RU2644067C1 - Каскодный генератор, управляемый напряжением - Google Patents

Каскодный генератор, управляемый напряжением Download PDF

Info

Publication number
RU2644067C1
RU2644067C1 RU2017116009A RU2017116009A RU2644067C1 RU 2644067 C1 RU2644067 C1 RU 2644067C1 RU 2017116009 A RU2017116009 A RU 2017116009A RU 2017116009 A RU2017116009 A RU 2017116009A RU 2644067 C1 RU2644067 C1 RU 2644067C1
Authority
RU
Russia
Prior art keywords
capacitor
inductance
terminal
generator
transistor
Prior art date
Application number
RU2017116009A
Other languages
English (en)
Inventor
Александр Владимирович Баранов
Original Assignee
Акционерное общество "Научно-производственное предприятие "Салют"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное предприятие "Салют" filed Critical Акционерное общество "Научно-производственное предприятие "Салют"
Priority to RU2017116009A priority Critical patent/RU2644067C1/ru
Application granted granted Critical
Publication of RU2644067C1 publication Critical patent/RU2644067C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1221Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising multiple amplification stages connected in cascade
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B7/00Generation of oscillations using active element having a negative resistance between two of its electrodes
    • H03B7/02Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance
    • H03B7/06Generation of oscillations using active element having a negative resistance between two of its electrodes with frequency-determining element comprising lumped inductance and capacitance active element being semiconductor device

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано в синтезаторах частот, работающих вплоть до СВЧ диапазона. Технический результат изобретения заключается в уменьшении спектральной плотности фазовых флуктуаций генераторных устройств каскодного типа. Управляемый напряжением генератор содержит активный элемент, выполненный на первом и втором транзисторах, которые включены по схеме «общий эмиттер - общая база», делитель напряжения, образованный первым, вторым и третьим резисторами, а также эмиттерный резистор первого транзистора и коллекторный резистор второго транзистора, за счет чего обеспечиваются режимы работы транзисторов по постоянному току. Генератор содержит четыре разделительных конденсатора, три развязывающих элемента и блокировочную емкость. Кроме этого в состав генератора входят первая и вторая индуктивности, первый и второй конденсаторы, первый второй, третий и четвертый варикапы, которые являются частотозадающими элементами. 9 ил.

Description

Предлагаемое устройство относится к области радиотехники и может быть использовано в синтезаторах частот, работающих вплоть до СВЧ диапазона. В частности, данное устройство относится к малошумящим генераторам, управляемым напряжением, (ГУН) на транзисторах, которые включены по каскодной схеме «общий эмиттер - общая база». Такая схема генератора обеспечивает расширение полосы перестройки частот при повышенной развязке между сопротивлениями выходной нагрузки и резонансной цепи.
Известен автогенератор, использующий каскодное включение двух транзисторов по схеме «общий эмиттер - общая база» (ОЭ-ОБ) (См. Лучинин, А.С. Разработка малошумящих автогенераторов на биполярных транзисторах / А.С. Лучинин // Радиоэлектроника (Изв. высш. учеб. заведений). - 1987. - Т. 30. - №3. - С. 3-8). Автогенератор (см. фиг. 1) состоит из двух транзисторов VT1 и VT2, включенных по каскодной схеме, четырех резисторов R1-R4 с элементами L2 и С7, которые обеспечивают режим их работы по постоянному току, и элементов L1 и C1-С6, которые вместе с транзисторами образуют емкостную трехточку. В генераторах на одном транзисторе на высоких частотах обычно не удается обеспечить высокую добротность контура и их шумовые свойства получаются плохими. Включение второго транзистора по схеме с общей базой позволяет значительно увеличить выходное сопротивление активного элемента генератора без заметного ухудшения шумовых свойств, которые обеспечиваются первым транзистором.
Если в данном генераторе с положительной (неэлектромагнитной) обратной связью трехточечного типа пренебречь неизохронностью, связанной с активным элементом или варикапами, то спектральная плотность мощности фазовых флуктуаций генератора Lϕm) может быть описана с помощью простой модели [1] и выражена следующими формулами:
Figure 00000001
где ƒm - частота анализа, ƒL0/(2QН) - частота Лисона, ƒ0 - частота генерации, Lψm) - спектральная плотность мощности фазовых шумов каскодного усилителя:
Figure 00000002
Здесь ƒс - верхняя граничная частота области доминирования фликер-шума в спектральной плотности мощности шумов транзисторного усилителя (граничная фликерная частота), Lϕem) - спектральная плотность мощности фазовых шумов усилителя, связанная с действием естественных шумов, которая находится из выражения:
Figure 00000003
где Fϕe - коэффициент «естественного» фазового шума, зависящий от условий согласования транзисторного усилителя и уровня его сигнала, kТ=-174 дБм - термодинамический потенциал при 293 град K, Р a - входная мощность усилителя при согласовании с источником («available power»). В линейном (или квазилинейном режиме) работы усилителя в качестве оценки величины Fϕe может быть взят коэффициент шума транзисторного усилителя Fш, измеренный по стандартной методике.
В рассматриваемом автогенераторе предполагается, что ƒсm min и ƒL>fm maxm min и fm max - минимальная и максимальная частоты анализа), поэтому здесь оптимизируется величина спектральной плотности мощности фазовых шумов:
Figure 00000004
К сожалению, с помощью упрощенной модели [1] не всегда можно описать реальный спектр шумов генераторов, поскольку она часто приводит к неправильной оценке их уровня. Недостатком данного аналога является относительно высокий уровень спектра его фазовых шумов.
Известен управляемый напряжением генератор (См. Phuc С. Pham Voltage controlled oscillator having cascaded output / Phuc C. Pham // Патент США US 5245298A. - Опубл. 14.09.1993). Устройство (см. фиг. 2) содержит каскад на транзисторе VT1, использующий для генерации колебаний технику создания отрицательного сопротивления на его входе, и буферный каскад усиления на транзисторе VT2, чтобы обеспечить развязку сопротивлений генератора и выходной нагрузки. Транзисторы включены по каскодной схеме, а режимы их работы по постоянному току обеспечиваются при помощи четырех резисторов R1-R4. Кроме того, в состав данного устройства входят согласующие элементы L2 и С3, а также элементы VD1, L1 и C1-С6, при помощи которых на входе транзистора VT1 реализуется отрицательное сопротивление.
Недостатком рассмотренного аналога является высокий уровень спектра его фазовых шумов, который может ограничиваться выражением (4).
Наиболее близким к предлагаемому техническим решением является генератор, управляемый напряжением (См. Claypool, Н. Low noise RF signal generator / H. Claypool, J. Nugent // Патент США US 3832653A. - Опубл. 27.08.1974). Устройство (см. фиг. 3) содержит две части: одна часть выполняет функцию генератора, вторая - усилительную функцию. Генераторная часть устройства содержит транзистор VT1, три кварцевых резонатора Q1-Q3, четыре варикапа VD1-VD4 и три ключа S1-S3. При помощи элементов L1, L3, L4 и С1, С2, С4-С7 на входе транзистора VT1 реализуется необходимое для генерации колебаний отрицательное сопротивление. Усилительная часть устройства состоит из транзистора VT2, цепи согласования сопротивлений усилителя и выходной нагрузки, образованной индуктивностью L2 и варикапом VD4, а также блокировочного конденсатора С3. Транзисторы VT1, VT2 включены по каскодной схеме, а режимы их работы по постоянному току обеспечиваются при помощи резисторов R1-R4. По сути, прототип можно представить транзисторным вариантом двухконтурного генератора Б.К. Шембеля [2], в котором для повышения стабильности частоты генератора используются два контура: внешний связанный с нагрузкой контур, а также внутренний контур для получения обратной связи и генерации колебаний с его собственной частотой.
Недостатком устройства-прототипа является относительно высокий уровень спектра его фазовых шумов, ограничиваемый соотношением (4).
Технический эффект, на достижение которого направлено предлагаемое решение, заключается в уменьшении спектральной плотности мощности фазовых флуктуаций генераторных устройств каскодного типа ОЭ-ОБ.
Этот эффект достигается тем, что в управляемом напряжением генераторе, содержащем активный элемент, выполненный на первом и втором транзисторах, которые соответственно включены по схеме «общий эмиттер - общая база», где эмиттер первого транзистора соединен с первым разделительным конденсатором, последовательно включенные первый, второй, третий и четвертый резисторы, в которых общая точка первого и второго резисторов подключена к базе второго транзистора и через первый конденсатор - к общей шине, общая точка второго и третьего резисторов соединена с базой первого транзистора, с первой обкладкой второго конденсатора и с первой индуктивностью, которая в свою очередь соединена последовательно со вторым разделительным конденсатором, а точка соединения третьего и четвертого резистора является отрицательной клеммой источника питания устройства, которое кроме перечисленного содержит первый, второй, третий и четвертый варикапы, причем катод первого варикапа соединен со второй индуктивностью, а также блокировочный конденсатор, присоединенный к общей шине, и третий и четвертый разделительные конденсаторы, согласно изобретению введен пятый нагрузочный резистор, который с одной стороны подключен к свободной обкладке блокировочного конденсатора и положительной клемме источника питания, вторая клемма которого соединена с общей шиной генератора, а с другой стороны - к первому резистору, к коллектору второго транзистора и через третий разделительный конденсатор - к общей точке соединения второй индуктивности и катода первого варикапа, анод которого подключен к общей шине, кроме того, для управления варикапами введен источник питания с первым, вторым и третьим развязывающими элементами, причем их общая точка является его положительной клеммой, а его вторая клемма соединена с общей шиной, причем второй вывод первого развязывающего элемента подключен через четвертый разделительный конденсатор - к выходу генератора, а также к свободному выводу второй индуктивности и к катоду второго варикапа, анод которого соединен с общей шиной, второй вывод второго развязывающего элемента подключен ко второму разделительному конденсатору и к катоду третьего варикапа, анод которого соединен с общей шиной, второй вывод третьего развязывающего элемента подключен к первому разделительному конденсатору и к катоду четвертого варикапа, анод которого соединен с общей шиной, кроме прочего к эмиттеру первого транзистора подключены второй вывод второго конденсатора и второй вывод четвертого резистора, а величины основных элементов генератора удовлетворяют следующему соотношению:
Figure 00000005
,
где ƒ0 - частота генерации устройства, COC - емкость второго конденсатора, САС - эквивалентная емкость последовательного контура, образованного емкостями второго и четвертого варикапов и второй индуктивностью, LКК - эквивалентная индуктивность последовательного контура, образованного первой индуктивностью и емкостями первого и третьего варикапов, CБ - емкость первого конденсатора, СК - эквивалентная емкость контура, образованного емкостями первого, второго варикапов и второй индуктивностью, LЭ - эквивалентная индуктивность контура, образованного первой индуктивностью, емкостью первого конденсатора и емкостями третьего и четвертого варикапов.
Принципиальная схема предложенного устройства представлена на фиг. 4. Генератор, управляемый напряжением, состоит из двух транзисторов VT1 и VT2, включенных по каскодной схеме, пяти резисторов R1-R5, при помощи которых обеспечивается режим их работы по постоянному току. Конденсатор С1 является блокировочной емкостью, конденсаторы С2, С3, С5, С7 - разделительными элементами, а Х1-Х3 представляют собой элементы развязки ВЧ цепей по питанию. Сопротивления элементов X1-Х3 носят или индуктивный или чисто активный характер, а их величины должны быть много больше сопротивления выходной нагрузки. Кроме этого устройство на фиг. 4 содержит индуктивности L1 и L2, конденсаторы С4 и С6, а также четыре варикапа VD1-VD4, которые являются основными частотозадающими элементами.
Предложенное устройство работает следующим образом. Поясним работу данного генератора, используя упрощенную схему, которая приведена на фиг. 5. В упрощенной модели генератора выделяются две трехточечные схемы: треугольная и звездообразная. В последней схеме в качестве центральной точки звезды используется корпус прибора.
В работе [3] на основе общих взаимных условий эквивалентных преобразований треугольника сопротивлений в звезду и наоборот - преобразования сопротивлений звезды в треугольник показано, что емкостной трехточечной схеме построения автогенераторов (см. фиг. 6а)) можно поставить в соответствие трехточечную схему генератора с последовательной обратной связью, которая изображена на фиг. 6б). Приведенные эквивалентные схемы являются обобщенными, так как они справедливы для любых транзисторов и различных вариантов их включения.
Трехточечная схема генератора на фиг. 5, в котором точки обозначены буквами а, в1 и с, соответствует эквивалентной схеме на фиг. 6а), если считать, что СОС - емкость конденсатора С6, СAC - эквивалентная емкость последовательного контура, содержащего индуктивность L2 и емкости варикапов VD2 и VD4, a LКК - эквивалентная индуктивность последовательного контура, образованного индуктивностью L1 и емкостями варикапов VD1 и VD3. С другой стороны, трехточечная схема генератора на фиг. 5, в котором точки обозначены буквами а, в2 и с, соответствует эквивалентной схеме на фиг. 6б), если считать, что СБ - емкость конденсатора С4, CК - эквивалентная емкость контура, содержащего индуктивность L2 и емкости варикапов VD1 и VD2, LЭ - эквивалентная индуктивность контура, образованного индуктивностью L1, емкостью конденсатора С6 и емкостями варикапов VD3, VD4. В первом случае частота генерации находится из условия ХАСОСКК=0, где ХКК=2Πƒ0LКК,
Figure 00000006
,
Figure 00000007
, и равна:
Figure 00000008
Используя результаты работы [3], для звездообразной трехточечной схемы генератора получим уравнение: ХКХЭЭХБ+XКXБ=0, где XЭ=2πƒ0LЭ, XК=-1/(2πƒ0СК), ХБ=-1/(2πƒ0СБ). В этом случае частота генерации f0 вычисляется по формуле:
Figure 00000009
Таким образом, при выборе номиналов частотозадающих элементов в соответствии с формулами (5) и (6) предлагаемое устройство представляет собой систему двух взаимосвязанных генераторов, работающих на одной частоте и на одну общую нагрузку - резистор R1. При этом в обоих генераторах используется один и тот же активный элемент, образованный двумя транзисторами VT1 и VT2. Следует отметить, что за исключением одного элемента - конденсатора С4, остальные частотозадающие элементы используются в двух генераторах одновременно (см. фиг. 5). При соблюдении условий (5) и (6) все это свидетельствует о полной взаимосвязи данных генераторов. Если генераторы работают на высоких частотах, то для соблюдения соотношений (5) и (6) необходимо выполнить дополнительные условия, при которых точки подключения к корпусу 1 и 2, а также 3, 4 должны быть расположены как можно ближе друг к другу. В противном случае конструктивные индуктивности, которые имеют место между указанными точками, должны быть учтены при расчетах величин индуктивностей L1 и L2. Наиболее точное соблюдение соотношений (5) и (6) достигается при помощи второго источника питания путем дополнительной регулировки напряжений на варикапах. При этом полученный диапазон регулировки частот, где выполняются условия (5), (6), как правило, оказывается меньшим по сравнению с общим диапазоном перестройки частот генератора.
Известно, что уменьшение общего фазового шума при взаимной синхронизации N генераторов описывается следующей формулой [4]:
Figure 00000010
где
Figure 00000011
- общий фазовый шум для N глобально связанных между собой генераторов,
Figure 00000012
- фазовый шум отдельного генератора. Соотношение (7) справедливо и для цепочки N генераторов, ближайшие из соседей которых обладают двусторонней связью. Оно справедливо также и для другой формы записи - через спектральные плотности мощности фазовых флуктуаций отдельного и совокупного генераторов.
Таким образом, по сравнению с известными аналогами и прототипом, поскольку в формуле (7) N-2,b предлагаемом устройстве спектральная плотность мощности фазовых флуктуаций теоретически ниже на 3 дБ.
Пример конкретного выполнения устройства. Управляемый напряжением генератор выполнен на транзисторах типа КТ 3202А9 и варикапах типа КВ174 В9 (VD1, VD2) и КВ174Ж9 (VD3, VD4). Устройство генерирует колебания мощностью 2-4 дБм на частотах от 550 до 950 МГц при напряжении питания +12 В и токе потребления ~15 мА. В качестве пассивных элементов здесь используются чип-элементы для поверхностного монтажа с типоразмером 0603. ГУН выполнен на мягкой подложке из стеклотекстолита FR-4 в корпусе ВК377, который является стандартным для генераторов, производимых фирмой Mini-Circuits (США). Макет устройства представлен на фиг. 7. При помощи анализатора спектра FSUP-26 (ROHDE&SCHWARZ) измерены спектральные плотности мощности фазовых флуктуаций данного макета - Lϕm) на частоте 600 МГц при управляющем напряжении +2.5 В (см. фиг. 8 кривая 1) и аналогичные шумовые характеристики на частоте 850 МГц при управляющем напряжении +7.5 В (см. фиг. 9, кривая 1). Чтобы устранить взаимную связь двух генераторов, из которых состоит предлагаемое устройство, изменим в 100 раз номинал емкости С4 по сравнению с ее расчетной величиной. В этом случае взаимная синхронизация пропадает, а параметры величин в формулах (1) - (4), от которых зависит уровень фазовых шумов, остаются практически неизменными. Для измененного таким способом макета генератора на тех же частотах и при тех же напряжениях на варикапах получены аналогичные характеристики Lϕm) (см. кривые 2 на фиг. 8 и 9). Приведенные на фиг.8 и 9 экспериментальные зависимости подтверждают наличие положительного эффекта величиной 5-7 дБ на частоте 600 МГц и величиной 3-5 дБ на частоте 850 МГц. Положительный эффект здесь несколько выше теоретически установленного в 3 дБ. Дополнительная разница в уровнях спектра фазовых шумов может быть связана с тем, что при увеличении емкости С4 в 100 раз меняется вид АЧХ усилителя на транзисторе VT2 с общей базой. Обычно при изменении емкости на базе в таком резонансном усилителе его коэффициент усиления несколько уменьшается, а полоса рабочих частот расширяется [5]. В формулах (3) и (4) эти изменения приводят к уменьшению каждой из величин Р а и
Figure 00000013
на 1-2 дБ, что и объясняет при ƒ0=600 МГц дополнительное увеличение уровня Lϕm) на 2-4 дБ.
Таким образом, данный пример конкретной реализации каскодного генератора, управляемого напряжением, подтверждает возможность получения более низких уровней спектра фазовых флуктуаций. Сравнение шумовых характеристик аналогов, прототипа и других подобных им устройств [6] с уровнем спектра фазовых шумов предложенного генератора доказывает, что в предложенном генераторе уровни спектра фазовых шумов теоретически ниже на 3 дБ, а практически - на 3-7 дБ.
Источники информации
1. Leeson, D. A simple model of feedback oscillator noise spectrum / D. Leeson // Proceedings of the IEEE. - 1966. - Vol. 54. -N 2. - P. 329-332.
2. Бетин, Б.М. Радиопередающие устройства / Б.М. Бетин. – М.: Высшая школа, 1972, издание 4. - 352 с.
3. Баранов, А.В. Частные и обобщенные эквивалентные трехточечные схемы СВЧ автогенераторов / А.В. Баранов // Электронная техника. Сер. 1. Электроника СВЧ. - 2017. - Вып. 1(532). - С. 18-25.
4. Heng-Chia Chang Phase noise in coupled oscillators: Theory and experiment / Heng-Chia Chang, Xudong Cao, Umesh K. Mishra and Robert A. York // IEEE Trans, on Microwave Theory and Techniques. - 1997. - Vol. 45. - N 5. - P. 604-615.
5. Баранов, А.В. Термостабилизация резонансных СВЧ усилителей мощности / А.В. Баранов, Ю.А. Булин, И.Г. Минкин // - Радиотехника. - 1990. - №1. - С. 82-84.
6. Grebennikov, A. RF and microwave transistor oscillator design / A. Grebennikov. - John Wiley & Sons, 2007. - 441 p.

Claims (4)

  1. Управляемый напряжением каскодный генератор, содержащий активный элемент, выполненный на первом и втором транзисторах, которые соответственно включены по схеме «общий эмиттер - общая база», где эмиттер первого транзистора соединен с первым разделительным конденсатором, последовательно включенные первый, второй, третий и четвертый резисторы, в которых общая точка первого и второго резисторов подключена к базе второго транзистора и через первый конденсатор - к общей шине, общая точка второго и третьего резисторов соединена с базой первого транзистора, с первой обкладкой второго конденсатора и с первой индуктивностью, которая в свою очередь соединена последовательно со вторым разделительным конденсатором, а точка соединения третьего и четвертого резистора является отрицательной клеммой источника питания устройства, которое, кроме перечисленного, содержит первый, второй, третий и четвертый варикапы, причем катод первого варикапа соединен со второй индуктивностью, а также блокировочный конденсатор, присоединенный к общей шине, и третий и четвертый разделительные конденсаторы, отличающийся тем, что введен пятый нагрузочный резистор, который с одной стороны подключен к свободной обкладке блокировочного конденсатора и положительной клемме источника питания, вторая клемма которого соединена с общей шиной генератора, а с другой стороны - к первому резистору, к коллектору второго транзистора и через третий разделительный конденсатор - к общей точке соединения второй индуктивности и катода первого варикапа, анод которого подключен к общей шине, кроме того, для управления варикапами введен источник питания с первым, вторым и третьим развязывающими элементами, причем их общая точка является его положительной клеммой, а его вторая клемма соединена с общей шиной, причем второй вывод первого развязывающего элемента подключен через четвертый разделительный конденсатор - к выходу генератора, а также к свободному выводу второй индуктивности и к катоду второго варикапа, анод которого соединен с общей шиной, второй вывод второго развязывающего элемента подключен ко второму разделительному конденсатору и к катоду третьего варикапа, анод которого соединен с общей шиной, второй вывод третьего развязывающего элемента подключен к первому разделительному конденсатору и к катоду четвертого варикапа, анод которого соединен с общей шиной, кроме прочего к эмиттеру первого транзистора подключены второй вывод второго конденсатора и второй вывод четвертого резистора, а величины основных
  2. элементов генератора удовлетворяют следующему соотношению:
  3. Figure 00000014
    ,
  4. где ƒ0 - частота генерации устройства, COC - емкость второго конденсатора, САС - эквивалентная емкость последовательного контура, образованного емкостями второго и четвертого варикапов и второй индуктивностью, LКК - эквивалентная индуктивность последовательного контура, образованного первой индуктивностью и емкостями первого и третьего варикапов, CБ - емкость первого конденсатора, CК - эквивалентная емкость контура, образованного емкостями первого, второго варикапов и второй индуктивностью, LЭ - эквивалентная индуктивность контура, образованного первой индуктивностью, емкостью первого конденсатора и емкостями третьего и четвертого варикапов.
RU2017116009A 2017-05-04 2017-05-04 Каскодный генератор, управляемый напряжением RU2644067C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017116009A RU2644067C1 (ru) 2017-05-04 2017-05-04 Каскодный генератор, управляемый напряжением

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017116009A RU2644067C1 (ru) 2017-05-04 2017-05-04 Каскодный генератор, управляемый напряжением

Publications (1)

Publication Number Publication Date
RU2644067C1 true RU2644067C1 (ru) 2018-02-07

Family

ID=61173496

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017116009A RU2644067C1 (ru) 2017-05-04 2017-05-04 Каскодный генератор, управляемый напряжением

Country Status (1)

Country Link
RU (1) RU2644067C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU186861U1 (ru) * 2018-10-30 2019-02-06 Акционерное общество "Концерн "Созвездие" Малошумящий генератор, управляемый напряжением с двойным перекрытием по частоте
CN112073030A (zh) * 2020-08-12 2020-12-11 武汉博畅通信设备有限责任公司 一种电调滤波器
RU2774408C1 (ru) * 2021-09-14 2022-06-21 Акционерное общество "Научно-производственное предприятие "Салют" Перестраиваемый каскодный автогенератор гармоник

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832653A (en) * 1973-08-20 1974-08-27 Westinghouse Electric Corp Low noise rf signal generator
US5245298A (en) * 1992-07-30 1993-09-14 Motorola, Inc. Voltage controlled oscillator having cascoded output
SU1799232A2 (ru) * 1989-12-26 1995-11-20 Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова Каскадный генератор
US5712599A (en) * 1996-06-19 1998-01-27 Kleinberg; Leonard L. Oscillator having two cascaded gain stages with feedback operating near their unity gain frequency
RU2589305C1 (ru) * 2014-11-18 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ генерации высокочастотных сигналов и устройство его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832653A (en) * 1973-08-20 1974-08-27 Westinghouse Electric Corp Low noise rf signal generator
SU1799232A2 (ru) * 1989-12-26 1995-11-20 Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова Каскадный генератор
US5245298A (en) * 1992-07-30 1993-09-14 Motorola, Inc. Voltage controlled oscillator having cascoded output
US5712599A (en) * 1996-06-19 1998-01-27 Kleinberg; Leonard L. Oscillator having two cascaded gain stages with feedback operating near their unity gain frequency
RU2589305C1 (ru) * 2014-11-18 2016-07-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Способ генерации высокочастотных сигналов и устройство его реализации

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU186861U1 (ru) * 2018-10-30 2019-02-06 Акционерное общество "Концерн "Созвездие" Малошумящий генератор, управляемый напряжением с двойным перекрытием по частоте
CN112073030A (zh) * 2020-08-12 2020-12-11 武汉博畅通信设备有限责任公司 一种电调滤波器
RU2774408C1 (ru) * 2021-09-14 2022-06-21 Акционерное общество "Научно-производственное предприятие "Салют" Перестраиваемый каскодный автогенератор гармоник

Similar Documents

Publication Publication Date Title
US10454419B2 (en) Hybrid resonator based voltage controlled oscillator (VCO)
CN101904096B (zh) 可变电感器
US6680657B2 (en) Cross-coupled voltage controlled oscillator with improved phase noise performance
US8451071B2 (en) Low noise oscillators
US20060220754A1 (en) Voltage controlled oscillator
KR100772747B1 (ko) 집적회로제조를위한넓은주파수범위및낮은잡음의전압제어발진기
US9660578B2 (en) Electronic device with capacitor bank linearization and a linearization method
KR20130087757A (ko) 가변 커패시터를 이용하는 전압 제어 발진기 및 이를 이용하는 위상고정루프
KR100457939B1 (ko) 고주파 수정발진기
RU2644067C1 (ru) Каскодный генератор, управляемый напряжением
US6853262B2 (en) Voltage-controlled oscillator circuit which compensates for supply voltage fluctuations
US7286024B2 (en) Voltage-controlled oscillator with differential output
JPH10284937A (ja) 発振器共振回路内の寄生発振モードを回避する回路
US9106179B2 (en) Voltage-controlled oscillators and related systems
US6724273B1 (en) Filter circuitry for voltage controlled oscillator
CN1726640B (zh) 可调谐跟踪滤波器
RU2706481C1 (ru) Перестраиваемый автогенератор гармоник
EP0988690A1 (en) Improved oscillator circuit and method of forming same
US10374549B2 (en) Variable frequency oscillator having wide tuning range and low phase noise
US7170355B2 (en) Voltage-controlled oscillator using current feedback network
US20100127786A1 (en) Low noise oscillators
CN116886046B (zh) 一种压控振荡电路
JPH0319506A (ja) 水晶発振回路
Pantoli et al. Wideband high-linearity low-phase-noise VCO for space communication systems
RU2774408C1 (ru) Перестраиваемый каскодный автогенератор гармоник