охлаждения конденсатора влаги используется морская вода, температура которой ниже температуры атмосферного воздуха на поверхности моря. Технической задачей, стоящей перед изобретением, является также создание способа получения пресной воды из атмосферного воздуха, реализуемого в широком диапазоне изменения высоты морской волны, а также в широком диапазоне колебания уровня моря, обусловленного приливо-отливными явлениями. Рабочий диапазон высоты морской волны зависит от выбранного значения максимальной длины хода поршней в компрессорах. Рабочий диапазон колебания уровня моря, обусловленного приливо-отливными явлениями, зависит от выбранной высоты ресивера-кессона. Чем больше высота ресивера-кессона, тем шире диапазон колебания уровня моря, обусловленного приливо-отливными явлениями, при стабильной плавучести ресивера-кессона.
Согласно изобретению техническая задача решается следующим образом. Способ получения воды из воздуха включает установку генераторов энергии сжатого воздуха, охлаждение потока сжатого воздуха после генераторов в конденсаторах с осаждением в них влаги и отбором пресной воды из накопительной емкости. Забор атмосферного, влажного воздуха производят в непосредственной близости от поверхности моря, где влажность его максимальна, а температура воздуха выше температуры воды в море. Выполняют генераторы сжатого воздуха в виде компрессоров объемного действия, помещают компрессоры под уровень моря на глубину 10-50 метров. От глубины погружения компрессоров зависит степень сжатия атмосферного воздуха и, соответственно, количество выделяемой из воздуха влаги. Чем больше степень сжатия влажного атмосферного воздуха, тем большее количество пресной воды можно получить при прочих равных условиях. Закрепляют неподвижную часть компрессоров при помощи анкеров с поверхностью дна моря, подвижную часть компрессоров соединяют с ресиверами воздуха в виде кессонов, которые имеют положительную плавучесть. Ресиверы представляют собой цилиндрические емкости без дна (кессоны) с успокоительными решетками для предотвращения колебания уровней воды внутри кессонов в процессе их возвратно-поступательного движения, обусловленного волнением поверхности моря. В кессонах поддерживается постоянное давление воздуха, а значит, и его объем, путем сброса части воздуха в атмосферу через клапан, отрегулированный на заданное давление. Тем самым поддерживается заданная выталкивающая сила воды, то есть постоянная плавучесть ресиверов-кессонов, при колебаниях уровня моря в результате приливо-отливных явлений. Нагнетательные линии компрессоров соединяют с конденсаторами воздушной влаги. Конденсаторы располагают под уровнем моря и охлаждают морской водой. Конденсаторы представляют собой вертикальные трубопроводы с отстойниками пресной воды. Генераторы энергии сжатого воздуха приводят в действие выталкивающей силой воды, действующей на воздушные ресиверы (кессоны). Уровень поверхности моря практически постоянно колеблется из-за наличия волн разной высоты и создает возвратно-поступательное движение ресиверов с положительной плавучестью, соединенных с подвижными частями компрессоров. При движении ресиверов-кессонов вверх происходит всасывание атмосферного воздуха в компрессоры. При движении ресиверов-кессонов вниз происходит нагнетание влажного воздуха в конденсаторы за счет сил гидростатического давления воды на глубине установки компрессоров. Осажденную влагу из отстойников-конденсаторов подают по трубопроводу в накопительные емкости. Накопительные емкости для пресной воды с нейтральной плавучестью, например, из мягкого эластичного материала в виде тора размещают под уровнем моря. Осушенный воздух из отстойников-конденсаторов через клапаны, настроенные на заданное давление, подают в воздушные ресиверы-кессоны, с последующим сбросом его в атмосферу через клапаны ресиверов-кессонов, также настроенные на заданное давление другой величины, поддерживая при этом различные, но постоянные во времени избыточные давления воздуха, как в отстойниках-конденсаторах, так в ресиверах-кессонах. Осаждение влаги из воздуха в отстойниках-конденсаторах происходит за счет повышения температуры точки росы при избыточном давлении воздуха в отстойниках-конденсаторах. Чем выше избыточное давление воздуха в отстойниках-конденсаторах, тем большая часть влаги выделяется из морского влажного воздуха, другими словами, чем глубже размещен компрессор под поверхностью моря, тем больше влаги из воздуха осаждается в отстойнике-конденсаторе. Кроме того, отстойники-конденсаторы влаги находится под уровнем моря, где температура ниже температуры атмосферного воздуха, что также способствует осаждению влаги из атмосферного морского воздуха на внутренней поверхности отстойников-конденсаторов.
Способ получения воды из воздуха (см. фигура 1) реализуется следующим образом. Генераторы энергии сжатого воздуха выполняют в виде компрессоров объемного действия (1). Фиксируют неподвижную часть компрессоров с поверхностью дна моря (2). Подвижные части компрессоров (1) при помощи тросов (3) соединяют с ресиверами-кессонами (4), имеющими положительную плавучесть. Ресиверы-кессоны (4) снабжают решетками успокоения уровня воды (5). Нагнетательные линии (6) компрессоров (1) соединяют с отстойниками влаги (7). Отстойники влаги (7) соединяют с вертикальными трубопроводами (8), которые вместе являются конденсаторами влаги. Забор влажного морского воздуха осуществляют в непосредственной близости от поверхности моря, используя в заборных устройствах (9) полупроницаемые мембраны, для предотвращения попадания морской капельной воды во всасывающие линии (10) компрессоров (1). Осажденную в отстойниках (7) влагу отводят по трубопроводам (11), в накопительные емкости (12), через клапаны (13), отсекающие попадание воздуха в накопительные емкости по мере опорожнения отстойников (7), используя избыточное давление сжатого воздуха в отстойниках (7). Осушенный воздух из вертикальных трубопроводов (8) через регулируемые клапаны (14) подают сначала в воздушные ресиверы-кессоны (4) с последующим сбросом через клапаны (15) в атмосферу, поддерживая при этом различные, но постоянные во времени давления в отстойниках-конденсаторах (7; 8) и ресиверах-кессонах (4). Клапаны (15) настроены на избыточное давление, близкое к гидростатическому давлению морской воды, на глубине установки компрессоров (1). Клапаны (15) настроены на избыточное давление в ресиверах-кессонах (4), обеспечивающее их заданную плавучесть. Компрессоры (1) снабжены всасывающими (16) и нагнетательными (17) клапанами. При возвратно-поступательном движении ресиверов-кессонов (4), за счет энергии морских волн, происходит работа компрессоров (1). Всасывание влажного, морского воздуха осуществляется за счет энергии морской волны при подъеме ресиверов (4) вверх, обусловленном выталкивающей силой морской воды, а сжатие атмосферного воздуха в компрессорах (1) и нагнетание его в конденсаторы (7; 8) происходит за счет силы гидростатического давления морской воды на глубине установки компрессоров (1). Для предотвращения преждевременного осаждения влаги из воздуха до отстойников-конденсаторов (7; 8), вследствие понижения температуры во всасывающих (10) и нагнетательных (6) трубопроводах по мере продвижения воздуха, последние покрывают теплоизоляцией. В случае необходимости также покрывают наружной теплоизоляцией камеры сжатия воздуха.
Заявленное техническое решение позволяет преобразовывать практически даровую гидравлическую энергию морских волн в энергию сжатого воздуха, необходимую для выделения влаги, в избытке содержащейся во влажном, атмосферном, морском воздухе, и снизить, таким образом, затраты на производство пресной воды питьевого качества. Техническое решение может работать в широком диапазоне изменения высоты морской волны, ограниченном только длиной хода поршней в цилиндрах компрессоров. Чем больше высота волны, тем выше производительность по сжатому воздуху и, соответственно, по пресной воде. Чем глубже находится компрессоры под уровнем моря, тем выше степень сжатия воздуха в компрессорах и больше влаги выделяется в конденсаторах из сжатого воздуха. Благодаря выполнению воздушных ресиверов в виде кессонов способ может быть реализован на морях со значительными колебаниями поверхности уровня моря, вызванными приливо-отливными явлениями.

Claims (1)

  1. Способ получения воды из воздуха, включающий установку генераторов энергии сжатого воздуха, охлаждение потока сжатого воздуха после генераторов в конденсаторах с осаждением и отбором влаги, отличающийся тем, что для реализации способа в широком диапазоне изменения уровня моря генераторы приводят в действие кессонами, подают осушенный в конденсаторах воздух внутрь кессонов, обеспечивают постоянную положительную плавучесть кессонов созданием фиксированного давления осушенного воздуха внутри них путем сброса части отработанного воздуха в атмосферу, кессоны снабжают успокоительными решетками для предотвращения колебаний уровня воды внутри них, обусловленных волнением поверхности моря, осажденную пресную воду из конденсаторов подают в накопительные емкости через клапаны, отсекающие попадание воздуха в накопительные емкости по мере опорожнения отстойников конденсаторов.
RU2017100871A 2017-01-10 2017-01-10 Способ получения воды из воздуха RU2650564C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017100871A RU2650564C1 (ru) 2017-01-10 2017-01-10 Способ получения воды из воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017100871A RU2650564C1 (ru) 2017-01-10 2017-01-10 Способ получения воды из воздуха

Publications (1)

Publication Number Publication Date
RU2650564C1 true RU2650564C1 (ru) 2018-04-16

Family

ID=61977041

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017100871A RU2650564C1 (ru) 2017-01-10 2017-01-10 Способ получения воды из воздуха

Country Status (1)

Country Link
RU (1) RU2650564C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655125A (zh) * 2019-09-24 2020-01-07 烟台金正环保科技有限公司 空气能源海水淡化装置及工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357898A (en) * 1964-12-03 1967-12-12 Milan M Novakovich Floatable solar still for producing potable water from impure water
RU2143033C1 (ru) * 1998-08-21 1999-12-20 Цивинский Станислав Викторович Устройство для массового получения пресной воды путем конденсации водяных паров из воздуха
RU2169237C1 (ru) * 1999-11-02 2001-06-20 Всероссийский НИИ электрификации сельского хозяйства Установка для получения пресной воды с использованием естественного холода
RU2451641C2 (ru) * 2010-07-01 2012-05-27 Захар Борисович Махлин Солнечная установка для очистки и опреснения воды
RU2504417C1 (ru) * 2012-09-19 2014-01-20 Открытое акционерное общество "Восточно-Европейский головной научно- исследовательский и проектный институт энергетических технологий" (ОАО "Головной институт "ВНИПИЭТ") Атомно-энергетический комплекс

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357898A (en) * 1964-12-03 1967-12-12 Milan M Novakovich Floatable solar still for producing potable water from impure water
RU2143033C1 (ru) * 1998-08-21 1999-12-20 Цивинский Станислав Викторович Устройство для массового получения пресной воды путем конденсации водяных паров из воздуха
RU2169237C1 (ru) * 1999-11-02 2001-06-20 Всероссийский НИИ электрификации сельского хозяйства Установка для получения пресной воды с использованием естественного холода
RU2451641C2 (ru) * 2010-07-01 2012-05-27 Захар Борисович Махлин Солнечная установка для очистки и опреснения воды
RU2504417C1 (ru) * 2012-09-19 2014-01-20 Открытое акционерное общество "Восточно-Европейский головной научно- исследовательский и проектный институт энергетических технологий" (ОАО "Головной институт "ВНИПИЭТ") Атомно-энергетический комплекс

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655125A (zh) * 2019-09-24 2020-01-07 烟台金正环保科技有限公司 空气能源海水淡化装置及工艺

Similar Documents

Publication Publication Date Title
RU2609375C1 (ru) Способ получения воды из воздуха
WO2006004587A3 (en) Submersible power plant
CA2764486C (en) Wave energy electrical power generation
RU2616692C2 (ru) Способ вырабатывания электроэнергии при помощи преобразования давления под водой
RU2650564C1 (ru) Способ получения воды из воздуха
US20170241399A1 (en) A tidal wave powered device and a method for producing potential energy
CN102384016B (zh) 一种海洋能发电装置
RU2549253C1 (ru) Устройство для подъема глубинной морской воды на поверхность
WO2005111429A1 (en) Gas compressor
RU2653875C1 (ru) Способ получения воды из воздуха
CN105776384A (zh) 负压式太阳能海水淡化器
CN104671354A (zh) 波浪能驱动的空气压海水淡化系统
RU2631469C1 (ru) Способ получения воды из воздуха
RU2012108445A (ru) Насосное устройство, работающее за счет энергии волн
CN108463596B (zh) 从空气中获取水的方法
RU2770360C1 (ru) Способ опреснения морской воды
RU2652822C1 (ru) Способ получения воды из воздуха
JP2018013129A (ja) 波力エネルギー発電システム
RU2099587C1 (ru) Приливная энергетическая установка
RU2618315C1 (ru) Способ получения воды из воздуха
CN205101192U (zh) 一种流体式空气压缩机
JP2014137095A (ja) ばね式アキュムレータ
RU2568016C1 (ru) Самонапорная ветроволновая электростанция
RU2577433C2 (ru) Способ генерации и аккумулирования энергии
RU85563U1 (ru) Гравитационный гидровакуумный двигатель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210111