RU2649477C1 - Способ изготовления тонкостенных осесимметричных оболочек - Google Patents

Способ изготовления тонкостенных осесимметричных оболочек Download PDF

Info

Publication number
RU2649477C1
RU2649477C1 RU2016125710A RU2016125710A RU2649477C1 RU 2649477 C1 RU2649477 C1 RU 2649477C1 RU 2016125710 A RU2016125710 A RU 2016125710A RU 2016125710 A RU2016125710 A RU 2016125710A RU 2649477 C1 RU2649477 C1 RU 2649477C1
Authority
RU
Russia
Prior art keywords
shell
walled
elements
thin
grooves
Prior art date
Application number
RU2016125710A
Other languages
English (en)
Other versions
RU2016125710A (ru
Inventor
Анатолий Семенович Митин
Андрей Анатольевич Митин
Original Assignee
Открытое акционерное общество "Завод им. В.А. Дегтярева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Завод им. В.А. Дегтярева" filed Critical Открытое акционерное общество "Завод им. В.А. Дегтярева"
Priority to RU2016125710A priority Critical patent/RU2649477C1/ru
Publication of RU2016125710A publication Critical patent/RU2016125710A/ru
Application granted granted Critical
Publication of RU2649477C1 publication Critical patent/RU2649477C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к машиностроению и может использоваться при изготовлении тонкостенных оболочек ракетных двигателей или элементов оболочек с толстостенным дном в ее средней части. Раздельно изготавливают нескольких элементов оболочки, соединяют в неразъемный полуфабрикат. Затем осуществляют термообработку для снятия напряжений и окончательную обработку. При этом элементы оболочки изготавливают с охватываемыми посадочными поверхностями у первого элемента, а у второго с охватывающими. В неразъемный полуфабрикат собирают элементы оболочки по посадочным поверхностям с натягом. Расширяются технологические возможности способа. 2 з.п. ф-лы, 5 ил.,

Description

Изобретение относится к машиностроению и может использоваться при изготовлении высокопрочных тонкостенных оболочек ракетных двигателей или элементов оболочек с толстостенным дном в ее средней части из высокопрочной легированной стали.
Известен способ изготовления неразъемной сборки из двух деталей тел вращения, включающий обработку резанием и упрочняющую термообработку первой детали с формированием цилиндрической посадочной поверхности типа «вал», обработку резанием и упрочняющую термообработку второй детали с формированием цилиндрической посадочной поверхности типа «отверстие» с номинальным диаметром, меньшим диаметра «вала» первой детали, нагревание второй детали до температуры несколько ниже температуры низкого отпуска материала, из которого она изготовлена, сборку первой и второй детали по посадочным поверхностям и охлаждение сборки до нормальной температуры, при этом максимальные значения сопротивления сдвигу осевой силой получают при выполнении горячей посадки с большим натягом. Способ эффективно используется для соединения толстостенных, жестких деталей (см. Решетов Д.Н. Детали машин. М., Машиностроение, 1964 г., стр. 91-93).
Недостатки данного способа:
1. Для соединения тонкостенных деталей большие натяги, обеспечивающие максимальное сопротивление сдвигу, неприемлемы, в том числе из-за быстрого охлаждения охватывающей детали в процессе сборки.
2. При соединении тонкостенных деталей по гладкой цилиндрической поверхности с малым натягом снижается давление в соединении и, как следствие, снижается сопротивление сдвигу. Для увеличения сопротивления сдвигу необходимо увеличивать длину посадочных поверхностей, что значительно увеличивает расход металла, а также (при большой длине посадочных поверхностей) делает соединение невозможным.
3. При нагревании детали с охватывающей поверхностью до температуры ниже температуры низкого отпуска посадочный диаметр увеличивается, при этом увеличение посадочного диаметра менее 80 мм у стальных деталей незначительно по величине и недостаточно для сборки тонкостенных деталей с наличием овальности по посадочным диаметрам.
Известен способ изготовления сосудов сложной формы (см. патент RU №2131787, B21D 51/10, B21D 22/16, 20.06.1999 г.), принятый за прототип. Способ включает раздельное изготовление цилиндрического элемента и донного элемента из листовых заготовок, изготовление неразъемного осесимметричного полуфабриката сложной формы путем сварки встык кольцевым швом цилиндрического и донного элементов, термообработку полуфабриката для снятия напряжений, полученных при сварке, контроль качества сварного шва, ротационную вытяжку цилиндрического элемента полуфабриката совместно со сварным швом с получением тонкостенной оболочки и окончательную обработку оболочки.
Недостаток прототипа в том, что при сварке встык неизбежны дефекты сварного шва из-за отклонения от круглости и разности действительных диаметров свариваемых тонкостенных элементов.
Предлагаемым изобретением решается задача - обеспечение заданной геометрической точности и минимальных материальных затрат при изготовлении.
Технический результат заключается в возможности изготовления из высокопрочных сталей сложнопрофильной осесимметричной оболочки с внутренним диаметром более 80 мм типа корпуса двигательной установки ракетного двигателя, состоящего из 2-3 элементов, при этом один из них является донным элементом, расположенным в средней части оболочки по ее длине.
Указанный технический результат достигается тем, что в способе изготовления тонкостенной сложнопрофильной осесимметричной оболочки с внутренним диаметром более 80 мм из высокопрочной легированной стали, включающем раздельное изготовление элементов оболочки, их последующее соединение в неразъемную оболочку, термообработку для снятия напряжений и окончательную обработку, новым является то, оболочку изготавливают раздельно из двух или трех элементов, первый из которых, являющийся дном оболочки, выполняют с наружной охватываемой посадочной поверхностью, а по меньшей мере второй элемент выполняют с ответной ему охватывающей поверхностью у торца, а соединение элементов в неразъемную оболочку осуществляют с натягом путем нагрева элементов с охватывающими поверхностями до температуры, обеспечивающей превышение минимального диаметра посадочной поверхности по меньшей мере второго элемента максимального диаметра первого элемента более чем на 0,2 мм.
Посадочные поверхности могут быть выполнены в виде кольцевых выступов и канавок, причем кольцевые выступы и канавки охватывающей поверхности выполняют соответствующими ответным им кольцевым канавкам и выступам охватываемой поверхности.
Для увеличения герметичности и прочности неразъемного полуфабриката элементы фиксируют друг с другом сварным швом по торцам.
При необходимости приваривают на наружную поверхность элементы конструкции типа бобышек и направляющих.
Изготовление элементов оболочки с посадочными поверхностями, полученными обработкой резанием, и последующее соединение элементов по посадочным поверхностям с натягом обеспечивает их соосное расположение относительно друг друга.
Изготовление тонкостенной оболочки сложной формы или элемента оболочки в виде неразъемной блочной конструкции соединением двух, трех элементов (в том числе состоящих из нескольких деталей) с натягом по предварительно обработанным резанием посадочным поверхностям и последующей сваркой позволяет упростить технологию изготовления тонкостенной оболочки сложной формы, значительно снизить расход металла и повысить ее геометрическую точность.
Изготовление у первого элемента охватываемых посадочных поверхностей в виде сочетания кольцевых выступов и канавок, а по меньшей мере у второго элемента охватывающих посадочных поверхностей в виде сочетания кольцевых канавок и выступов с последующим соединением элементов с помощью температурного деформирования с фиксацией сварным швом обеспечивает герметичность оболочки и увеличение противодействующего усилия осевой сдвигающей силе, действующей на соединение, в процессе эксплуатации до суммы усилия, необходимого для разрушения сварного шва и усилия сопротивления деформации кольцевых выступов (срез, смятие).
Предлагаемое техническое решение поясняется чертежами, где:
- на фиг. 1 показан неразъемный полуфабрикат оболочки с дном, расположенным в средней части полуфабриката, выполненный соединением с натягом дна - элемента 1 с тонкостенной камерой - элемент 2 по полученным обработкой резанием посадочным поверхностям «D»/«d» посредством температурного деформирования и фиксацией торцов элемента 1 сварным швом;
- на фиг. 2 показан полуфабрикат неразъемной тонкостенной оболочки с дном в средней части по длине, выполненный соединением дна - элемента 1, тонкостенной маршевой камеры - элемента 3 и тонкостенной стартовой камеры - элемента 4 по полученным обработкой резанием посадочным поверхностям «D»/«d» и «D1»/«d1» посредством температурного деформирования и фиксации торцов элемента 3 и элемента 4 между собой и элементом 1 сварным швом, с приваренными к наружной поверхности бобышками 5 и направляющими 6;
- на фиг. 3 показано дно - элемент 1 с наружной охватываемой поверхностью, выполненной из сочетания кольцевых выступов 7 и канавок 8 с диаметрами «d» и «d1», с номинальными размерами толщины «а» выступов и ширины «б» канавок;
- на фиг. 4 показана тонкостенная маршевая камера - элемент 3 с охватывающими посадочными поверхностями у торца из сочетания кольцевых канавок и выступов, ответных посадочным поверхностям элемента 1, с диаметрами «D» и «D1», с номинальными размерами толщины выступов «б» и ширины канавок «а»;
- на фиг. 5 показана тонкостенная стартовая камера - элемент 4 с охватывающими посадочными поверхностями у торца из сочетания кольцевых канавок и выступов, ответных посадочным поверхностям элемента 1, с диаметрами «D» и «D1», с номинальными размерами толщины выступов «б» и ширины канавок «а».
Пример использования 1
Требуется изготовить неразъемный полуфабрикат оболочки с толстостенным дном, расположенным в средней части полуфабриката как на фиг. 1, из высокопрочной стали СП2В(28Х3СНМВФА), состоящий из толстостенного дна - элемент 1 и тонкостенной камеры - элемент 2. Элементы изготавливают раздельно.
Последовательным выполнением операций холодной штамповки, термообработки и обработки резанием из листовой заготовки изготавливают тонкостенную камеру - элемент 2 с внутренним диаметром Ф=194 мм. В средней части элемента 2 резанием обрабатывают посадочную поверхность в виде кольцевой канавки диаметром D=194,6 мм и шириной канавки, соответствующей толщине ответного элемента.
Изготавливают толстостенное дно - элемент 1 с наружной посадочной поверхностью, ответной посадочной поверхности элемента 2 с геометрическими размерами, обеспечивающими гарантированный натяг более 0,2 мм в соединении. Нагревают камеру до температуры 500°С, при этом диаметральные размеры камеры увеличиваются более чем на 1,2 мм. Устанавливают элемент 1 в элемент 2 и охлаждают сборку. Фиксируют дно сваркой по торцам элемента 1. Подвергают полуфабрикат термообработке для снятия напряжений и окончательной обработке резанием.
Пример использования 2
Требуется изготовить тонкостенный полуфабрикат оболочки с дном в средней части по длине, как на фиг. 2, из стали СП2В(28Х3СНМВФА), состоящий из дна - элемент 1, тонкостенной маршевой камеры - элемент 3 и тонкостенной стартовой камеры - элемент 4. Последовательным выполнением операций холодной штамповки, ротационной вытяжки, промежуточной термообработки для снятия напряжений и обработки резанием из листовой заготовки изготавливают тонкостенную маршевую камеру - элемент 3 и тонкостенную стартовую камеру - элемент 4 с внутренними диаметрами Ф=194 мм и Ф=190 мм. У торцов деталей (со стороны диаметра Ф) обработкой резанием обрабатывают посадочную поверхность из сочетания кольцевых выступов и канавок с геометрическими размерами: - диаметр выступов D1=195 мм; диаметр канавок D=195,5 мм; с толщиной выступов «б» = 5 мм; шириной канавок «а» = 5 мм.
Изготавливают дно - элемент 1 с наружной посадочной поверхностью из кольцевых канавок и выступов, ответных кольцевым выступам и канавкам камеры с диаметрами канавок и выступов, обеспечивающих гарантированный натяг в соединении более 0,3 мм.
Нагревают элементы 3 и 4 до температуры (400-500)°С, при этом диаметральные размеры камеры увеличиваются более чем на 1 мм. Последовательно устанавливают элементы 3 и 4 на элемент 1 и охлаждают сборку. Фиксируют элементы 1, 3 и 4 между собой сваркой. На наружную поверхность полуфабриката приваривают бобышки 5 и направляющие 6. Подвергают сборку термообработке для снятия напряжений. Производят предварительную обработку резанием, упрочняющую термообработку и окончательную обработку резанием.
Изобретение относится к машиностроению и может использоваться при изготовлении высокопрочных тонкостенных оболочек ракетных двигателей или элементов оболочек с толстостенным дном в ее средней части из высокопрочной легированной стали.
Известен способ изготовления неразъемной сборки из двух деталей тел вращения, включающий обработку резанием и упрочняющую термообработку первой детали с формированием цилиндрической посадочной поверхности типа «вал», обработку резанием и упрочняющую термообработку второй детали с формированием цилиндрической посадочной поверхности типа «отверстие» с номинальным диаметром, меньшим диаметра «вала» первой детали, нагревание второй детали до температуры несколько ниже температуры низкого отпуска материала из которого она изготовлена, сборку первой и второй детали по посадочным поверхностям и охлаждение сборки до нормальной температуры, при этом максимальные значения сопротивления сдвигу осевой силой получают при выполнении горячей посадки с большим натягом. Способ эффективно используется для соединения толстостенных, жестких деталей (см. Решетов Д.Н. «Детали машин», Машиностроение, 1964 г., стр. 91-93).
Недостатки данного способа:
1. Для соединения тонкостенных деталей большие натяги, обеспечивающие максимальное сопротивление сдвигу, неприемлемы, в том числе из-за быстрого охлаждения охватывающей детали в процессе сборки;
2. При соединении тонкостенных деталей по гладкой цилиндрической поверхности с малым натягом снижается давление в соединении и, как следствие, снижается сопротивление сдвигу. Для увеличения сопротивления сдвигу необходимо увеличивать длину посадочных поверхностей, что значительно увеличивает расход металла, а также (при большой длине посадочных поверхностей) делает соединение невозможным;
3. При нагревании детали с охватывающей поверхностью до температуры ниже температуры низкого отпуска посадочный диаметр увеличивается, при этом увеличение посадочного диаметра менее 80 мм у стальных деталей незначительно по величине и недостаточно для сборки тонкостенных деталей с наличием овальности по посадочным диаметрам.
Известен способ изготовления сосудов сложной формы (см. патент RU №2131787, B21D 51/10, B21D 22/16, 20.06.1999 г.), принятый за прототип. Способ включает раздельное изготовление цилиндрического элемента и донного элемента из листовых заготовок, изготовление неразъемного осесимметричного полуфабриката сложной формы путем сварки встык кольцевым швом цилиндрического и донного элементов, термообработку полуфабриката для снятия напряжений полученных при сварке, контроль качества сварного шва, ротационную вытяжку цилиндрического элемента полуфабриката совместно со сварным швом с получением тонкостенной оболочки и окончательную обработку оболочки.
Недостаток прототип в том, что при сварке встык неизбежны дефекты сварного шва из-за отклонения от круглости и разности действительных диаметров свариваемых тонкостенных элементов.
Предлагаемым изобретением решается задача - обеспечение заданной геометрической точности и минимальных материальных затрат при изготовлении.
Технический результат заключается в возможности изготовления из высокопрочных сталей сложнопрофильной осесимметричной оболочки с внутренним диаметром более 80 мм. типа корпуса двигательной установки ракетного двигателя, состоящего из 2-3 элементов, при этом один из них является донным элементом, расположенным в средней части оболочки по ее длине.
Указанный технический результат достигается тем, что в способе изготовления тонкостенной осесимметричной оболочки со сложной внутренней поверхностью, включающем раздельное изготовление нескольких элементов оболочки, последующее их соединение в неразъемный полуфабрикат сложной формы, термообработку для снятия напряжений и окончательную обработку новым является то, что элементы оболочки изготавливают с охватываемыми посадочными поверхностями у первого элемента, а у второго (второго и третьего) с охватывающими, в неразъемный полуфабрикат элементы оболочки собирают по посадочным поверхностям с натягом, выполняют окончательную термообработку и обработку резанием.
Для большей герметичности и прочности соединение элементов может быть осуществлено методом температурного деформирования, при этом нагревание элементов с охватывающими поверхностями под температурное деформирование осуществляют до температуры, обеспечивающей превышение минимального диаметра посадочной поверхности второго элемента (второго и третьего) над максимальным диаметром первого элемента более, чем на 0,2 мм.
Посадочные поверхности могут быть выполнены из сочетания кольцевых выступов и канавок, когда кольцевые выступы и канавки охватывающей поверхности соответствуют ответным им кольцевым канавкам и выступам охватываемой поверхности.
Для увеличения герметичности и прочности неразъемного полуфабриката элементы фиксируют друг с другом сварным швом по торцам.
При необходимости приваривают на наружную поверхность элементы конструкции типа бобышек и направляющих.
Изготовление элементов оболочки с посадочными поверхностями полученными обработкой резанием и последующее соединение элементов по посадочным поверхностям с натягом обеспечивает их соосное расположение относительно друг друга.
Изготовление тонкостенной оболочки сложной формы или элемента оболочки в виде неразъемной блочной конструкции соединением двух, трех элементов (в том числе состоящих из нескольких деталей) с натягом по предварительно обработанным резанием посадочным поверхностям и последующей сваркой позволяет упростить технологию изготовления тонкостенной оболочки сложной формы, значительно снизить расход металла и повысить ее геометрическую точность.
Изготовление у первого элемента охватываемых посадочных поверхностей в виде сочетания кольцевых выступов и канавок, а у второго (второго и третьего) элементов, охватывающих посадочных поверхностей в виде сочетания кольцевых канавок и выступов с последующим соединением элементов с помощью температурного деформирования с фиксацией сварным швом обеспечивает герметичность оболочки, и увеличение противодействующего усилия осевой сдвигающей силе, действующей на соединение, в процессе эксплуатации до суммы усилия, необходимого для разрушения сварного шва и усилия сопротивления деформации кольцевых выступов (срез, смятие).
Предлагаемое техническое решение поясняется чертежами, где:
- на фиг. 1 показан неразъемный полуфабрикат оболочки с дном, расположенным в средней части полуфабриката, выполненный соединением с натягом дна - элемента 1 с тонкостенной камерой - элемент 2 по полученным обработкой резанием посадочным поверхностям «D»/«d» посредством температурного деформирования и фиксацией торцов элемента 1 сварным швом;
- на фиг. 2 показан полуфабрикат неразъемной тонкостенной оболочки с дном в средней части по длине, выполненный соединением дна - элемента 1, тонкостенной маршевой камеры - элемента 3 и тонкостенной стартовой камеры - элемента 4 по полученным обработкой резанием посадочным поверхностям «D»/«d» и «D1»/«d1» посредством температурного деформирования и фиксации торцов элемента 3 и элемента 4 между собой и элементом 1 сварным швом, с приваренными к наружной поверхности бобышками 5 и направляющими 6;
- на фиг. 3 показано дно - элемент 1 с наружной охватываемой поверхностью, выполненной из сочетания кольцевых выступов 7 и канавок 8 с диаметрами «d» и «d1», с номинальными размерами толщины «а» выступов и ширины «б» канавок;
- на фиг. 4 показана тонкостенная маршевая камера - элемент 3 с охватывающими посадочными поверхностями у торца из сочетания кольцевых канавок и выступов, ответных посадочным поверхностям элемента 1, с диаметрами «D» и «D1», с номинальными размерами толщины выступов «б» и ширины канавок «а»;
- на фиг. 5 показана тонкостенная стартовая камера - элемент 4 с охватывающими посадочными поверхностями у торца из сочетания кольцевых канавок и выступов, ответных посадочным поверхностям элемента 1, с диаметрами «D» и «D1», с номинальными размерами толщины выступов «б» и ширины канавок «а».
Пример использования 1.
Требуется изготовить неразъемный полуфабрикат оболочки с толстостенным дном, расположенным в средней части полуфабриката как на фиг. 1, из высокопрочной стали СП2В(28Х3СНМВФА) состоящий из толстостенного дна - элемент 1 и тонкостенной камеры - элемент 2. Элементы изготавливают раздельно.
Последовательным выполнением операций холодной штамповки, термообработки и обработки резанием из листовой заготовки изготавливают тонкостенную камеру - элемент 2 с внутренним диаметром Ф=194 мм. В средней части элемента 2 резанием обрабатывают посадочную поверхность в виде кольцевой канавки диаметром D=194,6 мм и шириной канавки, соответствующей толщине ответного элемента.
Изготавливают толстостенное дно - элемент 1 с наружной посадочной поверхностью, ответной посадочной поверхности элемента 2 с геометрическими размерами, обеспечивающими гарантированный натяг более 0,2 мм в соединении. Нагревают камеру до температуры 500°С, при этом диаметральные размеры камеры увеличиваются более, чем на 1,2 мм. Устанавливают элемент 1 в элемент 2 и охлаждают сборку. Фиксируют дно сваркой по торцам элемента 1. Подвергают полуфабрикат термообработке для снятия напряжений и окончательной обработке резанием.
Пример использования 2.
Требуется изготовить тонкостенный полуфабрикат оболочки с дном в средней части по длине, как на фиг. 2, из стали СП2В(28Х3СНМВФА) состоящий из дна - элемент 1, тонкостенной маршевой камеры - элемент 3 и тонкостенной стартовой камеры - элемент 4. Последовательным выполнением операций холодной штамповки, ротационной вытяжки, промежуточной термообработки для снятия напряжений и обработки резанием из листовой заготовки изготавливают тонкостенную маршевую камеру - элемент 3 и тонкостенную стартовую камеру - элемент 4 с внутренними диаметрами Ф=194 мм и Ф=190 мм. У торцов деталей (со стороны диаметра Ф) обработкой резанием обрабатывают посадочную поверхность из сочетания кольцевых выступов и канавок с геометрическими размерами: - диаметр выступов D1=195 мм; диаметр канавок D=195,5 мм; с толщиной выступов «б»=5 мм; шириной канавок «а»=5 мм.
Изготавливают дно - элемент 1 с наружной посадочной поверхностью из кольцевых канавок и выступов, ответных кольцевым выступам и канавкам камеры с диаметрами канавок и выступов, обеспечивающих гарантированный натяг в соединении более 0,3 мм.
Нагревают элементы 3 и 4 до температуры (400-500)°С, при этом диаметральные размеры камеры увеличиваются более, чем на 1 мм. Последовательно устанавливают элементы 3 и 4 на элемент 1 и охлаждают сборку. Фиксируют элементы 1, 3 и 4 между собой сваркой. На наружную поверхность полуфабриката приваривают бобышки 5 и направляющие 6. Подвергают сборку термообработке для снятия напряжений. Производят предварительную обработку резанием, упрочняющую термообработку и окончательную обработку резанием.

Claims (3)

1. Способ изготовления тонкостенной сложнопрофильной осесимметричной оболочки с внутренним диаметром более 80 мм из высокопрочной легированной стали, включающий раздельное изготовление элементов оболочки, их последующее соединение в неразъемную оболочку, термообработку для снятия напряжений и окончательную обработку, отличающийся тем, что оболочку изготавливают раздельно из двух или трех элементов, первый из которых, являющийся дном оболочки, выполняют с наружной охватываемой посадочной поверхностью, а по меньшей мере второй элемент выполняют с ответной ему охватывающей поверхностью у торца, а соединение элементов в неразъемную оболочку осуществляют с натягом путем нагрева элементов с охватывающими поверхностями до температуры, обеспечивающей превышение минимального диаметра посадочной поверхности по меньшей мере второго элемента максимального диаметра первого элемента более чем на 0,2 мм.
2. Способ по п. 1, отличающийся тем, что посадочные поверхности выполняют в виде кольцевых выступов и канавок, причем кольцевые выступы и канавки охватывающей поверхности выполняют соответствующими ответным им кольцевым канавкам и выступам охватываемой поверхности.
3. Способ по п. 1, отличающийся тем, что фиксируют элементы оболочки сварным швом.
RU2016125710A 2016-06-27 2016-06-27 Способ изготовления тонкостенных осесимметричных оболочек RU2649477C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016125710A RU2649477C1 (ru) 2016-06-27 2016-06-27 Способ изготовления тонкостенных осесимметричных оболочек

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016125710A RU2649477C1 (ru) 2016-06-27 2016-06-27 Способ изготовления тонкостенных осесимметричных оболочек

Publications (2)

Publication Number Publication Date
RU2016125710A RU2016125710A (ru) 2018-01-09
RU2649477C1 true RU2649477C1 (ru) 2018-04-03

Family

ID=60965237

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125710A RU2649477C1 (ru) 2016-06-27 2016-06-27 Способ изготовления тонкостенных осесимметричных оболочек

Country Status (1)

Country Link
RU (1) RU2649477C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325844A1 (de) * 1973-05-22 1974-12-19 Daimler Benz Ag Hydropneumatischer druckspeicher
RU2106544C1 (ru) * 1995-02-21 1998-03-10 Омская государственная академия путей сообщения Соединение с натягом
RU2562200C1 (ru) * 2014-06-25 2015-09-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ изготовления осесимметричных сварных оболочек, работающих под высоким давлением
RU2567421C1 (ru) * 2014-09-03 2015-11-10 Открытое акционерное общество "Научно-производственное объединение "СПЛАВ" Способ изготовления тонкостенных осесимметричных сварных оболочек с концевыми утолщенными кольцами

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2325844A1 (de) * 1973-05-22 1974-12-19 Daimler Benz Ag Hydropneumatischer druckspeicher
RU2106544C1 (ru) * 1995-02-21 1998-03-10 Омская государственная академия путей сообщения Соединение с натягом
RU2562200C1 (ru) * 2014-06-25 2015-09-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Способ изготовления осесимметричных сварных оболочек, работающих под высоким давлением
RU2567421C1 (ru) * 2014-09-03 2015-11-10 Открытое акционерное общество "Научно-производственное объединение "СПЛАВ" Способ изготовления тонкостенных осесимметричных сварных оболочек с концевыми утолщенными кольцами

Also Published As

Publication number Publication date
RU2016125710A (ru) 2018-01-09

Similar Documents

Publication Publication Date Title
CN108331677B (zh) 一种焊接式整体锻钢活塞及其制造工艺
US11260448B2 (en) Method for the production of hollow chamber valves
US3668918A (en) Method for manufacturing shafts for vehicles
US9273726B2 (en) Method, cage and rolling bearing
US3434322A (en) Method and apparatus for rolling bearing races
US8840314B2 (en) Method for producing a flanged disk for a spherical roller bearing and a spherical roller bearing having a flanged disk produced according to the method
US20200173318A1 (en) Cavity valve with optimized shaft interior geometry, and method for producing same
US20180104776A1 (en) Precision forming method of high-efficiency and near-net hollow valve blank of engine
RU2649477C1 (ru) Способ изготовления тонкостенных осесимметричных оболочек
CN111001960B (zh) 扬克缸缸段预加工件以及用于制造扬克缸的方法
KR100843363B1 (ko) 볼 조인트 하우징 제조방법
RU2635980C1 (ru) Способ изготовления тонкостенных осесимметричных оболочек
JP2003305524A (ja) エンジンバルブの製造方法
KR101499631B1 (ko) 용접된 상태에서 최적 피로 특성을 가진 고온 마무리 이음매없는 관을 생산하기 위한 방법
WO2014188838A1 (ja) 等速自在継手用外側継手部材の製造方法および外側継手部材に加工される中間鍛造品
CN113381555A (zh) 一种具有油管的转子轴及其加工工艺
RU2601364C1 (ru) Способ изготовления тонкостенных оболочек с дном
RU2556846C1 (ru) Способ изготовления тонкостенных оболочек
JP2020104130A (ja) 外側ジョイント部材の製造方法
RU2686431C1 (ru) Способ изготовления осесимметричного стального корпуса сварного сосуда высокого давления
RU2700230C1 (ru) Способ изготовления осесимметричного сварного корпуса сосуда высокого давления
EP3073140B1 (en) Stationary constant velocity universal joint
RU2533242C1 (ru) Способ изготовления оболочек
EP3560626B1 (en) Method of manufacture a one piece axle
US11035261B2 (en) Inside-cooled disc valve and a semi-finished product and method for its production