RU2649065C1 - Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике - Google Patents
Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике Download PDFInfo
- Publication number
- RU2649065C1 RU2649065C1 RU2016143020A RU2016143020A RU2649065C1 RU 2649065 C1 RU2649065 C1 RU 2649065C1 RU 2016143020 A RU2016143020 A RU 2016143020A RU 2016143020 A RU2016143020 A RU 2016143020A RU 2649065 C1 RU2649065 C1 RU 2649065C1
- Authority
- RU
- Russia
- Prior art keywords
- sample
- traps
- spectrum
- light beam
- radiation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000004065 semiconductor Substances 0.000 title claims abstract description 21
- 238000001228 spectrum Methods 0.000 claims abstract description 17
- 230000005855 radiation Effects 0.000 claims abstract description 16
- 238000000862 absorption spectrum Methods 0.000 claims abstract description 13
- 239000002159 nanocrystal Substances 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000003595 spectral effect Effects 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 7
- 239000013081 microcrystal Substances 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000002800 charge carrier Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000005284 excitation Effects 0.000 description 10
- 238000004020 luminiscence type Methods 0.000 description 9
- 239000000969 carrier Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 238000000411 transmission spectrum Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 239000002064 nanoplatelet Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/24—Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Изобретение относится к физике полупроводников. Его применение при определении параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике позволяет исследовать каскадно возбуждаемый тип ловушек в более широком классе полупроводниковых материалов, начиная с кристаллических и заканчивая органическими полупроводниками и нанокристаллами, и обеспечивает расширенные функциональные возможности за счет определения не только характеристик ловушек, но и энергетической плотности их состояний. В способе по изобретению: обеспечивают образец полупроводника, пропускающий не менее 20% излучения в диапазоне длин волн от 300 до 1500 нм; охлаждают образец до температуры не выше 100 K; нагревают охлажденный образец до температуры не менее 300 K со скоростью не более 5 К/с; пропускают через образец в процессе его охлаждения и последующего нагревания световой пучок со спектром, лежащим в пределах от 300-500 нм до 500-1500 нм и имеющим отношение интенсивностей в спектральных максимумах и минимумах не более 20; регистрируют спектр излучения, прошедшего через образец в процессе его охлаждения и последующего нагревания; находят спектр поглощения образца путем сравнения известного спектра светового пучка, пропущенного через этот образец, и зарегистрированного спектра излучения; определяют, по меньшей мере, наличие ловушек по изменениям спектра поглощения. 6 з.п.ф-лы, 3 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к физике полупроводников, а конкретно - к способу определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике.
Уровень техники
В настоящее время известны различные способы, позволяющие исследовать ловушки носителей зарядов.
В авторском свидетельстве СССР №1385938 (опубл. 10.06.1996) описан способ определения параметров ловушек в полупроводниковых материалах, в котором на образец при двух значениях температуры подают пары импульсов напряжения, меняя интервал между импульсами. Данный способ позволяет установить параметры лишь одного типа ловушек в исследуемом материале, т.к. он применим только для монокристаллических низкоомных полупроводников (например, арсенида галлия), что определяется необходимостью измерения зависимостей переходного тока при подаче на образец импульсов напряжения. При этом на образец необходимо нанести электроды.
В патентах РФ №2399928 (опубл. 20.09.2010) и №2513651 (опубл. 20.04.2014) охарактеризованы способы детектирования ионизирующего излучения с помощью метода термически и оптически стимулированной люминесценции, возникающей в процессе опустошения ловушек и рекомбинации образованных в результате носителей. В этих документах описаны способы, в которых регистрируется интенсивность полос люминесценции при использовании ловушек с заранее известными характеристиками. Такой же тип ловушек использован и в заявке США №2010/0078559 (опубл. 01.04.2010), где раскрыт способ детектирования рентгеновских и гамма-лучей полупроводниковым детектором, стимулированным инфракрасным светом.
Раскрытие изобретения
В настоящем изобретении решается задача разработки такого способа исследования ловушек носителей зарядов в полупроводнике, который преодолевал бы ограничения известных способов и позволял исследовать каскадно возбуждаемый тип ловушек в более широком классе полупроводниковых материалов, начиная с кристаллических и заканчивая органическими полупроводниками и нанокристаллами, и имел расширенные функциональные возможности за счет определения не только характеристик ловушек, но и энергетической плотности их состояний.
Для решения этой задачи и достижения указанного технического результата в настоящем изобретении предложен способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике, заключающийся в том, что: обеспечивают образец полупроводника, пропускающий не менее 20% излучения в диапазоне длин волн от 300 до 1500 нм; охлаждают образец до температуры не выше 100 K; нагревают охлажденный образец до температуры не менее 300 K со скоростью не более 5 К/с; пропускают через образец в процессе его охлаждения и последующего нагревания световой пучок со спектром, лежащим в пределах от 300-500 нм до 500-1500 нм и имеющим отношение интенсивностей в спектральных максимумах и минимумах не более 20; регистрируют спектр излучения, прошедшего через образец в процессе его охлаждения и последующего нагревания; находят спектр поглощения образца путем сравнения известного спектра светового пучка, пропущенного через этот образец, и зарегистрированного спектра излучения; определяют по меньшей мере наличие ловушек по изменениям спектра поглощения.
Особенность данного способа состоит в том, что дополнительно могут определять параметры ловушек по изменениям спектра поглощения.
Другая особенность данного способа состоит в том, что образец могут помещать в криостат так, что угол между оптической осью светового пучка и нормалью к облучаемой поверхности образца отличен от 90°.
Еще одна особенность данного способа состоит в том, что световой пучок могут формировать путем коллимации и пространственной фильтрации излучения светового пучка.
Еще одна особенность данного способа состоит в том, что образец может быть выполнен в виде пластины или пленки из кристаллического либо органического низкомолекулярного или полимерного материала.
Еще одна особенность данного способа состоит в том, что образец может быть выполнен в виде пленки из нанокристаллов, микрокристаллов или порошков кристаллов с различными размерами частиц.
При этом образец может быть выполнен в виде пленки с органической или неорганической матрицей, в которую внедрены нанокристаллы, микрокристаллы или частицы порошков кристаллов.
Краткое описание чертежей
Настоящее изобретение иллюстрируется чертежами, которые поясняют пример реализации способа по настоящему изобретению.
На Фиг. 1 представлена условная схема, поясняющая энергетические уровни полупроводника с каскадно возбуждаемыми ловушками.
На Фиг. 2 показана схема установки для реализации способа по настоящему изобретению.
На Фиг. 3 приведены температурные зависимости оптического поглощения, связанного с каскадно возбуждаемыми ловушками, на различных длинах волн в нанокристаллах CdSe.
Подробное описание изобретения
Известно, что в ряде полупроводниковых материалов имеются многозарядные каскадно возбуждаемые ловушки носителей зарядов (A.V. Katsaba et al. Density of Surface States in Colloidal CdSe Nanoplatelets. Semiconductors, 49 (2015), 1323-1326), которые далее по тексту именуются просто ловушками. Под каскадным возбуждением здесь следует понимать термически активированное возбуждение ловушки с захваченным носителем (уровень 3 на Фиг. 1) в некоторое промежуточное состояние (уровень 2), а затем оптически активированный выброс в зону проводимости (уровень 1). Отметим, что на Фиг. 1 обозначено: G - скорость оптического возбуждения, γ0 - эффективная скорость рекомбинации (как излучательной, так и безызлучательной) носителей. Каскадное заполнение ловушек уровня 3 происходит через промежуточный уровень 2 со скоростями ƒ (с уровня 1 на уровень 2) и а (с уровня 2 на уровень 3). Каскадное возбуждение ловушек уровня 3 происходит в обратном порядке со скоростью термического возбуждения b (с уровня 3 на уровень 2) и оптического возбуждения g (с уровня 2 на уровень 1). Особенностью таких ловушек является отсутствие прямого оптического перехода с уровня 3 на уровень 1. Это означает, что такие ловушки нельзя выявить с помощью методики термо-стимулированной люминесценции, поскольку выброс в зону проводимости и дальнейшая рекомбинация зарядов требуют дополнительного оптического возбуждения, чтобы осуществить переход с уровня 2 на уровень 1. По тем же причинам невозможно установить наличие таких ловушек только при оптической стимуляции, так как переход с уровня 3 на уровень 2 является термически активированным и оптически пассивным.
Известные методы (описанные, например, в упомянутых патентах РФ №№2399928 и 2513651) характеризации каскадно возбуждаемых ловушек такого типа применяют термостимулированную люминесценцию с дополнительной подсветкой. Обычно такая подсветка выбирается длинноволновой (в красной и инфракрасной области спектра), чтобы не вносить вклад в межзонное поглощение и дополнительное запасание носителей в ловушках. Но такой метод позволяет выявить только долгоживущие ловушки, не имеющие механизмов безызлучательной релаксации, которая приводит к резкому уменьшению населенности ловушек и, стало быть, к существенному уменьшению чувствительности метода. Из-за этого невозможно установить абсолютные значения концентрации ловушек в полупроводнике по интенсивности сигнала термостимулированной люминесценции, поскольку часть носителей рекомбинировала безызлучательно еще до момента термической активации ловушек.
Способ по настоящему изобретению обходит эти недостатки. Возможная схема реализации данного способа приведена на Фиг. 2, где представлена схема соответствующей установки. На этой схеме показаны источник 1 белого света, испускающий световой пучок со спектром, лежащим в пределах от 300 нм до 1500 нм и имеющим отношение интенсивностей в спектральных максимумах и минимумах не более 20. Этот световой пучок проходит через коллимирующую линзу 2 и пространственный фильтр 3, после чего подается через соответствующее окно в криостат 4, внутри которого помещен образец 5, пропускающий не менее 20% излучения в указанном диапазоне длин волн. Этот образец 5 помещают в криостат 4 так, чтобы угол между оптической осью поступающего из пространственного фильтра 3 светового пучка и нормалью к облучаемой поверхности образца 5 был отличен от 90°. Прошедший через образец 5 световой пучок выходит из криостата 4, пропускается через другой пространственный фильтр 6 и фокусирующую линзу 7 и попадает на вход спектрометра 8 любого известного или разработанного в будущем типа.
В данном случае использование коллимирующей и фокусирующей линз 2 и 7 вместе с пространственными фильтрами 3 и 6 предпочтительно, т.к. позволяет избавиться от нежелательного сигнала люминесценции при регистрации спектров оптического поглощения. Еще большее подавление вклада люминесценции в регистрируемый сигнал (без уменьшения полезного сигнала и без искажения результатов) можно обеспечить, увеличивая расстояние от образца 5 до фокусирующей линзы 7.
Для реализации способа по настоящему изобретению образец 5 в криостате 4 охлаждают до температуры не выше 100 К. Затем охлажденный образец нагревают до температуры не менее 300 К со скоростью не более 5 К/с. И при охлаждении, и при нагреве через образец 5 пропускают световой пучок и регистрируют спектр прошедшего через образец 5 излучения. Спектр излучения, прошедшего через образец 5 в процессе его охлаждения и последующего нагревания, регистрируют, и по известному спектру испускания источника 1 находят спектр поглощения образца 5 путем сравнения известного спектра светового пучка, пропущенного через этот образец, и зарегистрированного спектрометром 8 спектра излучения. По изменениям найденного спектра поглощения определяют, по меньшей мере, наличие ловушек, поскольку изменение спектра оптического поглощения с ростом температуры является состоятельным критерием наличия ловушек такого типа.
Далее, по изменениям спектра оптического поглощения, измеренного спектрометром 8, дополнительно определяют следующие параметры выявленных ловушек.
По красной границе области дополнительного оптического поглощения, связанного с ловушками, можно установить глубину залегания выявленных ловушек.
По температурным зависимостям спектров поглощения можно определить энергии активации эмиссии носителей зарядов с ловушек с помощью методики, аналогично применяемой для анализа температурных зависимостей в методе термостимулированной люминесценции. Можно также найти плотность возбужденных состояний в таких ловушках, а при наличии ловушек с различными глубинами можно установить и распределение этих глубин.
На Фиг. 3 приведены температурные зависимости оптического поглощения, связанного с каскадно возбуждаемыми ловушками, на различных длинах волн в нанокристаллах CdSe. Эти графики фактически отражают населенность возбужденного состояния каскадно возбуждаемой ловушки (уровень 2 на Фиг. 1). Для дальнейшего определения энергии активации и плотности состояний применимы стандартные подходы к описанию термостимулированной люминесценции.
Используемый образец 5 может быть выполнен в виде пластины или пленки из кристаллического либо органического низкомолекулярного или полимерного материала. Но можно выполнить образец 5 и в виде пленки из нанокристаллов, микрокристаллов или порошков кристаллов с различными размерами частиц. В случае выполнения образца 5 в виде пленки с органической или неорганической матрицей в нее могут быть внедрены нанокристаллы, микрокристаллы или частицы порошков кристаллов.
Способ по настоящему изобретению не требует нанесения на образец 5 электродов. Преимуществом настоящего способа является возможность установления сразу большого количества каскадно возбуждаемых ловушек с различными энергиями. Еще одним преимуществом настоящего способа является регистрация спектров пропускания оптического излучения при постоянном оптическом возбуждении с помощью спектрометра с ПЗС-матрицей. Наличие постоянного оптического возбуждения позволяет избежать использования высокочувствительных детекторов излучения и дает возможность проследить динамику интенсивности спектров пропускания. Такая возможность позволяет не только выявить наличие нескольких типов ловушек, но также установить механизмы передачи носителей заряда между ловушками. Регистрация спектров оптического пропускания исследуемого образца 5 позволяет принципиально отделить два типа ловушек - опустошаемых только при оптическом или при одновременном оптическом и термическом возбуждении.
Claims (14)
1. Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике, заключающийся в том, что:
- обеспечивают образец упомянутого полупроводника, пропускающий не менее 20% излучения в диапазоне длин волн от 300 до 1500 нм;
- охлаждают упомянутый образец до температуры не выше 100 К;
- нагревают охлажденный образец до температуры не менее 300 К со скоростью не более 5 К/с;
- пропускают через упомянутый образец в процессе его упомянутого охлаждения и последующего нагревания световой пучок со спектром, лежащим в пределах от 300-500 нм до 500-1500 нм и имеющим отношение интенсивностей в спектральных максимумах и минимумах не более 20;
- регистрируют спектр излучения, прошедшего через упомянутый образец в процессе его охлаждения и последующего нагревания;
- находят спектр поглощения упомянутого образца путем сравнения известного спектра светового пучка, пропущенного через этот образец, и зарегистрированного спектра излучения;
- определяют, по меньшей мере, наличие упомянутых ловушек по изменениям упомянутого спектра поглощения.
2. Способ по п. 1, в котором дополнительно определяют параметры упомянутых ловушек по упомянутым изменениям спектра поглощения.
3. Способ по п. 1, в котором помещают упомянутый образец в криостат так, что угол между оптической осью упомянутого светового пучка и нормалью к облучаемой поверхности упомянутого образца отличен от 90°.
4. Способ по п. 1 или 3, в котором упомянутый световой пучок формируют путем коллимации и пространственной фильтрации излучения упомянутого светового пучка.
5. Способ по п. 1, в котором упомянутый образец выполнен в виде пластины или пленки из кристаллического либо органического низкомолекулярного или полимерного материала.
6. Способ по п. 1, в котором упомянутый образец выполнен в виде пленки из нанокристаллов, микрокристаллов или порошков кристаллов с различными размерами частиц.
7. Способ по п. 6, в котором упомянутый образец выполнен в виде пленки с органической или неорганической матрицей, в которую внедрены упомянутые нанокристаллы, микрокристаллы или частицы порошков кристаллов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143020A RU2649065C1 (ru) | 2016-11-01 | 2016-11-01 | Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143020A RU2649065C1 (ru) | 2016-11-01 | 2016-11-01 | Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2649065C1 true RU2649065C1 (ru) | 2018-03-29 |
Family
ID=61867208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016143020A RU2649065C1 (ru) | 2016-11-01 | 2016-11-01 | Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2649065C1 (ru) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU805873A1 (ru) * | 1979-09-03 | 1983-05-30 | Институт Физики Полупроводников Со Ан Ссср | Способ контрол ловушек неосновных носителей зар да в полупроводниках |
JPS59151047A (ja) * | 1983-02-18 | 1984-08-29 | Nippon Telegr & Teleph Corp <Ntt> | トラツプ分析装置 |
JPS6356928A (ja) * | 1986-08-28 | 1988-03-11 | Nippon Telegr & Teleph Corp <Ntt> | 半導体検査法 |
SU1385938A1 (ru) * | 1985-04-22 | 1996-06-10 | Э.А. Ильичев | Способ определения параметров ловушек в полупроводниковых материалах |
RU2079853C1 (ru) * | 1993-09-17 | 1997-05-20 | Ильичев Эдуард Анатольевич | Способ измерения электрофизических параметров полупроводниковых материалов |
JP2001085484A (ja) * | 1999-09-17 | 2001-03-30 | Denso Corp | 半導体のトラップ評価方法 |
US6391668B1 (en) * | 2000-05-01 | 2002-05-21 | Agere Systems Guardian Corp. | Method of determining a trap density of a semiconductor/oxide interface by a contactless charge technique |
US20100078559A1 (en) * | 2008-09-26 | 2010-04-01 | Csaba Szeles | Infra-red light stimulated high-flux semiconductor x-ray and gamma-ray radiation detector |
RU2399928C1 (ru) * | 2009-03-23 | 2010-09-20 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина" | Способ возбуждения дозиметрического сигнала оптически стимулированной люминесценции детекторов ионизирующих излучений на основе оксида алюминия |
RU2513651C2 (ru) * | 2012-08-01 | 2014-04-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты) |
-
2016
- 2016-11-01 RU RU2016143020A patent/RU2649065C1/ru not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU805873A1 (ru) * | 1979-09-03 | 1983-05-30 | Институт Физики Полупроводников Со Ан Ссср | Способ контрол ловушек неосновных носителей зар да в полупроводниках |
JPS59151047A (ja) * | 1983-02-18 | 1984-08-29 | Nippon Telegr & Teleph Corp <Ntt> | トラツプ分析装置 |
SU1385938A1 (ru) * | 1985-04-22 | 1996-06-10 | Э.А. Ильичев | Способ определения параметров ловушек в полупроводниковых материалах |
JPS6356928A (ja) * | 1986-08-28 | 1988-03-11 | Nippon Telegr & Teleph Corp <Ntt> | 半導体検査法 |
RU2079853C1 (ru) * | 1993-09-17 | 1997-05-20 | Ильичев Эдуард Анатольевич | Способ измерения электрофизических параметров полупроводниковых материалов |
JP2001085484A (ja) * | 1999-09-17 | 2001-03-30 | Denso Corp | 半導体のトラップ評価方法 |
US6391668B1 (en) * | 2000-05-01 | 2002-05-21 | Agere Systems Guardian Corp. | Method of determining a trap density of a semiconductor/oxide interface by a contactless charge technique |
US20100078559A1 (en) * | 2008-09-26 | 2010-04-01 | Csaba Szeles | Infra-red light stimulated high-flux semiconductor x-ray and gamma-ray radiation detector |
RU2399928C1 (ru) * | 2009-03-23 | 2010-09-20 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет-УПИ имени первого Президента России Б.Н. Ельцина" | Способ возбуждения дозиметрического сигнала оптически стимулированной люминесценции детекторов ионизирующих излучений на основе оксида алюминия |
RU2513651C2 (ru) * | 2012-08-01 | 2014-04-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ измерения поглощенной дозы ионизирующего излучения в термолюминесцентном детекторе на основе анионо-дефектного монокристалла оксида алюминия (варианты) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Turtos et al. | On the use of CdSe scintillating nanoplatelets as time taggers for high-energy gamma detection | |
Akselrod et al. | A radiation dosimetry method using pulsed optically stimulated luminescence | |
Okada et al. | Photochromism and Thermally and Optically Stimulated Luminescences of AlN Ceramic Plate for UV Sensing. | |
Krivenkov et al. | Effect of spectral overlap and separation distance on exciton and biexciton quantum yields and radiative and nonradiative recombination rates in quantum dots near plasmon nanoparticles | |
Ando et al. | Photoluminescence dynamics due to biexcitons and exciton-exciton scattering in the layered-type semiconductor PbI 2 | |
RU2649065C1 (ru) | Способ определения параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике | |
Kalidasan et al. | Effect of gamma ray irradiation on sodium borate single crystals | |
Chithambo et al. | Positron and luminescence lifetimes in annealed synthetic quartz | |
Shaughnessy et al. | Carrier-density-wave transport property depth profilometry using spectroscopic photothermal radiometry of silicon wafers I: Theoretical aspects | |
Uchida et al. | Attenuation characteristics of a Ce: Gd3Al2Ga3O12 scintillator | |
Bhowmick et al. | Time-resolved differential transmission in MOVPE-grown ferromagnetic InMnAs | |
Shinokita et al. | Ultrafast dynamics of bright and dark positive trions for valley polarization in monolayer WS e 2 | |
Gorbunov et al. | Spin transport over huge distances in a magnetized 2D electron system | |
Şahiner et al. | Assessing the impact of IR stimulation at increasing temperatures to the OSL signal of contaminated quartz | |
Poolton et al. | An automated system for the analysis of variable temperature radioluminescence | |
Isik et al. | Photo-transferred thermoluminescence of shallow traps in β-irradiated BeO ceramics | |
Shevchenko et al. | Emission properties of ZnSe scintillation crystals co-doped by oxygen and aluminum | |
Sankowska et al. | Thermal enhancement of the intensity of fluorescent nuclear tracks in lithium fluoride crystals | |
Monti et al. | Investigation of the spectrally resolved TL peaks of quartz in the 70° C–220° C temperature region | |
Vasnetsov et al. | Luminescence peculiarities of polyamide-6 α and γ forms | |
Keller et al. | Some optical properties of CdSe single crystals | |
Gal’chinskii et al. | Carrier trapping and delocalization in PbI 2-containing CdI 2 crystals | |
Ostatnický et al. | Electron-and hole-spin relaxation within excitons in GaAs quantum wells by non-degenerate pump-and-probe measurements | |
Łusakowski et al. | Magnetospectroscopy of CdTe/Cd₁-xMgxTe modulation-doped quantum wells in THz and visible range | |
Dresvyanskiy et al. | Dynamics of laser-induced formation of color centers in a lithium fluoride crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191102 |