RU2618315C1 - Способ получения воды из воздуха - Google Patents

Способ получения воды из воздуха Download PDF

Info

Publication number
RU2618315C1
RU2618315C1 RU2016111554A RU2016111554A RU2618315C1 RU 2618315 C1 RU2618315 C1 RU 2618315C1 RU 2016111554 A RU2016111554 A RU 2016111554A RU 2016111554 A RU2016111554 A RU 2016111554A RU 2618315 C1 RU2618315 C1 RU 2618315C1
Authority
RU
Russia
Prior art keywords
air
moisture
energy
condensers
generators
Prior art date
Application number
RU2016111554A
Other languages
English (en)
Inventor
Виктор Владимирович Миронов
Дмитрий Викторович Миронов
Татьяна Семеновна Жилина
Юрий Андреевич Иванюшин
Евгений Александрович Ерофеев
Ирина Викторовна Якимова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Priority to RU2016111554A priority Critical patent/RU2618315C1/ru
Application granted granted Critical
Publication of RU2618315C1 publication Critical patent/RU2618315C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/28Methods or installations for obtaining or collecting drinking water or tap water from humid air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области автономного получения пресной воды питьевого качества из влаги окружающего морского атмосферного воздуха и может быть также использовано для бытовых и хозяйственных нужд. Способ включает в себя использование генераторов (11) пневматической энергии. Охлаждение потока сжатого воздуха после генераторов (11) производится в конденсаторах (6) с осаждением и отбором влаги. Забор атмосферного воздуха производят в непосредственной близости от поверхности моря, где влажность его максимальна. Генераторы (11) пневматической энергии приводят в действие энергией приливов. Выполняют генераторы (11) в виде гидроагрегатов, которые размещают в зоне действия приливов с обеспечением подпора морской воды перед ними. На гидроагрегатах, имеющих подвижные в радиальном направлении стенки в виде мембран (1), устанавливают камеры сжатия воздуха (3) с всасывающими и нагнетательными клапанами. В гидроагрегатах инициируют периодический гидравлический удар, приводящий в возвратно-поступательное движение мембраны камер сжатия воздуха (3) и генерирующий в камерах сжатия (3) пневматическую энергию. Воздух после конденсаторов (6) направляют в расширители воздуха, которые выполняют в виде дросселей или пневмомоторов (10). Пневмомоторы (10) соединяют с электрогенераторами (11). Полученную электрическую энергию используют для привода насосов (14) откачки осажденной пресной воды из конденсаторов (6) и влагоприемников (12) расширителей воздуха. При использовании в качестве расширителей воздуха дросселей пресную воду из влагоприемников (12) откачивают эжектированием ее пресной водой под давлением, находящейся в конденсаторах (6). Конденсаторы (6) влаги помещают под уровень моря и охлаждают морской водой. Обеспечивается преобразование гидравлической энергии морских приливов в пневматическую, необходимую для выделения влаги, содержащейся в атмосферном морском воздухе. 2 ил.

Description

Изобретение относится к способам автономного получения пресной воды питьевого качества из влаги окружающего морского атмосферного воздуха и может быть также использовано для бытовых и хозяйственных нужд.
Известен способ извлечения воды из атмосферного воздуха, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и получаемую при этом пресную воду-конденсат подают в емкость для сбора воды (RU 2081256, кл. Е03В 3/28, 1997). Недостатком способа является необходимость использования внешней подводимой энергии для формирования потока атмосферного воздуха, направляемого в конденсатор для осаждения влаги.
Наиболее близким техническим решением к заявленному способу по совокупности признаков является способ получения воды из воздуха», заключающийся в том, что формируют поток воздуха, содержащего водяные пары, охлаждают его до температуры ниже точки росы, конденсируют водяные пары в воду, а обезвоженный воздух выбрасывают в атмосферу (патент США N 5203989, Е03В 3/28, 1987). При прокачке потока атмосферного воздуха, содержащего пары воды, происходит их конденсация на охлаждающем элементе холодильной машины и одновременное охлаждение потока воздуха, который выбрасывается в атмосферу. Для прокачки потока атмосферного воздуха необходим генератор пневматической энергии, требующий затрат внешней энергии. Известный способ, предполагающий также использование внешней подводимой энергии для работы холодильной машины, характеризуется низкой экономичностью использования холодопроизводительности машины, так как только незначительная часть потребляемой ею энергии используется для конденсации паров воды. При этом большая часть холодопроизводительности расходуется на охлаждение обезвоженного воздуха, выбрасываемого в атмосферу. В прототипе не используется известный эффект выделения влаги из воздуха с охлаждением при его расширении до атмосферного давления (эффект Джоуля-Томсона). Этот эффект можно применить для дополнительного выделения влаги из воздуха в результате его более глубокого осушения с практически полным полезным использованием энергии сжатого воздуха.
Технической задачей, стоящей перед изобретением, является создание несложного способа получения пресной воды питьевого качества из атмосферного морского воздуха с использованием возобновляемых источников энергии, позволяющего с низкой себестоимостью получать пресную воду из атмосферного морского воздуха. В качестве возобновляемого источника энергии используется хорошо прогнозируемая во времени энергия морских приливов.
Согласно изобретению техническая задача решается следующим образом. Способ получения воды из воздуха, включает генераторы пневматической энергии, охлаждение потока сжатого воздуха после генераторов в конденсаторах с осаждением и отбором влаги. Забор атмосферного воздуха производят в непосредственной близости от поверхности моря, где влажность его максимальна. Генераторы пневматической энергии приводят в действие энергией приливов. Выполняют генераторы в виде гидроагрегатов, размещают гидроагрегаты в зоне действия приливов с обеспечением подпора морской воды перед ними, устанавливают на гидроагрегатах, имеющих подвижные в радиальном направлении стенки в виде мембран, камеры сжатия воздуха с всасывающими и нагнетательными клапанами, инициируют в гидроагрегатах периодический гидравлический удар, приводящий в возвратно-поступательное движение мембраны камер сжатия воздуха и генерирующую в камерах сжатия пневматическую энергию. Сжатый воздух после конденсаторов подают в расширители воздуха, которые выполняют в виде дросселей или пневмомоторов. Пневмомоторы соединены с электрогенераторами. Полученную электрическую энергию используют для привода насосов для откачки осажденной пресной воды из конденсаторов и влагоприемников расширителей воздуха, конденсаторы влаги помещают под уровень моря и охлаждают морской водой.
Генераторы пневматической энергии выполняют в виде гидроагрегатов, состоящих из водоводов, камер сжатия воздуха и ударных клапанов. Водоводы гидроагрегатов выполняют с подвижными в радиальном направлении стенками (мембранами), над которыми устанавливают сфероидальные камеры сжатия воздуха. На конце водоводов гидроагрегатов устанавливают ударные клапаны для инициирования в водоводах автоматического периодического гидравлического удара [Овсепян В.М. Гидравлический таран и таранные установки. - М.: Машиностроение. 1968. - 124 с.].
Способ получения воды из воздуха (см. фиг. 1) реализуется следующим образом. Генераторы пневматической энергии выполняют в виде гидроагрегатов, преобразующих кинетическую энергию потока морской воды сначала в потенциальную энергию гидравлического удара, а затем в энергию сжатого воздуха. Гидроагрегаты состоят из водоводов (1), ударных клапанов (2), подвижных в радиальном направлении стенок водоводов (мембран), являющихся рабочими органами сфероидальных камер сжатия (3), снабженных всасывающими и нагнетательными патрубками с обратными клапанами. За счет энергии гидравлического удара происходит возвратно-поступательное движение рабочих органов камер сжатия (3), вследствие чего происходит всасывание в полость камер (3) воздуха через всасывающие патрубки (4), его последующее сжатие и выталкивание в нагнетательную линию (5). Сжатый воздух поступает в конденсаторы-ресиверы (6), предназначенные также для сглаживания (демпфирования) пульсационных давлений, снабженные устройствами для сброса конденсата (7), манометрами (8), предохранительными клапанами давления (9). Из конденсаторов-ресиверов частично осушенный воздух поступает в расширители воздуха, дроссели или в пневмомоторы (10), соединенные с электрогенераторами (11), где воздух при расширении совершает полезную механическую работу по вращению вала пневмомотора, охлаждаясь при этом и выделяя остаточную влагу, которая скапливается во влагоприемниках (12). Опресненная вода из конденсаторов (6) и влагоприемников (12) поступает в накопительную емкость (13). Электрогенераторы (11) снабжают электрической энергией насосы (14) для откачки пресной воды из емкости (13). В случае использования в качестве расширителей воздуха дросселей электрогенераторы не устанавливаются. В предложенном способе получения воды из атмосферного морского воздуха пневматическая энергия (энергия сжатого атмосферного воздуха), генерируется путем преобразования энергии морских приливов сначала в кинетическую энергию воды, движущейся в водоводах (1), а затем в потенциальную энергию упругой деформации воды, стенок водоводов и механическую работу по перемещению подвижных стенок водовода (мембран) при резком автоматическом закрытии ударных клапанов (2). Под действием механической работы по радиальному возвратно-поступательному перемещению подвижных частей стенок водоводов (мембран), являющихся рабочими органами сфероидальных камер сжатия (3), снабженных всасывающими и нагнетательными клапанами, происходит всасывание, сжатие и последующее выталкивание атмосферного морского воздуха в конденсаторы-ресиверы (6).
Для снижения капитальных затрат (см. фиг. 2) в качестве расширителей воздуха могут использоваться дроссели (15), в этом случае отпадает необходимость в дорогостоящих пневмомоторах, но нет возможности снятия полезной механической работы, совершаемой при расширении воздуха. Выделенная при использовании дросселей (15) влага из конденсаторов (6) и влагоприемников (12) подается потребителю при помощи эжекторов (16). В эжекторах (16) поток пресной воды под избыточным давлением из конденсаторов (6) является активным, из влагоприемников (12) - пассивным.
В предложенном способе энергия морской воды начинает накапливаться в водоводах гидроагрегатов при открытии ударных клапанов (2), работающих автоматически за счет энергии воды. Количество кинетической энергии и время ее накопления в водоводах гидроагрегатов зависит от массы воды, то есть от геометрических размеров водоводов. Известно, что масса является мерой инерции. Поэтому при увеличении длины водоводов, при неизменных размерах их поперечного сечения, потребуется больший промежуток времени для накопления энергии, но при этом будет и ее большая отдача. Накопление кинетической энергии происходит при возрастании скорости движения воды от нуля до значения, соответствующего установившемуся движению жидкости в водоводах (1) с известными значениями гидравлических сопротивлений и напора на входе в водоводы (1) при открытых ударных клапанах (2). Количеством ударных клапанов (2) регулируются гидравлические сопротивления в водоводах (1). Размеры гидроагрегатов, площадь и радиальный ход подвижных стенок водоводов (мембран), а также их количество выбирают исходя из высоты морских приливов. Количество гидроагрегатов, установленных в зоне действия приливов, выбирают исходя из необходимой производительности установок по пресной воде. Водоводы (1) устанавливают в зоне действия приливов перпендикулярно к ним, с образованием водоподпорной стенки для обеспечения необходимого напора морской воды для работы гидроагрегатов во время приливов. Гидроагрегаты рационально размещать в устье впадающих в море пересыхающих рек, в русле которых во время приливов накапливается достаточно большой объем морской воды, спадающей во время отливов и совершающей полезную работу, а также в узких заливах и закрытых бухтах. Срабатывание автоматических ударных клапанов всех установленных гидроагрегатов осуществляют не одновременно, а со сдвигом во времени, обеспечивая непрерывность накопления энергии, сглаживание пульсационных воздействий и устранение неравномерности в подаче сжатого морского атмосферного воздуха с большим содержанием влаги в конденсаторы-ресиверы. Конденсаторы-ресиверы располагают под уровнем моря для их охлаждения, с целью достижения точки росы при заданном давлении влажного воздуха в конденсаторах-ресиверах. Гидроагрегаты устанавливают параллельно между собой, перпендикулярно к приливам, с разворотом друг относительно друга на 180 градусов для обеспечения работы половины их во время прилива, а второй половины во время отлива, достигая, таким образом, непрерывность получения пресной воды во времени.
Заявленное техническое решение позволяет преобразовывать практически даровую гидравлическую энергию морских приливов в пневматическую энергию, необходимую для выделения влаги, содержащейся в атмосферном морском воздухе, и снизить, таким образом, затраты на производство пресной воды питьевого качества.

Claims (1)

  1. Способ получения воды из воздуха, включающий генераторы пневматической энергии, охлаждение потока сжатого воздуха после генераторов в конденсаторах с осаждением и отбором влаги, отличающийся тем, что забор атмосферного воздуха производят в непосредственной близости от поверхности моря, где влажность его максимальна, генераторы пневматической энергии приводят в действие энергией приливов, выполняют генераторы в виде гидроагрегатов, размещают гидроагрегаты в зоне действия приливов с обеспечением подпора морской воды перед ними, устанавливают на гидроагрегатах, имеющих подвижные в радиальном направлении стенки в виде мембран, камеры сжатия воздуха с всасывающими и нагнетательными клапанами, инициируют в гидроагрегатах периодический гидравлический удар, приводящий в возвратно-поступательное движение мембраны камер сжатия воздуха и генерирующий в камерах сжатия пневматическую энергию, воздух после конденсаторов направляют в расширители воздуха, расширители воздуха выполняют в виде дросселей или пневмомоторов, пневмомоторы соединяют с электрогенераторами, полученную электрическую энергию используют для привода насосов откачки осажденной пресной воды из конденсаторов и влагоприемников расширителей воздуха, при использовании в качестве расширителей воздуха дросселей пресную воду из влагоприемников откачивают эжектированием ее пресной водой под давлением, находящейся в конденсаторах, конденсаторы влаги помещают под уровень моря и охлаждают морской водой.
RU2016111554A 2016-03-28 2016-03-28 Способ получения воды из воздуха RU2618315C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016111554A RU2618315C1 (ru) 2016-03-28 2016-03-28 Способ получения воды из воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016111554A RU2618315C1 (ru) 2016-03-28 2016-03-28 Способ получения воды из воздуха

Publications (1)

Publication Number Publication Date
RU2618315C1 true RU2618315C1 (ru) 2017-05-03

Family

ID=58697521

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016111554A RU2618315C1 (ru) 2016-03-28 2016-03-28 Способ получения воды из воздуха

Country Status (1)

Country Link
RU (1) RU2618315C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143530C1 (ru) * 1999-03-25 1999-12-27 Кочетков Борис Федорович Устройство для получения пресной воды из воздуха
RU2146744C1 (ru) * 1999-08-05 2000-03-20 Общество с ограниченной ответственностью "Адекватные технологии" Способ получения воды из воздуха
RU2169237C1 (ru) * 1999-11-02 2001-06-20 Всероссийский НИИ электрификации сельского хозяйства Установка для получения пресной воды с использованием естественного холода
CN1506317A (zh) * 2002-12-09 2004-06-23 刘树博 简易海水淡化及冲洗系统
RU2006120743A (ru) * 2006-06-15 2007-12-27 Олег Анатольевич Новосельцев (RU) Установка для получения пресной воды из влажного воздуха

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143530C1 (ru) * 1999-03-25 1999-12-27 Кочетков Борис Федорович Устройство для получения пресной воды из воздуха
RU2146744C1 (ru) * 1999-08-05 2000-03-20 Общество с ограниченной ответственностью "Адекватные технологии" Способ получения воды из воздуха
RU2169237C1 (ru) * 1999-11-02 2001-06-20 Всероссийский НИИ электрификации сельского хозяйства Установка для получения пресной воды с использованием естественного холода
CN1506317A (zh) * 2002-12-09 2004-06-23 刘树博 简易海水淡化及冲洗系统
RU2006120743A (ru) * 2006-06-15 2007-12-27 Олег Анатольевич Новосельцев (RU) Установка для получения пресной воды из влажного воздуха

Similar Documents

Publication Publication Date Title
RU2609375C1 (ru) Способ получения воды из воздуха
CN111247332B (zh) 空气驱动发电机
RU2618315C1 (ru) Способ получения воды из воздуха
CN102322384B (zh) 一种水能综合发电系统
CN101830541B (zh) 地下反渗透海水淡化真空装置系统
JP2007247971A (ja) 排水処理装置
RU2631469C1 (ru) Способ получения воды из воздуха
RU2653875C1 (ru) Способ получения воды из воздуха
RU2770360C1 (ru) Способ опреснения морской воды
WO2014003574A1 (en) Heat exchanger facility
CN204447537U (zh) 油品智能优化系统
CN108463596B (zh) 从空气中获取水的方法
RU2650564C1 (ru) Способ получения воды из воздуха
RU2652822C1 (ru) Способ получения воды из воздуха
CN209442690U (zh) 一种新型太阳能海水淡化装置
US1211161A (en) Wind-power.
CN206410362U (zh) 一种整体立式水源热泵
RU2577433C2 (ru) Способ генерации и аккумулирования энергии
CN212387761U (zh) 利用海水温差能和波浪能的海水淡化系统
Badur et al. Study of the effectiveness of the turbine condenser air extraction system using hydro ejectors
CN215633180U (zh) 汽轮机凝水抽水系统
CN111348707B (zh) 利用海水温差能和波浪能的海水淡化系统
RU151350U1 (ru) Сепаратосборник
RU2568016C1 (ru) Самонапорная ветроволновая электростанция
CN111348707A (zh) 利用海水温差能和波浪能的海水淡化系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190329