RU2648821C1 - Комбинированный инструмент для эндовазальной лазерной облитерации вен - Google Patents
Комбинированный инструмент для эндовазальной лазерной облитерации вен Download PDFInfo
- Publication number
- RU2648821C1 RU2648821C1 RU2017120963A RU2017120963A RU2648821C1 RU 2648821 C1 RU2648821 C1 RU 2648821C1 RU 2017120963 A RU2017120963 A RU 2017120963A RU 2017120963 A RU2017120963 A RU 2017120963A RU 2648821 C1 RU2648821 C1 RU 2648821C1
- Authority
- RU
- Russia
- Prior art keywords
- fiber
- laser
- veins
- nozzle
- radiation
- Prior art date
Links
- 210000003462 vein Anatomy 0.000 title claims abstract description 31
- 230000005855 radiation Effects 0.000 claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 19
- 206010046996 Varicose vein Diseases 0.000 claims abstract description 13
- 208000027185 varicose disease Diseases 0.000 claims abstract description 13
- 239000000835 fiber Substances 0.000 claims description 43
- 239000010453 quartz Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 11
- 230000017531 blood circulation Effects 0.000 claims description 7
- 239000005445 natural material Substances 0.000 claims description 4
- 239000010431 corundum Substances 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 17
- 239000003814 drug Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000013307 optical fiber Substances 0.000 description 21
- 230000001681 protective effect Effects 0.000 description 14
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 238000003763 carbonization Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 230000004907 flux Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 210000004204 blood vessel Anatomy 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 210000003141 lower extremity Anatomy 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 210000003752 saphenous vein Anatomy 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 201000002282 venous insufficiency Diseases 0.000 description 4
- 238000002679 ablation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 208000037998 chronic venous disease Diseases 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 210000003038 endothelium Anatomy 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 210000003191 femoral vein Anatomy 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 210000002414 leg Anatomy 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 210000002073 venous valve Anatomy 0.000 description 3
- 206010014080 Ecchymosis Diseases 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 210000004763 bicuspid Anatomy 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 201000002816 chronic venous insufficiency Diseases 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 210000003513 popliteal vein Anatomy 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010048554 Endothelial dysfunction Diseases 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010020880 Hypertrophy Diseases 0.000 description 1
- 208000003367 Hypopigmentation Diseases 0.000 description 1
- 241001272720 Medialuna californiensis Species 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000037273 Pathologic Processes Diseases 0.000 description 1
- 208000034189 Sclerosis Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010047141 Vasodilatation Diseases 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000008482 dysregulation Effects 0.000 description 1
- 230000008694 endothelial dysfunction Effects 0.000 description 1
- 210000003725 endotheliocyte Anatomy 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000013305 flexible fiber Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 230000003425 hypopigmentation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 230000005658 nuclear physics Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000002746 orthostatic effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000009054 pathological process Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 210000001698 popliteal fossa Anatomy 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000000574 retroperitoneal space Anatomy 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Laser Surgery Devices (AREA)
Abstract
Изобретение относится к медицинской технике. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен (ЭВЛО) содержит корпус, в котором сформирована внутренняя камера в виде пространственной фигуры торообразного вида. Внутренняя поверхность торообразной камеры представляет собой часть поверхности Каталана, образованную вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лазерного излучения в радиальный кольцевой поток. Камера изолирована от кровотока в вене линзообразной крышкой. Дистальный конец световода сформирован в виде многогранной усеченной пирамиды и размещен в центральной камере насадки. Инструмент обладает повышенной надежностью. 1 з.п. ф-лы, 3 ил.
Description
Область техники
Область жизнедеятельности человека, к которой относится предлагаемое изобретение «Комбинированный инструмент для эндовазальной лазерной облитерации вен», - медицина, а именно сосудистая хирургия. Изобретение может быть использовано для хирургического лечения варикозной болезни вен нижних конечностей методом эндовазальной лазерной облитерации при термическом внутрисосудистом силовом воздействии излучения на сосуды или полые анатомические структуры. Изобретение может быть также рекомендовано к использованию его в проктологии, торакальной и челюстно-лицевой хирургии, артрологии, а также ветеринарной медицине.
Уровень техники
Значительный и эффективный результат предлагаемого изобретения «Комбинированный инструмент для эндовазальной лазерной облитерации вен» может быть получен при применении его для миниинвазивных лазерных технологий, в частности, таких как эндовазальная (эндовенозная) лазерная облитерация (коагуляция) (ЭВЛО, ЭВЛК) варикозных вен нижних конечностей человека.
ЭВЛО является современным методом малоинвазивной хирургии, призванным устранить патологический рефлюкс в поверхностных и перфорантных венах ног с помощью тепловой энергии лазерного излучения.
Венозная система нижних конечностей человека представляет собой разветвленную совокупность поверхностных вен, расположенную коаксиально систему глубоких вен, соединенных между собой перфорантными венами.
Система поверхностных вен включает большие и малые подкожные вены с их притоками, а система глубоких вен состоит из передних, задних большеберцовых вен, малоберцовых вен, которые, сливаясь воедино в подколенной ямке, образуют подколенную вену. В свою очередь, подколенная вена, сливаясь с малой подкожной веной, зачастую, на уровне коленного сустава формируют поверхностную бедренную вену. Последняя, продолжаясь в краниальном направлении, в верхней трети бедра принимает глубокую вену бедра, формируя, таким образом, общую бедренную вену. В общую бедренную вену, чуть ниже паховой складки впадает большая подкожная вена, после чего вены уходят в забрюшинное пространство, образуя системы подвздошной и полой вен.
Как любой гидравлический тракт, венозная система содержит в своей структуре клапаны, помогающие обеспечить однонаправленный кровоток обратно к сердцу. Венозные клапаны представляют собой, в основном, двустворчатые элементы - полулуния, вогнутый край которых свободен, а выпуклый прикреплен к стенке сосуда. Устройство клапанов свидетельствует об их пассивном функционировании в зависимости от направленности кровотока. При нормальной работе системы двустворчатые венозные клапаны закрываются под воздействием ретроградного кровотока, сводя свои свободные поверхности по направлению друг к другу, исключая рефлюкс и способствуя центростремительному продвижению венозной крови.
В системе «двустворчатый клапан - вена», как в любой длительно работающей циклической системе, могут возникать структурно-функциональные изменения, которые запускают каскад патологических процессов, приводящих к дисфункции и дисрегуляции эндотелия, повреждению венозной стенки, ее гипертрофии и ремоделированию. Являясь основными звеньями патогенеза варикозной трансформации вен, данные процессы приводят к нарушению нормального функционирования венозных клапанов с потерей способности последних плотно смыкаться под давлением обратного кровотока, развитию их относительной недостаточности и венозного рефлюкса. Венозный рефлюкс способствует развитию венозной гипертензии, прогрессированию клапанной недостаточности нижележащих вен, появлению, в начале, хронических заболеваний вен (ХЗВ), а позже и хронической венозной недостаточности (ХВН).
Варикозная болезнь нижних конечностей, как самая частая форма ХЗВ, в зависимости от клинической стадии, может проявляться расширением подкожных вен, отеком конечности, нарушением окраски ног в виде гипер- или гипопигментации голени/стопы, липодермасклерозом, наличием трофических язв.
Варикозное расширенные вены представляют собой кровеносные сосуды, подвергшиеся деформации и депланации поперечного сечения относительно оси, расширившиеся и потерявшие упругоэластичные свойства своей стенки. Застой крови внутри сосудов, спровоцированный клапанной дисфункцией, обуславливает дальнейшее увеличение геометрических размеров и искривление поперечных сечений вен. Варикозные вены обычно имеют синий или фиолетовый цвет и могут контурироваться непосредственно под кожей, приводя к характерному эстетическому недостатку. Варикозной трансформации обычно подвергаются подкожные вены ног, испытывающие высокое давление при ортостатических нагрузках, к примеру, у стоящего человека.
Механизм воздействия лазерного излучения на сосудистую стенку в совокупности факторов и их взаимовлияния недостаточно определен и ниже приводится одна из принятых рабочих гипотез.
Согласно этой гипотетической теории принцип ЭВЛО основан на термическом воздействии энергии лазерного излучения на интиму вены. Однако как установили многочисленные экспериментальные и клинические исследования, воздействие лазерного луча на стенку сосуда имеет опосредованный характер и напрямую зависит от длины волны.
Так, максимум поглощения энергии для лазера с длиной волны 980-1040 нм приходится на содержащуюся в сосуде кровь, а именно на гемоглобин эритроцитов. Под воздействием светового импульса происходит вскипание крови с последующим образованием пузырьков пара. Тепловое воздействие на стенку вены происходит благодаря ее контакту с этими пузырьками. При этом происходит прямое повреждение эндотелия и коагуляция белков в субэндотелиальных слоях.
Именно тотальная деструкция эндотелия имеет ведущее значение для качественной необратимой облитерации/абляции варикозной вены. В случае сохранения островков жизнеспособных эндотелиоцитов, именно последние могут стать источником регенерации с последующим возникновением кровотока и развитием реканализации.
Для обеспечения полной деструкции эндотелия при ЭВЛО необходимо создание достаточной плотности энергии лазерного излучения в просвете сосуда. Термическое повреждение интимы усугубляется карбонизированным торцом световода, который, разогревшись до экстремальных температур, приводит к выпариванию крови с образованием газа, состоящего из продуктов горения. Сгоревшие органические вещества в виде золы откладываются на интиме. Черный цвет интимы начинает максимально поглощать энергию лазера и разогреваться еще сильнее. Однако при более интенсивном и длительном воздействии происходит перфорация венозной стенки.
Глубокий и всесторонний анализ, проведенный ведущими специалистами-флебологами [1], [2], [3], показал, что ЭВЛО так и не стала стандартом в лечении варикозной болезни. В первую очередь из-за сохраняющегося уровня неудовлетворительных результатов, достигающего, по данным ряда авторов, 15% [1], [2]. В литературе нет публикаций, где бы указывался способ достижения 100% облитераций/абляций вен при ЭВЛО в отдаленном периоде наблюдения. Столь высокий процент реканализаций не может быть обоснован случайными факторами и является системным. Причем он не связан ни с методикой проведения ЭВЛО, ни с подбором лазерно-приборного оснащения, ни с выбором оптимальных режимов и параметров обеспечения ЭВЛО. И хотя в различных исследованиях имеется определенный разброс при выборе режимов ЭВЛО, в целом, они близки друг к другу и находятся в пределах точности экспериментов.
К примеру, линейная плотность энергии (ЛПЭ) потока лазерного излучения - один из важнейших параметров процесса, ограничен величиной не менее 80 Дж/см [3]. Исследованиями [2] ЛПЭ потока лазерного излучения (как и в предыдущем исследовании для лазеров с длиной волны 1470 нм и световодов с торцевой эмиссией излучения) получено:
- для гемоглобинпоглощающих «Н»-лазеров: диаметр вены до 9 мм, ЛПЭ 60-80 Дж/см вены;
- для водопоглощающих «W»- лазеров: диаметр вены до 10 мм, ЛПЭ 60-90 Дж/см вены.
При этом согласно тому же исследованию ЭВЛО вен диаметром более 13 мм в большинстве случаев приводит к неудовлетворительному результату по сочетанию боль/экхимоз/реканализация. Сравнение других рабочих параметров в ряде экспериментальных исследований - мощности, длины волны, скорости тракции и т.д. говорит о достаточной аутентичности применяемых методик как в России, так и за рубежом, исключая эти факторы из ситуации, определяющей причину отрицательного результата при ЭВЛО, как и фактор несовершенства лазерного оборудования.
Если при системном анализе способа воздействия известных лазерных хирургических методов считать, что два фактора: «лазерное оборудование» и «параметры реализации метода» не определяют итоговый результат как отрицательный, то за неблагополучный исход отвечает третий фактор. Это связь между двумя вышеприведенными факторами, ядро которых определяет сущность малоинвазивных способов воздействия энергии лазерного излучения на биологические структуры. Гибкая связь, подводящая лазерное излучение к операционному полю в пределах биологической структуры, носит название оптического световода, дистальный конец которого выполняет роль термического ланцета. Посредством такого исполнения гибкого волоконного световода удается обеспечить плотность мощности лазерного излучения, т.е. мощность, приходящуюся на единицу площади биологического объекта.
Гибкий оптический световод представляет собой сердечник, выполненный из сверхчистого кварца (процентное содержание в исходном сырье кварца не менее - 99,99985%). Кварцевый сердечник заключен в отражающую оболочку и чаще всего изготавливается из легированного кварца или полимера.
Дистальный конец гибкого оптического световода сформирован в виде усеченного конуса, кольца или пирамиды в зависимости от необходимой диаграммы излучения.
Используя различные приспособления на выходном (дистальном) конце рабочего волокна, можно менять пространственные характеристики выходного излучения. При использовании оптического волокна с плоским торцом, перпендикулярным оси волокна, излучение выходит вдоль волокна в виде расходящегося конусообразного луча с углом при вершине конуса, соответствующим числовой апертуре волокна (для кварцевых световодов около 25°). Естественно, что плотность мощности излучения уменьшается с удалением выходного торца волокна от объекта воздействия.
Кроме того, при дистанционном воздействии часть излучения отражается от ткани и может служить причиной нежелательного облучения хирурга, особенно его глаз.
Возможно контактное воздействие волоконным световодом на ткани, для чего дистальный конец рабочего кварцевого волокна на расстоянии примерно 5 мм очищают от защитной пластиковой оболочки и вводят в соприкосновение с тканью. Наличие физического контакта позволяет точно локализовать воздействие. Контакт с тканью исключает отражение излучения в окружающее пространство. При достаточной мощности излучения в месте контакта происходят загрязнение световода продуктами горения ткани, повышенное выделение тепла и, вызванный им, разогрев конца световода. При этом, на ткань осуществляется совместное воздействие лазерного излучения и раскаленного конца световода.
В некоторых случаях необходимо направить излучение перпендикулярно волокну. Для этого используют волоконный инструмент с боковым излучением (так называемый side-fiber), конец которого отполирован под углом, близким к 45°. Чтобы избежать повреждения торца волокна при соприкосновении с тканью, сверху на дистальный конец надевают защитный кварцевый колпачок. Чтобы можно было менять направление излучения, на волокно надевают специальный скользящий цанговый зажим, который зажимает волокно и позволяет вращать его вокруг оси [4].
В современной практике при проведении ЭВЛО используются световоды с торцевой (Bare-Tip), радиальной (Radial Fiber) и би-радиальной (Radial 2 Ring) эмиссией излучения. Как показывает опыт, световоды с торцевой эмиссией излучения не достаточно эффективны, требуют больших мощностей, чем радиальные, покрываются сажевым налетом (см. Приложение 1 к данной заявке на изобретение) и выходят из оптимального режима работы, приводя к перфорации венозной стенки.
Применение радиальных, а также би-радиальных световодов имеет свои особенности, c точки зрения теории надежности. Увеличение числа звеньев системы почти всегда уменьшает ее надежность и увеличивает число отказов. В системе световод-насадка, а тем более в бирадиальных световодах, кольцевые элементы увеличивают число сопряжений с сердцевиной светового волокна, что и приводит к частой фрагментации световолокна и, как правило, требует оперативного вмешательства [5], [6].
Но главным негативным фактором, оказывающим влияние на процесс проведения качественной облитерации/абляции, является карбонизация дистального конца световода и его элементов [1], [2], [3].
Результаты исследования [1], [2], [3] показали, что физические процессы, происходящие во время ЭВЛО, проходят в три стадии.
В начальный момент процесса ЭВЛО происходит выпаривание крови с образованием пузырьков газа. Появившаяся в процессе горения сажа откладывается на дистальном участке световода, что приводит к полной карбонизации рабочего конца.
На второй стадии начинает реализовываться непосредственное воздействие лазерного излучения на венозную стенку. Именно непосредственное воздействие излучения лазера на вену является основным фактором в реализации механизма ЭВЛО. От воздействия высокой температуры раскаленного торца световода интиму защищает эффект пленочного кипения. Если тракции световода не происходит или она производится слишком медленно, кровь полностью испаряется и эффект пленочного кипения исчезает.
Третья стадия предполагает непосредственное воздействие переразогретой рабочей части световода на венозную стенку.
Таким образом, воздействие лазерного излучения на венозный комплекс состоит из нескольких составляющих:
- прямое воздействие лазерного излучения;
- воздействие компонентами испаряющейся крови;
- воздействие переразогретой рабочей частью световода [1] и спонтанного, экспоненциального повышения температуры дистального конца световода с наращиванием на нем нагара, с возможным пережогом стенки вены и ее перфорацией.
Имеющиеся проблемы еще более усложняются наличием насадок на световодах с радиальной эмиссией и их узлов сопряжения с сердцевиной световода, являющегося проблемным элементом. Фрагментация по сопряжению ступицы насадки со световодом, излом, скалывание и обрыв световолокна, отсутствие центровки и самоустановки тела насадки в вене - вот неполный перечень несовершенств радиальных и би-радиальных кольцевых инструментов для ЭВЛО.
Кроме того, кварц является сверхчистым, оптико-прозрачным материалом. При нормальной температуре плавления 1713-1728°C кварц обладает твердостью равной 7 по шкале Мооса и плотностью равной 2,563. При высоких значениях температур его твердость снижается до 5 по шкале Мооса, а плотность становится равной 2,2.
Вследствие этого в предлагаемом изобретении предложено разделить световод. Функцию элемента, осуществляющего транспортировку лазерного излучения, сохранить за кварцевым оптическим световодом, а рабочий элемент - насадку выполнить из специального материала. Кроме того, кварц является высокоэффективным поглотителем теплового излучения. Коэффициент поглощения излучения у него лежит в пределах 15-20%.
Это предопределяет необходимость применения вместо кварца специальных материалов при изготовлении насадок, с формированием в них рабочей полости, прохождение которой не окажет существенного влияния на величину излучения.
Проведенный анализ патентов России, США, Белоруссии, Казахстана, Таджикистана, Германии по классу A61B на патентную чистоту предполагаемого изобретения позволила выбрать аналог и прототип (см. Приложение 2 к данной заявке на изобретение).
В качестве аналога для предлагаемого изобретения принят патент России № 2571322 «Устройство для облучения сосудов и полых органов» авторов Артюшенко В.Г., Даниелян Г.Л., Мазайшвили К.В., Меерович Г.А. [7].
В данном изобретении [7] предложено устройство, включающее лазер и оптоволоконный кабель, содержащий оптический разъем, световод с оптической сердцевиной, оптической рубашкой и защитной полимерной рубашкой, вытянутый диффузор с оптической сердцевиной и оптической рубашкой, включающий расположенные последовательно технологическую зону, оптическую зону и дистальный конус на конце, защитный колпачок, выполненный из оптически прозрачного инертного материала, прикрепленный своей внутренней цилиндрической поверхностью к оптической рубашке в технологической зоне диффузора, и термоусадочную защитную трубку на прилегающих друг к другу частях защитной полимерной рубашки световода и защитного колпачка диффузора, закрывающую технологическую зону диффузора. На поверхности оптической зоны диффузора выполнена спиральная канавка с шагом не меньше ее ширины и не больше 1/2 длины оптической зоны диффузора. Глубина канавки плавно увеличивается по направлению к дистальному конусу.
В указанном патенте [7], как и в предлагаемом изобретении, осуществлено дифференцирование световода от рабочего органа, представляющего собой удлиненный диффузор с нарезанной на цилиндрической части винтовой канавкой переменной глубины.
Недостатками данного патента [7] являются большая технологическая сложность изготовления удлиненного диффузора с винтовой канавкой переменной глубины и невозможностью использования собственного инструмента для глубокого проникновения в полые анатомические структуры.
Утверждение о том, что повышение надежности и долговечности инструмента определяется применением кварца и лейкосапфира, выращенного методом профилированного роста, является неправомерным.
Применение кварца и лейкосапфира при высоких уровнях мощности лазерного излучения не препятствует карбонизации, нагреву и развитию микротрещин защитных элементов инструмента. Это связано с природой кварца и структурой искусственно выращенных кристаллов лейкосапфира. Кроме того, указанное устройство громоздко и сложно в эксплуатации при облучении полых органов из-за невозможности глубокого проникновения в них.
В качестве прототипа предлагаемого изобретения принят патент России №2557888 «Устройство для эндолюминального лечения кровеносного сосуда» авторов Луковкин А.В., Тюрин Д.С., Михайличенко М.В., Калитко И.М. [8].
Технический результат патента [8] обеспечивается за счет того, что устройство для эндолюминального лечения кровеносного сосуда, содержащее гибкий волновод со светопроводной трубкой, имеющий удлиненную ось, проксимальный конец с разъемом, оптически соединяемый с источником лазерного излучения, дистальный конец, выполненный с возможностью размещения в кровеносном сосуде и содержащий по меньшей мере одну испускающую поверхность, испускающую излучение от источника излучения в сторону по отношению к удлиненной оси волновода на проходящий в угловом диапазоне участок окружающей стенки сосуда, при этом, устройство снабжено дополнительным источником лазерного излучения и датчиком приема отраженных излучений, по меньшей мере, основным рассеивателем в виде конуса с отклонением излучения, расположенным на оптическом выходе волновода между испускающей поверхностью волновода и защитным колпачком, прозрачным для лазерных излучений, и дополнительным рассеивателем для расширения зоны воздействия лазерного излучения, расположенным между защитным колпачком и основным рассеивателем, согласно изобретению дополнительно снабжено съемной стерилизуемой защитной оплеткой, выполненной из термоусаживающегося фторопласта в виде трубки со вставкой из УЗИ-контрастного материала, расположенной на волноводе поверх защитного колпачка, выполненного из сапфира.
К недостаткам данного патента [8] можно отнести неравномерность диаграммы излучения по окружности, а также использование искусственного сапфира. Изготовление защитного колпачка из искусственного сапфира не препятствует карбонизации, нагреву и развитию микротрещин защитных элементов инструмента. Это связано с технологией получения искусственного сапфира, при которой в массиве получаемого материала образуются микротрещины, число которых увеличивается при тепловом воздействии излучения и экспоненциальному нарастанию в них карбонизации.
Раскрытие изобретения
В основу изобретения поставлена задача усовершенствования инструмента для лечения варикозной болезни методом ЭВЛО путем повышения его надежности и эффективности с минимизацией неудовлетворительных результатов.
Целью данного изобретения является создание универсального комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО. Отличительным признаком предлагаемого инструмента, относительно аналога, является то, что насадка к оптическому световоду представляет собой пустотелый тор, образованный вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лучей в радиальный кольцевой поток перпендикулярно оси световода и вариации мощности потока энергии, герметично закрытый крышкой из того же материала, что и сама насадка, с удлиненной ступицей, посредством которой она сопряжена со световодом. В таком случае внутренняя поверхность торообразной объемной камеры представляет собой часть пространственных фигур вида: однополостной гиперболоид (см. Приложение 3 к данной заявке на изобретение), двуполостной параболоид или пустотелый тор с образованием поверхности Каталана.
Насадка выполнена из оптически прозрачного природного материала типа корунд, а сам корпус выполнен в виде цилиндра с торообразной объемной камерой, изолированной от внешней среды линзообразной кольцевой крышкой.
Световод выполнен в виде гибкого элемента, дистальный конец которого сформирован в виде многогранной усеченной пирамиды, изготовленной радиальной шлифовкой, и размещен в центральной камере насадки.
Такое решение позволяет лазерному излучению проходить пространство от дистального конца световода до зоны воздействия на биологическую ткань без значительного гашения потока энергии. Боковые поверхности насадки изолированы от окружающей среды специальным покрытием, например серебром или составом с высоким альбедо. Такая конструкция инструмента исключает непосредственный контакт дистального конца световода с кровью и веной и, как следствие, карбонизацию инструмента.
Такое техническое решение позволяет передать поток тепловой энергии лазерного излучения от граней дистального конца через пустотелую торообразную объемную камеру сквозь линзу к поверхности венозной стенки с осуществлением термического силового воздействия. При этом лазерное излучение, проходя через оптически прозрачную перегородку, спрямляется поверхностью, образованной кривой второго порядка, и преобразуется в радиально-кольцевое излучение, проходящее через верхний створ торообразной объемной камеры. В зависимости от условий проведения ЭВЛО внутренняя поверхность торообразной объемной камеры может быть выполнена по одной из кривых второго порядка - окружности, гиперболы или параболы. Для определения плотности потока излучения были проведены эксперименты на специально спроектированном и изготовленном стенде (см. Приложение 4 к данной заявке на изобретение) для испытания моделей насадок с различными торообразными объемными камерами (см. Приложение 5 к данной заявке). Насадки выполнялись в виде моделей из оптико-прозрачного высокопрочного органического стекла с использованием аффинного моделирования при коэффициенте масштабирования М 16:1 с подводом в центральную камеру насадки и измерениями плотностей потока излучения. Эксперименты показали, что наибольшая плотность потока достигается при параболической форме торообразной объемной камеры. При этом определено, что коэффициент поглощения излучения минимизируется и достигается величин 3-5% при прочих равных условиях эксперимента - величины наружного диаметра цилиндра насадки, глубины торообразной объемной камеры и сходности технологически процессов изготовления моделей.
К отличительному признаку предлагаемого инструмента относительно прототипа также относится то, что торообразная объемная камера закрыта линзообразной кольцевой крышкой, наружная поверхность которой представляет собой три сопряженные сферические поверхности разных радиусов. Это позволяет в процессе тракции световода с насадкой автоматически осуществлять самоцентрирование инструмента
Таким образом, новая совокупность общих (известных) и отличительных (новых) от прототипа существенных признаков, которыми характеризуется комбинированный инструмент для проведения ЭВЛО, является достаточной во всех случаях, на которые распространяется объем правовой защиты, так как решает поставленную задачу.
Обозначенные признаки, характеризующие изобретение, не являются обязательными, но, по мнению заявителя, являются лучшими и не исключают возможности иного конкретного эквивалентного выполнения комбинированного инструмента для проведения ЭВЛО в пределах указанной сущности изобретения.
Причинно-следственная связь отличительных (новых) признаков при их взаимодействии с известными (общими) признаками в обеспечении новых свойств объекта изобретения, обусловленных поставленной технической задачей, заключается в следующем:
- в связи с тем, что комбинированный инструмент для ЭВЛО представляет собой насадку, сопряженную со световодом, выполненную в виде цилиндра с торообразной объемной камерой, внутренняя поверхность которой образована пространственными фигурами вида: однополостной гиперболоид, двуполостной параболоид или пустотелый тор, то есть поверхностями Каталана. При этом лазерное излучение, проходя через оптически прозрачную перегородку, спрямляется в параллельный пучок, оказывающий воздействие на венозную стенку. Создаваемое при этом радиально-кольцевое равномерное излучение оказывает эффективное термическое воздействие, повышающее надежность облитерации;
- дистальный конец световода, расположенный в герметичной камере насадки, изолирован от кровотока и контакта с венозной стенкой. Это предотвращает перегрев рабочей части инструмента и его карбонизацию, возможность перфорации венозной стенки, развитие тромбозов и перифлебитов облитерируемых вен, появление экхимозов в послеоперационном периоде;
- корпус насадки и линзообразная кольцевая крышка выполняются из оптически прозрачного природного материала типа корунд. Световод изготавливается из очищенного кварца. Световод и корпус насадки сопрягаются в ступице насадки посредством оптико-прозрачного клеевого соединения на основе эпоксидных смол. При такой комбинации материалов и конструктивных особенностей уменьшается коэффициент поглощения лазерного излучения (пустотелая торообразная объемная камера), уменьшается потребляемая мощность, увеличивается теплопроводность элементов насадки и надежность всей системы;
- дистальный конец световода выполняется в виде многогранной усеченной пирамиды, произведенной радиальной шлифовкой, и размещается в центральной камере насадки.
В дальнейшем изобретение поясняется подробным описанием примера конкретного выполнения его лучшего варианта со ссылками на прилагаемые чертежи.
Перечень чертежей изобретения
На фиг. 1 изображен инструмент для лечения варикозной болезни методом ЭВЛО, общий вид, поперечный разрез. Условно на разрезе совмещены поверхности однополостного гиперболоида (левая сторона торообразной камеры) и двуполостного параболоида (правая сторона торообразной камеры).
На фиг. 2 изображен инструмент для лечения варикозной болезни методом ЭВЛО, вид сбоку.
На фиг. 3 изображен инструмент для лечения варикозной болезни методом ЭВЛО, разрез по ступице в месте сопряжения ступицы насадки со световодом посредством клеевого соединения.
Перечень обозначений и наименований элементов изобретения:
1 - световод
2 - корпус
3 - крышка
4 - оптико-прозрачный клей
Осуществления изобретения
В основу изобретения поставлена задача создания комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО.
Поставленная задача решается тем, что насадка к оптическому световоду представляет собой пустотелый тор, образованный вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лучей в радиальный кольцевой поток перпендикулярно оси световода и вариации мощности потока энергии, герметично закрытый крышкой из того же материала, что и сама насадка с удлиненной ступицей, посредством которой она сопряжена со световодом. В таком случае внутренняя поверхность торообразной объемной камеры должна представлять собой часть пространственных фигур вида: однополостной гиперболоид, двуполостной параболоид или пустотелый тор.
Такое техническое решение комбинированного инструмента для проведения малоинвазивных лазерных операций, в том числе и ЭВЛО, позволяет получить радиально-кольцевое равномерное излучение, оказывающее эффективное термическое воздействие на венозную ткань, повышающее надежность облитерации, гарантию отсутствия карбонизации и повышение безопасности, приводя к росту положительных результатов операций.
Кроме того, такое техническое решение позволяет лазерному излучению проходить пространство от дистального конца световода до зоны воздействия на биологическую ткань без значительного гашения потока плотности энергии излучения.
Вариация плотности потока излучения с непосредственным воздействием на венозную ткань, при необходимости, может быть осуществлена путем замены одной поверхности торообразной объемной камеры на другую поверхность. То есть поверхность, образующая пространственную фигуру гиперболоид, на поверхность, образующую параболоид и т.д.
Изобретение не ограничивается описанными и показанными на чертежах вариантами реализации, но может быть изменено, модифицировано и дополнено в рамках объема, определенного формулой изобретения.
Изобретение проверено в процессе стендовых и модельных испытаний и результаты испытаний полностью подтвердили его техническую и экономическую эффективность, а также целесообразность широкого использования.
Источники информации
1. Шевченко Ю.Л., Стойко Ю.М., Мазайшвили К.В., Максимов С.В., Цыплящук А.В., Париков М.А., Игнатьева Н.Ю., Захаркина О.Л. Выбор оптимальных параметров излучения 1470 нм для эндовенозной лазерной облитерации // Флебология. - 2013. - №4. - С. 18-24.
2. Шайдаков Е.В., Илюхин Е.А., Петухов А.В., Росуховский Д.А. Сравнение лазеров с длиной волны 970 и 1470 нм при моделировании эндовазальной лазерной облитерации вен in vitro // Флебология. - 2011. - № 4. - С. 23-30.
3. Шевченко Ю.Л., Стойко Ю.М., Мазайшвили К.В., Хлевтова Т.В. Механизм эндовенозной лазерной облитерации: новый взгляд // Флебология. - 2011. - Том 5, № 1. - С. 42-46.
4. Ландсберг Г.С. Элементарный учебник физики. Том 3. Колебания и волны. Оптика. Атомная и ядерная физика. - М., 1952 г. - 656 с.
5. Селиверстов Е.И., Балашов А.В., Лебедев И.С., Ан Е.С. Случай фрагментации световода в большой подкожной вене после эндовенозной лазерной облитерации // Флебология. - 2014. - № 4. - С. 55-57.
6. Шевченнко Ю.Л., Стойко Ю.М. / Клиническая флебология. М.: ДПК Пресс, 2016. - 256 с., ил.
7. Патент № 2571322, кл. МПК A61N 5/067, С1, «Устройство для облучения сосудов и полых органов» Андрюшенко В.Г., Даниелян Г.Л., Мазайшвили К.В., Меерович Г.А., дата подачи заявки 13.11.2014 г., дата опубликования 20.12.2015 г.
8. Патент №2557888, кл. МПК A61N 5/067, A61B 18/24, С2, «Устройство для эндолюминального лечения кровеносного сосуда» Луковкин А.В., Тюрин Д.С., Михайличенко М.В., Калитко И.М., дата подачи заявки 27.06.2014 г., дата опубликования 27.07.2015 г.
Claims (2)
1. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен, состоящий из оптического кварцевого световода и насадки из природного материала типа корунд, отличающийся тем, что в корпусе насадки цилиндрической формы сформирована пустотелая кольцевая торообразная камера, внутренняя полость которой представляет собой часть поверхности Каталана, образованную вращением кривой второго порядка вокруг длинной оси световода с возможностью фокусировки лазерного излучения в радиальный кольцевой поток, а дистальный конец световода выполнен в виде многогранной усеченной пирамиды и установлен в герметичной камере в центральной части корпуса насадки.
2. Инструмент для лечения варикозной болезни методом эндовазальной лазерной облитерации вен по п. 1, отличающийся тем, что торообразная камера герметично изолирована от кровотока в вене линзообразной крышкой, выполненной из такого же природного материала, что и сама насадка, наружная поверхность которой представляет собой три сопряженные сферические поверхности разных радиусов, посредством которых осуществляется самоцентровка насадки в вене.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120963A RU2648821C1 (ru) | 2017-06-15 | 2017-06-15 | Комбинированный инструмент для эндовазальной лазерной облитерации вен |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017120963A RU2648821C1 (ru) | 2017-06-15 | 2017-06-15 | Комбинированный инструмент для эндовазальной лазерной облитерации вен |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2648821C1 true RU2648821C1 (ru) | 2018-03-28 |
Family
ID=61867033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017120963A RU2648821C1 (ru) | 2017-06-15 | 2017-06-15 | Комбинированный инструмент для эндовазальной лазерной облитерации вен |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2648821C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU185204U1 (ru) * | 2018-05-23 | 2018-11-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ковровская государственная технологическая академия имени В.А. Дегтярева" | Устройство для эндолюминальной термической облитерации варикозных вен |
RU2707912C2 (ru) * | 2018-06-21 | 2019-12-02 | Ришал Мамедович Агаларов | Устройство для лазерного облучения сосудов и внутренних органов |
RU2790759C1 (ru) * | 2022-07-12 | 2023-02-28 | Алексей Владимирович Луковкин | Устройство для эндолюминального лечения варикозной болезни |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100179525A1 (en) * | 2008-02-28 | 2010-07-15 | Wolfgang Neuberger | Endoluminal laser ablation device and method fir treating veins |
RU2012137100A (ru) * | 2012-08-29 | 2014-03-10 | Михаил Юрьевич Лукьяненко | Устройство для эндоваскулярной лазерной облитерации вен |
RU2526414C2 (ru) * | 2012-10-08 | 2014-08-20 | Сергей Евгеньевич Гончаров | Способ и устройство эндолюминального лечения кровеносного сосуда |
RU2557888C1 (ru) * | 2014-06-27 | 2015-07-27 | Алексей Владимирович Луковкин | Устройство для эндолюминального лечения кровеносного сосуда |
-
2017
- 2017-06-15 RU RU2017120963A patent/RU2648821C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100179525A1 (en) * | 2008-02-28 | 2010-07-15 | Wolfgang Neuberger | Endoluminal laser ablation device and method fir treating veins |
RU2012137100A (ru) * | 2012-08-29 | 2014-03-10 | Михаил Юрьевич Лукьяненко | Устройство для эндоваскулярной лазерной облитерации вен |
RU2526414C2 (ru) * | 2012-10-08 | 2014-08-20 | Сергей Евгеньевич Гончаров | Способ и устройство эндолюминального лечения кровеносного сосуда |
RU2557888C1 (ru) * | 2014-06-27 | 2015-07-27 | Алексей Владимирович Луковкин | Устройство для эндолюминального лечения кровеносного сосуда |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU185204U1 (ru) * | 2018-05-23 | 2018-11-26 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ковровская государственная технологическая академия имени В.А. Дегтярева" | Устройство для эндолюминальной термической облитерации варикозных вен |
RU2707912C2 (ru) * | 2018-06-21 | 2019-12-02 | Ришал Мамедович Агаларов | Устройство для лазерного облучения сосудов и внутренних органов |
RU2790759C1 (ru) * | 2022-07-12 | 2023-02-28 | Алексей Владимирович Луковкин | Устройство для эндолюминального лечения варикозной болезни |
RU2817685C1 (ru) * | 2023-10-06 | 2024-04-18 | Алексей Владимирович Луковкин | Устройство для эндовенозной лазерной облитерации извитых притоков большой и малой подкожных вен нижних конечностей |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7324202B2 (ja) | マルチスポットレーザプローブのマルチコアファイバ | |
ES2409732T3 (es) | Sistema de fotoablación | |
US9861437B2 (en) | Guided cardiac ablation catheters | |
RU2449816C2 (ru) | Термически устойчивый наконечник осветительного зонда | |
Hutchens et al. | Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery | |
JPH06343651A (ja) | 柔軟組織のレーザ手術のためのファイバーオプティック・プローブ | |
JPS61502168A (ja) | 内科および外科用レ−ザ探針 | |
JP2004105735A5 (ru) | ||
Nguyen et al. | Circumferential irradiation for interstitial coagulation of urethral stricture | |
RU2648821C1 (ru) | Комбинированный инструмент для эндовазальной лазерной облитерации вен | |
JP7292301B2 (ja) | 体組織治療装置及び該装置の製造方法 | |
Ward | Molding of laser energy by shaped optic fiber tips | |
US5658275A (en) | Surgical laser instrument | |
RU2528655C1 (ru) | Волоконно-оптический инструмент с изогнутой дистальной рабочей частью | |
US11389240B2 (en) | Fiber probe that emits a pair of ring beams for laser ablation | |
CN221691272U (zh) | 一种基于光栅效应带温度监测的光纤导管 | |
RU2803933C1 (ru) | Лазерный скальпель | |
CA1266304A (en) | Catheter system for controlled removal by radiant energy of biological obstructions | |
RU2790759C1 (ru) | Устройство для эндолюминального лечения варикозной болезни | |
RU2817685C1 (ru) | Устройство для эндовенозной лазерной облитерации извитых притоков большой и малой подкожных вен нижних конечностей | |
Peshko et al. | Fiber photo-catheters for laser treatment of atrial fibrillation | |
RU2038106C1 (ru) | Лазерное излучающее устройство для медицинской обработки | |
RU185204U1 (ru) | Устройство для эндолюминальной термической облитерации варикозных вен | |
CN209966549U (zh) | 下肢静脉曲张消融术用激光治疗仪 | |
Peshko et al. | Fiber photo-catheters for invasive and less invasive treatment of atrial fibrillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190616 |