RU2646419C1 - Электрический сенсор на пары гидразина - Google Patents

Электрический сенсор на пары гидразина Download PDF

Info

Publication number
RU2646419C1
RU2646419C1 RU2016149975A RU2016149975A RU2646419C1 RU 2646419 C1 RU2646419 C1 RU 2646419C1 RU 2016149975 A RU2016149975 A RU 2016149975A RU 2016149975 A RU2016149975 A RU 2016149975A RU 2646419 C1 RU2646419 C1 RU 2646419C1
Authority
RU
Russia
Prior art keywords
hydrazine
sensor
nanoplates
graphene
concentration
Prior art date
Application number
RU2016149975A
Other languages
English (en)
Inventor
Александр Васильевич Баранов
Юлия Александровна Громова
Алексей Юрьевич Дубовик
Екатерина Петровна Колесова
Владимир Григорьевич Маслов
Максим Андреевич Миропольцев
Анна Олеговна Орлова
Иван Алексеевич Резник
Анатолий Валентинович Фёдоров
Сергей Александрович Черевков
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО)
Priority to RU2016149975A priority Critical patent/RU2646419C1/ru
Application granted granted Critical
Publication of RU2646419C1 publication Critical patent/RU2646419C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности. Электрический сенсор на пары гидразина содержит диэлектрическую подложку, на которой расположены электроды и чувствительный слой, меняющий фотопроводимость в результате адсорбции паров гидразина, состоящий из структуры графен-полупроводниковые нанокристаллы в виде квантовых точек, фотопроводимость которой уменьшается при адсорбции молекул гидразина на поверхность полупроводниковых нанокристаллов пропорционально концентрации паров гидразина в пробе, при этом полупроводниковые нанокристаллы выполнены в виде полупроводниковых нанопластинок в развернутом состоянии. Технический результат – снижение порога чувствительности, расширение динамического диапазона определения концентрации паров гидразина и увеличение срока службы сенсора. 10 ил.

Description

Изобретение относится к устройствам и материалам для обнаружения и определения концентрации паров гидразина в атмосфере или пробе воздуха (химическим сенсорам) и может быть использовано в медицине, биологии, экологии и различных отраслях промышленности.
Известен сенсор для детектирования в воздухе азотосодержащих соединений (молекул гидразина, аммиака, пиридина и подобных им) «Обратимый оптический волноводный газовый сенсор» (Патент США № US 4,513,087, заявка 462,493, дата публикации 23.04.1985, дата приоритета 31.01.1983), принцип работы которого основан на изменении цвета красителя при взаимодействии с парами аналита. Краситель расположен в тонком капилляре, по которому распространяется монохроматический свет. В присутствии аналита происходит обратимая химическая реакция в результате, который изменяется спектр поглощения красителя и, соответственно, изменяется степень поглощения красителем света в волноводе. Регистрация интенсивности света на выходе из волновода позволяет судить о наличии аналита в воздухе и о его концентрации. К общим недостаткам колориметрических сенсоров можно отнести низкую чувствительность (0,02 мг/м3=0,02 млн-1 при предельно допустимой концентрации гидразина 10 млрд-1), невозможность количественной дистанционной оценки концентрации гидразина в парах, краткий срок службы, обусловленный расходованием реагентов чувствительного слоя.
Известен хеморезистивный сенсор на пары аммиака и гидразина «Изготовление проводящих пленок и использование их в качестве газового сенсора» (Европейский патент №0411793А2, заявка 9030795.9, дата публикации 06.03.1991, дата приоритета 20.07.1990). В данном патенте показано, что проводимость пленок полипиролла, сформированных путем погружения непроводящей подложки в коллоидный раствор полипиролла образованного в результате окисления пиролла хлоридом железа, обратимо изменяется в присутствии гидразина и аммония. Несмотря на высокую чувствительность, данный сенсор обладает инерционностью отклика (порядка 1 минуты) и крайне чувствителен к наличию паров воды в атмосфере.
Известен хеморезистивный сенсор для детектирования гидразина «Химический сенсор на гидразин» (Патент США № US 8,105,539 В2, заявка 11/842,281, дата публикации 31.01.2012, дата приоритета 21.08.2007). Принцип работы данного сенсора основан на уменьшении сопротивления активного слоя при взаимодействии его с парами гидразина в результате химического восстановления из тетрахлоурата (III) калия металлического золота. Помимо изменения электрического отклика устройства формирование микрочастиц золота приводит к изменению цвета активного элемента с желтого на черный. Основным недостатком данного сенсора является необратимость химической реакции, которая приводит к невозможности повторного использования сенсора.
Известен электрохимический сенсор на пары гидразина «Электрохимический газовый сенсор» » (Европейский патент №0190566 А2, заявка 86100340.8, дата публикации 13.08.1986, дата приоритета 13.01.1986), в котором детекция гидразина в электрохимической ячейке происходит по изменению силы тока между зондом и электродом сравнения за счет электрохимической реакции на поверхности зонда. Данный сенсор также обладает высокой инерционностью отклика и относительно большим временем релаксации после удаления из пробы паров гидразина (порядка 1-2 минут). При этом нижняя температура работы сенсоров такого типа ограничена температурой замерзания электролита.
Наиболее близок к заявляемому изобретению и принят в качестве прототипа «Электрический сенсор на пары гидразина» (Патент РФ №2522735, МПК G01N 27/12, дата публикации 21.05.2014, дата приоритета 26.11.2012). Активным элементом прототипа является многослойная гибридная структура на основе графена и коллоидных полупроводниковых нанокристаллов, выполненных в виде квантовых точек (КТ), расположенная на диэлектрической подложке между двух электродов. В структуре графен-КТ под действием света, который способны эффективно поглощать КТ, наблюдается увеличение проводимости за счет фотоиндуцированного переноса заряда от КТ к графену (Gromova Y.A., Alaferdov A.V., Rackauskas S., Ermakov V.A., Maslov V.G., Moshkalev S.A., Baranov A.V., Fedorov A.V. Photoinduced electrical response in quantum dots/graphene hybrid structure// JAP, 118 (10), 104305 (1-6) (2015) и G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. Pelayo, G. de Arquer, F. Gatti & Frank H. L. Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain // Nature Nanotechnology, 7, 363-368 (2012)). Принцип действия прототипа основан на уменьшении фотопроводимости структуры графен-КТ в присутствии паров гидразина в результате сорбции молекул гидразина на поверхность КТ. Сорбция молекул гидразина на поверхность КТ сопровождается появлением дополнительного канала релаксации фотовозбуждения в КТ, который эффективно конкурирует с переносом заряда между КТ и графеном. Это приводит к уменьшению эффективности переноса заряда от КТ к графену и, как результат, к уменьшению, проводимости структуры графен-КТ. Порог чувствительности и динамический диапазон определения концентрации паров гидразина в прототипе зависят от относительной площади контакта между слоями графена и КТ, которая выражается в процентах от общей площади слоя графена.
В прототипе слои КТ на поверхность графена наносились методом центрифугирования ("spin-coating"). В работе (Kolesova Е.Р. et al. Aggregation of quantum dots in hybrid structures based on TiO2 nanoparticles // Proceedings of SPIE, 9884, pp. 988431 (1-10) (2016)) было продемонстрировано, что при данном методе формирования сухих слоев коллоидных квантовых точек наблюдается ярко выраженная неравномерность поверхностной концентрации КТ, которая обусловлена агрегацией КТ в процессе формирования сухих слоев. Это обстоятельство неизбежно приводит к уменьшению относительной площади контакта между слоями графена и КТ и, как результат, приводит к увеличению порога обнаружения паров гидразина. Также было установлено, что наличие агрегатов КТ в сухих слоях, сформированных методом центрифугирования, обуславливает увеличение скорости фотоиндуцированной деградации оптических свойств КТ, которая приводит к уменьшению фотопроводимости структуры графен-КТ [Reznik I.A. et al. Influence of the QD luminescence quantum yield on photocurrent in QD / graphene hybrid structures // Proceedings of SPIE, 9884, pp.98843A (1-8) (2016)) и, как результат к уменьшению чувствительности сенсора и к сокращению срока службы сенсора. Таким образом, использование в качестве активного элемента гибридной структуры графен-КТ, сформированной в результате нанесения методом центрифугирования слоев КТ на слои графена, ограничивает порог чувствительности и срок службы прототипа.
Решается задача снижения порога чувствительности, расширения динамического диапазона определения концентрации паров гидразина и увеличения срока службы сенсора.
Сущность предполагаемого изобретения заключается в том, что электрический сенсор на пары гидразина содержит диэлектрическую подложку, на которой расположены электроды и чувствительный слой, меняющий фотопроводимость в результате адсорбции паров гидразина. При этом в качестве активного элемента используется гибридная структура, состоящая из графена и полупроводниковых квантовых нанопластинок в развернутом состоянии. Толщина данных нанокристаллов составляет единицы нанометров, что обуславливает наличие квантово размерных эффектов в нанопластинках, а латеральные размеры пластинок составляют десятки нанометров. Квантование электронной подсистемы в нанопластинках приводит к тому, что времена жизни экситона в данных нанокристаллах имеют близкие значения с временами жизни экситона в полупроводниковых квантовых точках, что позволяет реализовать эффективный перенос заряда между нанопластинками и графеном. Переход от сферических нанокристаллов (КТ), диаметр которых варьируется от 2 до 6 нм, к нанопластинам с латеральными размерами в десятки нанометров позволяет существенно увеличить площадь контакта между одиночным нанокристаллом и графеном, а также значительно увеличить площадь контакта поверхности нанокристалла с парами гидразина. Проведенные недавно исследования (Kolesova Е.Р. et al. Aggregation of quantum dots in hybrid structures based on Ti02 nanoparticles // Proceedings of SPIE, 9884, pp. 988431 (1-10) (2016)) показали, что применение модифицированного метода Ленгмюра-Блоджетт для формирования сухих слоев коллоидных нанокристаллов позволяет минимизировать агрегацию нанокристаллов по сравнению со слоями, сформированными методом центрифугирования, и ингибировать фотоиндуцированную деградацию оптических свойств нанокристаллов в сухих слоях. Исследование слоев квантовых нанопластинок, нанесенных модифицированным методом Ленгмюра-Блоджетт на диэлектрические подложки, показало, что применение данного метода позволяет формировать образцы, в которых нанопластинки находятся в развернутом состоянии. Поэтому, при формировании активного элемента в предполагаемом изобретении при нанесении слоев нанопластинок на слои графена применялся модифицированный метод Ленгмюра-Блоджетт, что позволяет сформировать однородные слои нанопластинок в развернутом состоянии на поверхности графена и, как результат, увеличить чувствительность и срок службы сенсора. Использование нанопластинок в развернутом состоянии в составе предполагаемого изобретения позволяет существенно увеличить площадь поверхности одиночного нанокристалла по сравнению с полупроводниковыми квантовыми точками, что приводит к увеличению максимального числа молекул гидразина, способных сорбироваться на одиночный нанокристалл, и, как результат, увеличивает динамический диапазон определения концентрации паров гидразина в пробе.
Предполагаемый сенсор для детектирования паров гидразина имеет следующие преимущества:
1. Более высокая чувствительность определения паров гидразина. Данное преимущество обеспечивается за счет увеличения площади контакта нанокристалла с поверхностью графена, в результате которого увеличивается фотопроводимость структуры графен - полупроводниковые нанопластинки в развернутом состоянии по сравнению со структурой графен-КТ, и уменьшением агрегации нанокристаллов в результате изменения метода формирования структуры графен - полупроводниковые нанопластинки.
2. Увеличенный динамический диапазон определения концентрации паров гидразина в пробе. Данное преимущество достигается за счет увеличения максимального числа молекул гидразина, способных сорбироваться на поверхность отдельного нанокристалла и полностью ингибировать перенос заряда от нанопластинок к графену.
3. Увеличенный срок эксплуатации сенсора. Данное преимущество достигается использованием модифицированного метода Ленгмюра-Блоджетт для формирования активного элемента сенсора, который позволяет минимизировать агрегацию нанокристаллов в сухих слоях и ингибировать фотоиндуцированную деградацию их оптических свойств.
Сущность предполагаемого изобретения поясняется на фиг. 1-10, на которых представлены:
Фиг. 1. Спектры поглощения (1) и люминесценции (2) коллоидных растворов CdSe нанопластинок в гексане;
Фиг. 2. Изображение, полученное на сканирующем электронном микроскопе CdSe нанопластинок, нанесенных на подложку методом центрифугирования;
Фиг. 3. Спектры поглощения (1) и кругового дихроизма (3) коллоидного раствора CdSe нанопластинок в гексане;
Фиг. 4. Изображение, полученное на сканирующем электронном микроскопе CdSe нанопластинок, нанесенных на подложку модифицированным методом Ленгмюра-Блоджетт;
Фиг. 5. Люминесцентные изображения и спектры люминесценции CdSe нанопластинок, нанесенных на подложку модифицированным методом Ленгмюра-Блоджетт, зарегистрированные на люминесцентном конфокальном микроскопе. Спектры люминесценции регистрировались с выделенных кругами участков;
Фиг. 6. Схема регистрации тока, протекающего через сенсор: 4 - слой CdSe нанопластинок; 5 - слой графена; 6 - титановые контакты; 7 - подложка SiO2; стрелкой показано внешнее облучение светодиодом мощностью 50 мВт, с максимумом излучения на длине волны 450 нм, периодически подающееся на сенсор;
Фиг. 7. Зависимость фотопроводимости сенсора от внешнего освещения светодиодом мощностью 50 мВт с максимумом излучения на длине волны 450 нм. Заштрихованные области соответствуют периодам освещения сенсора светодиодом;
Фиг. 8. Схематичное изображение установки для контролируемой подачи/откачивания паров гидразина: 8 - насос для продувки установки воздухом для удаления паров гидразина; 9 - герметичные пробки; 10 - вентиль для регуляции концентрации паров гидразина; 11 - герметичная пробка с клапаном для подачи воздуха от насоса 8; 12 - герметичная пробка с впаянными контактами для подключения сенсора к микроамперметру; 13 - соединительные шланги; 14 - водный раствор гидразина; 15 - камера, в которую помещается емкость с раствором гидразина; 16 - камера, в которую помещается сенсор; 17 - источник внешнего облучения сенсора; 18 - сенсор; 19 - держатель сенсора с микрозажимами;
Фиг. 9. Зависимость проводимости сенсора от концентрации паров гидразина в пробе. На вставке приведен начальный участок кривой в увеличенном масштабе. IТ - темновая проводимость сенсора;
Фиг. 10. Зависимость фотопроводимости сенсора от времени облучения сенсора светодиодом 450 нм (мощность 50 мВт), слои CdSe нанопластинок наносились модифицированным методом Ленгмюра-Блоджетт (20) и методом центрифугирования (21).
Для демонстрации работоспособности предполагаемого сенсора на титановых электродах была сформирована гибридная многослойная структура графен - полупроводниковые нанопластинки в развернутом состоянии. Нанопластинки селенида кадмия были синтезированы согласно методике, описанной в работе (
Figure 00000001
Bouet et al. Two-Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets // Chemistry of Materials, 25 (4), 639-645 (2013)). На Фиг. 1 приведены спектры поглощения и люминесценции коллоидного раствора CdSe нанопластинок в гексане. Положение экситонной полосы поглощения (~460 нм) свидетельствует о наличие эффекта размерного квантования у данных нанокристаллов. При этом в спектре люминесценции наблюдается узкая полоса экситонной люминесценции нанопластинок с максимумом на 464 нм. Исследование кинетики затухания люминесценции нанопластинок в гексане показало, что затухание люминесценции образцов аппроксимируется биэкспоненциальной зависимостью с временами 14 нc и 1 нc, которые характерны для квантовых нанокристаллов CdSe.
Было установлено, что в силу больших латеральных размеров (десятки нанометров) нанопластинки могут находиться в свернутом состоянии, что подтверждается данными электронной микроскопии, представленными на Фиг. 2 и наличием полос в спектре кругового дихроизма в области экситонных переходов нанопластинок, приведенных на Фиг. 3. Присутствие полос в спектре кругового дихроизма нанопластинок свидетельствует о наличии собственной хиральности нанопластинок CdSe, природа которой аналогична природе хиральности углеродных нанотрубок, т.е. собственная хиральность CdSe нанопластинок возникает в результате их скручивания.
Очевидно, что для обеспечения максимальной площади контакта поверхности нанопластинок с графеном и максимальной доступности поверхности нанопластинок молекулам аналита, в данном случае, паров гидразина, в составе гибридной структуры нанопластинки должны находиться в развернутом состоянии. Было установлено, что формирование сухих слоев нанопластинок на диэлектрических подложках и на слоях графена с применением модифицированного метода Ленгмюра-Блоджетт (Roberts, Gareth, ed., "Langmuir-blodgett films," Springer Science & Business Media, (2013)) приводит к разворачиванию нанопластинок, что подтверждается данными электронной микроскопии, приведенными на Фиг. 4 и хорошо согласуется с исчезновением полос в спектре кругового дихроизма нанопластинок.
На Фиг. 5 представлены люминесцентные изображения и спектр люминесценции сухих слоев нанопластинок CdSe, сформированных на графене. Было установлено, что спектры люминесценции сухих слоев CdSe нанопластинок соответствуют спектрам люминесценции данных нанопластинок в гексане. Это свидетельствует о возможности использовать данных нанопластинок для фотосенсибилизации проводимости слоев графена в предполагаемом сенсоре.
На основании полученных результатов формирование гибридной структуры графен - полупроводниковые нанопластинки проводилось с использованием модифицированного метода Ленгмюра-Блоджетт в результате последовательного нанесения на титановые электроды слоев графена и нанопластинок. Затем сенсор подключался к электрической цепи в соответствии со схемой, представленной на Фиг. 6. Освещение сенсора светом с длиной волны 405 нм, который эффективно поглощается нанопластинками, приводило к резкому увеличению проводимости гибридной структуры графен - полупроводниковые нанопластинки, что продемонстрировано на Фиг. 7. Согласно (G. Konstantatos, М. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. Pelayo, G. de Arquer, F. Gatti & Frank H.L. Koppens. Hybrid graphene-quantum dot phototransistors with ultrahigh gain // Nature Nanotechnology, 7, 363-368 (2012)) фотосенсибилизация проводимости графена в гибридных структурах с квантовыми нанокристаллами CdSe обусловлена фотоиндуцированным переносом заряда от нанокристалла к графену.
Для исследования влияния паров гидразина на фотопроводимость гибридных структур графен - полупроводниковые нанопластинки в развернутом состоянии, сенсор помещался в герметичную камеру, к которой обеспечивалась контролируемая подача воздуха, содержащего пары гидразина. На Фиг. 8 приведено схематичное изображение установки для контролируемой подачи/откачивания паров гидразина. Сенсор 18 закрепляется на держателе 19 в герметичной камере 16, освещение сенсора осуществляется источником 17. Камера 16 посредством герметичных соединительных шлангов соединена с камерой 15. В камеру 15 через отверстие, закрываемое пробкой 9, помещается водный раствор гидразина 14. С помощью вентиля 10 регулируется подача паров гидразина в камеру 16. Изменение проводимости сенсора в присутствии паров гидразина регистрируется с помощью микроамперметра, который подключен к сенсору через контакты, выведенные из камеры 16 через герметичную пробку 12. Прокачка системы воздухом для удаления паров гидразина осуществляется при открытом вентиле 10 с использованием насоса 8, который соединен с камерой 15 через герметичную пробку 11, снабженную клапаном для подачи воздуха. В результате удаления паров гидразина из камеры 16 наблюдается полное восстановление фотопроводимости сенсора.
На Фиг. 9 приведена зависимость фототока, протекающего через сенсор, от концентрации паров гидразина в пробе. Видно, что величина фототока IФ заметно превышает темновой ток Iт, протекающий через образец в отсутствии фотооблучения сенсора и ее значения уменьшаются пропорционально концентрации паров гидразина в анализируемой пробе. Применение квантовых нанопластинок в развернутом состоянии в составе сенсора позволило в 5 раз улучшить чувствительность сенсора и в 3 раза увеличить динамический диапазон определения концентрации паров гидразина по сравнению с прототипом.
Срок эксплуатации сенсора на основе гибридной структуры графен - полупроводниковые нанопластинки определяется стабильностью люминесцентных свойств нанопластинок, которые зависят от эффективности формирования дефектов на поверхности нанопластинок под действием возбуждающего света и обусловлены фотоокислением поверхности нанопластинок (S.F. Lee and М.A. Osborne. Brightening, Blinking, Bluing and Bleaching in the Life of a Quantum Dot: Friend or Foe? // ChemPhysChem, 10, 2174-2191, (2009)). На Фиг.10 приведены зависимости фотопроводимости сенсора (20), сформированного с использование модифицированного метода Ленгмюра-Блоджетт и сенсора (21), сформированного методом центрифугирования, от времени внешнего облучения. Видно, что фотопроводимость сенсора (20) практически не зависит от времени облучения светодиодом с длиной волны излучения 405 нм (мощность 50 мВт) и остается неизменной в течение 72 часов. При этом проводимость сенсора (21) через 10 часов уменьшается до значения его темновой проводимости (IТ), что свидетельствует о полной деградации люминесцентных свойств нанокристаллов. Следовательно, применение модифицированного метода Ленгмюра-Блоджетт позволяет не только формировать сухие слои из нанопластинок в развернутом состоянии, но также приводит к значительному увеличению фотостабильности данных слоев по сравнению со слоями, сформированными методом центрифугирования.
Таким образом, решаются задачи снижения порога чувствительности, расширения динамического диапазона определения концентрации паров гидразина и увеличения срока службы сенсора.

Claims (1)

  1. Электрический сенсор на пары гидразина, содержащий диэлектрическую подложку, на которой расположены электроды и чувствительный слой, меняющий фотопроводимость в результате адсорбции паров гидразина, состоящий из структуры графен - полупроводниковые нанокристаллы в виде квантовых точек, фотопроводимость которой уменьшается при адсорбции молекул гидразина на поверхность полупроводниковых нанокристаллов пропорционально концентрации паров гидразина в пробе, отличающийся тем, что полупроводниковые нанокристаллы выполнены в виде полупроводниковых нанопластинок в развернутом состоянии.
RU2016149975A 2016-12-19 2016-12-19 Электрический сенсор на пары гидразина RU2646419C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016149975A RU2646419C1 (ru) 2016-12-19 2016-12-19 Электрический сенсор на пары гидразина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149975A RU2646419C1 (ru) 2016-12-19 2016-12-19 Электрический сенсор на пары гидразина

Publications (1)

Publication Number Publication Date
RU2646419C1 true RU2646419C1 (ru) 2018-03-05

Family

ID=61568680

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149975A RU2646419C1 (ru) 2016-12-19 2016-12-19 Электрический сенсор на пары гидразина

Country Status (1)

Country Link
RU (1) RU2646419C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034284C1 (ru) * 1992-08-07 1995-04-30 Малое государственное предприятие "Практик-НЦ" Датчик концентрации паров гидразина
CN202119746U (zh) * 2011-03-29 2012-01-18 中国科学院苏州纳米技术与纳米仿生研究所 一种肼的传感防护系统
RU2478942C2 (ru) * 2010-11-01 2013-04-10 Закрытое акционерное общество "КАРСИ" Датчик для определения аммиака
RU2522735C9 (ru) * 2012-11-26 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Электрический сенсор на пары гидразина
CN106082181A (zh) * 2016-06-06 2016-11-09 北京航空航天大学 一种基于D‑π‑A结构有机分子与石墨烯复合的气敏材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034284C1 (ru) * 1992-08-07 1995-04-30 Малое государственное предприятие "Практик-НЦ" Датчик концентрации паров гидразина
RU2478942C2 (ru) * 2010-11-01 2013-04-10 Закрытое акционерное общество "КАРСИ" Датчик для определения аммиака
CN202119746U (zh) * 2011-03-29 2012-01-18 中国科学院苏州纳米技术与纳米仿生研究所 一种肼的传感防护系统
RU2522735C9 (ru) * 2012-11-26 2014-11-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Электрический сенсор на пары гидразина
CN106082181A (zh) * 2016-06-06 2016-11-09 北京航空航天大学 一种基于D‑π‑A结构有机分子与石墨烯复合的气敏材料及其制备方法

Similar Documents

Publication Publication Date Title
Vokhmintcev et al. Charge transfer and separation in photoexcited quantum dot-based systems
Adhikari et al. High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on “giant” quantum dots
Silvi et al. Luminescent sensors based on quantum dot–molecule conjugates
Knowles et al. Chemical control of the photoluminescence of CdSe quantum dot− organic complexes with a series of para-substituted aniline ligands
Hu et al. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization
Kim et al. Role of surface states in photocatalysis: Study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation
Bard et al. Electrochemistry and electrogenerated chemiluminescence of semiconductor nanocrystals in solutions and in films
Thomas et al. Blinking suppression in highly excited CdSe/ZnS quantum dots by electron transfer under large positive Gibbs (free) energy change
Hu et al. Enhanced performance of Fe 3+ detection via fluorescence resonance energy transfer between carbon quantum dots and Rhodamine B
Cohn et al. Photocharging ZnO nanocrystals: Picosecond hole capture, electron accumulation, and auger recombination
Bel Haj Mohamed et al. Time resolved and temperature dependence of the radiative properties of thiol-capped CdS nanoparticles films
Zhao et al. Investigating photoinduced charge transfer in double-and single-emission PbS@ CdS core@ shell quantum dots
Chen et al. 0D–2D and 1D–2D Semiconductor Hybrids Composed of All Inorganic Perovskite Nanocrystals and Single‐Layer Graphene with Improved Light Harvesting
Yang et al. The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films
Rakshit et al. Trap-state dynamics in visible-light-emitting ZnO: MgO nanocrystals
Garoz‐Ruiz et al. Spectroelectrochemistry of quantum dots
Park et al. Facile patterning of hybrid CdSe nanoparticle films by photoinduced surface defects
Maserati et al. Oxygen sensitivity of atomically passivated CdS nanocrystal films
RU2522735C9 (ru) Электрический сенсор на пары гидразина
RU2646419C1 (ru) Электрический сенсор на пары гидразина
Gaponik et al. Electrochemical probing of thiol-capped nanocrystals
Koh et al. TCNQ Interlayers for Colloidal Quantum Dot Light‐Emitting Diodes
Nurdillayeva et al. Inkjet printing and electrical characterisation of DNA-templated cadmium sulphide nanowires
Dorokhin et al. Ferrocene-coated CdSe/ZnS quantum dots as electroactive nanoparticles hybrids
Chakraborty et al. Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires